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Abstract

Background: Machine learning offers quantitative pattern recognition analysis of wearable device data and has the potential
to detect illness onset and monitor influenza-like illness (ILI) in patients who are infected.

Objective: This study aims to evaluate the ability of machine-learning algorithms to distinguish between participants who are
influenza positive and influenza negative in a cohort of symptomatic patients with ILI using wearable sensor (activity) data and
self-reported symptom data during the latent and early symptomatic periods of ILI.

Methods: This prospective observational cohort study used the extreme gradient boosting (XGBoost) classifier to determine
whether a participant was influenza positive or negative based on 3 models using symptom-only data, activity-only data, and
combined symptom and activity data. Data were collected from the Home Testing of Respiratory Illness (HTRI) study and
FluStudy2020, both conducted between December 2019 and October 2020. The model was developed using the FluStudy2020
data and tested on the HTRI data. Analyses included participants in these studies with an at-home influenza diagnostic test result.
Fitbit (Google LLC) devices were used to measure participants’ steps, heart rate, and sleep parameters. Participants detailed their
ILI symptoms, health care–seeking behaviors, and quality of life. Model performance was assessed by area under the curve
(AUC), balanced accuracy, recall (sensitivity), specificity, precision (positive predictive value), negative predictive value, and
weighted harmonic mean of precision and recall (F2) score.

Results: An influenza diagnostic test result was available for 953 and 925 participants in HTRI and FluStudy2020, respectively,
of whom 848 (89%) and 840 (90.8%) had activity data. For the training and validation sets, the highest performing model was
trained on the combined symptom and activity data (training AUC=0.77; validation AUC=0.74) versus symptom-only (training
AUC=0.73; validation AUC=0.72) and activity-only (training AUC=0.68; validation AUC=0.65) data. For the FluStudy2020
test set, the performance of the model trained on combined symptom and activity data was closely aligned with that of the
symptom-only model (combined symptom and activity test AUC=0.74; symptom-only test AUC=0.74). These results were
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validated using independent HTRI data (combined symptom and activity evaluation AUC=0.75; symptom-only evaluation
AUC=0.74). The top features guiding influenza detection were cough; mean resting heart rate during main sleep; fever; total
minutes in bed for the combined model; and fever, cough, and sore throat for the symptom-only model.

Conclusions: Machine-learning algorithms had moderate accuracy in detecting influenza, suggesting that previous findings
from research-grade sensors tested in highly controlled experimental settings may not easily translate to scalable commercial-grade
sensors. In the future, more advanced wearable sensors may improve their performance in the early detection and discrimination
of viral respiratory infections.

(J Med Internet Res 2024;26:e47879) doi: 10.2196/47879

KEYWORDS

influenza; influenza-like illness; wearable sensor; person-generated health care data; machine learning

Introduction

Background
Between 2010 and 2020, an estimated 9 to 41 million annual
illnesses were attributed to influenza infection in the United
States [1]. Estimates of US annual hospitalizations ranged from
140,000 to 710,000 and deaths from 12,000 to 52,000 [1]. Early
diagnosis and implementation of nonpharmaceutical
interventions (eg, quarantine) are critical in preventing onward
transmission and reducing the disease burden of influenza-like
illnesses (ILIs). Recent data show that wearable devices (eg,
fitness trackers and smartwatches) may help detect viral
infection before symptoms develop and may provide an early
warning system for viral illness [2-12].

In 2019 and 2020, approximately 29% of US adults were
reported to use wearable devices [13], which range from fitness
trackers that passively record heart rate (HR) and the number
of daily steps to more sophisticated devices that can measure
parameters such as sleep duration and quality, blood pressure,
blood glucose, and oxygen saturation levels [14]. The wide
availability and increasing popularity of wearable devices make
them convenient, passive tools to record person-generated health
data that could be harnessed to improve both individual and
public health.

Wearable devices have the potential to detect the onset of illness
and monitor disease progression or severity in patients infected
with virus. In the future, this may allow people to be alerted to
possible infection or the need to seek medical care in the early
stages of disease [2-6]. Grzesiak et al [4] further showed that
wearable devices may be able to predict the infection severity
profile of a patient up to 24 hours before the onset of symptoms
following exposure to the influenza virus or rhinovirus. The
ability to predict illness severity may provide opportunities to
discriminate between respiratory viral infections with more
severe clinical presentation that carry a greater risk to public
health, such as influenza and COVID-19, and those with a
mostly mild clinical presentation, such as the common cold.
Our previous analysis objectively characterized the “wearable
phenotype” of individuals with ILI as well as those with
confirmed influenza infection [15]. We demonstrated that before
symptom onset, and throughout an ILI event, individuals
experience reduced total daily steps, total active time, and sleep
efficiency, as well as increased sleep duration and changes in
resting HR (RHR) [15].

Here, we report the development and evaluation of a
machine-learning model to detect laboratory-confirmed
influenza infection based on wearable sensor and symptom data
in the latent and early symptomatic periods (up to 1 day after
symptom onset), using an extreme gradient boosting (XGBoost)
classifier [16,17] in a cohort of symptomatic patients with ILI.

Machine learning offers a quantitative analysis of the data
collected from wearable devices; XGBoost is an optimized
distributed gradient boosting library that implements
machine-learning algorithms, providing parallel-tree boosting
[17]. XGBoost, a supervised machine-learning process, can be
used to solve classification tasks, in which one can determine
whether an instance is in a particular category by studying the
features of that instance [17].

Using commercial wearable sensors (Fitbit [Google LLC]), it
has previously been demonstrated that nationwide mobility
(measured as total daily steps in a US population) decreased
due to ILI symptoms and that ILI burden (determined by the
difference in total daily steps) was associated with care-seeking
behaviors, the number of workdays missed, and self-reported
overall health [18]. Another study showed that abnormalities
in RHR and sleep duration, measured by wearable sensors,
could be leveraged to predict the real-time incidence of ILI [19].
Recently, wearable sensor data have also been used to assess
physiological signs associated with COVID-19 [5,10,12,20-26].

Objective
The objective of our analysis was to determine the ability of an
XGBoost model to distinguish between participants who are
influenza positive and influenza negative during the latent and
early symptomatic periods of ILI (days –4 to +1). Wearable and
symptoms data were used, gathered from 2 independent studies,
FluStudy2020 and the HTRI study (NCT04245800); the former
was used for training, testing, and validation, and the latter was
used as a secondary holdout set for evaluation.

Methods

Study Design and Participants

Overview
This prospective observational cohort study evaluated the ability
of machine-learning algorithms to distinguish between
participants who are influenza positive and influenza negative
in a cohort of patients with ILI. Analyses were conducted using
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wearable sensor (activity) data and self-reported symptom
severity data from participants enrolled in FluStudy2020, with
an influenza diagnostic test result from a self-administered kit
[15,27]. Data from the HTRI study were used as an independent
holdout set. All participants provided written consent.

The XGBoost model was used to classify whether a participant
was influenza positive or negative based on 3 models using
symptom-only data, activity-only data, and combined symptom
and activity data. Other models were not assessed with these
data based on previous internal analyses with different data, in
which H2O AutoML was used to train and tune various models;
XGBoost was found to be the best-performing model. Participant
variables, including age, gender, BMI, and month in which the
participant conducted an at-home influenza test, were considered
before the Boruta feature selection algorithm was applied to the
activity-only and combined symptom and activity models. The
symptom-only model included all participant variables. The
XGBoost model was assessed for its early detection of influenza
infection in the FluStudy2020 training, validation, and test sets,
as well as the HTRI secondary holdout set, using the following
metrics: balanced accuracy, recall (sensitivity), specificity,
precision (positive predictive value), negative predictive value,
weighted harmonic mean of precision and recall (F2) score, and
area under the receiver operating characteristic curve (AUC
ROC). Calibration plots and feature importance plots were
generated for each of the 3 models. A model evaluation
schematic is shown in Figure S1 in Multimedia Appendix 1.

Data Collection and Preprocessing
The HTRI study and FluStudy2020 were conducted by Evidation
Health in adults in the United States between December 2019
and October 2020. Participants in each study were aged ≥18
years, lived in the United States, and owned and were willing
to wear a Fitbit device during the day and during sleep for the
duration of the study. Full inclusion and exclusion criteria are
shown in Table S1 in Multimedia Appendix 1. Steps, HR, and
sleep data were collected through continuous passive monitoring
via the participants’ Fitbit devices. Participants also completed
daily surveys of whether they experienced influenza symptoms
in the past 24 hours, self-reported ILI symptom severity, health
care–seeking behaviors, and quality of life. Biweekly and
monthly surveys were used to capture influenza-related
complication events and vaccination history. Participants
reporting certain ILI symptoms were instructed to perform a
self-administered influenza diagnostic test. Samples were
returned to the laboratory for the confirmation of influenza by
a highly sensitive reverse transcription polymerase chain
reaction test. The primary assessment of data from the 2 studies,
including the removal of physiologically implausible data or
null estimates, has been described previously [15]. Missing data
were automatically handled by XGBoost by finding the best
split direction when missing data were noted.

Participants with an influenza diagnostic test result were
identified, and activity data were assessed for quality and
completeness for each participant day. Step data were considered
valid if the participant had at least 10 hours of step wear time
[28,29] or if they had a valid HR day. HR data were considered
valid if they included a minimum of 600 minutes (10 hours) of

HR measurements and if a Fitbit-estimated RHR measure was
available for that day. Sleep data were considered valid if
nonzero and nonmissing total sleep minutes were available for
the day. Finally, any day with <10 hours of wear time was
considered invalid.

The maximum self-reported severity of 8 symptoms was
analyzed: early fever, sore throat, cough, headache, muscle
ache, chills, fatigue, and nasal congestion. In total, 41 activity
features were analyzed, including RHR, total minutes asleep,
the total number of steps, the proportion of the day that the
participant spent being physically active (defined as ≥50 steps
per minute), the maximum amount of activity the participant
was able to complete within a single hour of the day, sleep
efficiency score during main sleep, minutes in bed for the main
sleep only of the day, the number of naps, total minutes in bed,
the percentage of minutes with HR >1.5×RHR for the day, the
proportion of minutes with nonzero steps out of the total minutes
the device was worn, and mean RHR during main sleep. In
addition, 29 HR variability (HRV) features were analyzed,
derived from RHR captured during the participant’s sleep period.

Model Building and Optimization
Baseline predictors were assessed by including symptom-only
features and activity-only features and then combining both
features for the latent period to day 1 of ILI (days –4 to +1).
This baseline model was built on the XGBoost classifier, which
was selected as the machine-learning algorithm trained to detect
influenza due to its scalability, regularization, and ability to
detect complex nonlinear relationships. Metric calculations were
based on a previously published study [5]:

where test data represents ILI days –4 to +1, which encompass
the latent period (days –4 to –1; ie, the incubation period for
influenza), ILI onset (day 0), and part of the early symptomatic
period (day +1), and baseline data represents the participants’
healthy baseline data from 2 weeks before the latent period
(days –18 to –5). The model was optimized using the Bayesian
hyperparameter optimization algorithm, a Bayesian inference,
and a Gaussian process to find the maximum value of an
unknown function with minimal iterations. AUC ROC was the
metric subject to optimization; 100 optimization trials were run
per model (symptom-only, activity-only, and combined
symptom and activity data; each model included participant
variables). The parameters optimized were maximum number
of trees: (2, 50); learning rate: (0.0001, 0.2); maximum tree
depth: (2, 10); subsample ratio of training instances before
growing trees: (0.2, 1.0); column subsample ratio at each level:
(0.1, 1.0); column subsample ratio at each tree: (0.1, 1.0);
column subsample at each node: (0.1, 1.0); maximum delta step
allowed by each leaf output: (0, 10); minimum sum of instance
weight needed in a child (subtree: [0.0, 10.0]); L1 regularization:
(0.00001, 1); and L2 regularization: (0.00001, 100). To mitigate
the imbalanced ratio of participants who were influenza positive
to influenza negative, class weights were calculated and applied
to the model to give greater weight to the minority
influenza-positive class.
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Given these differences in study design, the current analysis
excluded participants who tested positive for influenza in the
HTRI study but did not meet any of the FluStudy2020 criteria
for populations with ILI. There was also a small subset of HTRI
participants whose symptoms would have met the influenza test
kit criteria for FluStudy2020 but from whom a sample was not
collected because they did not meet the HTRI influenza test kit
criteria. To combine the HTRI data with the FluStudy2020 data,
it was necessary to verify that the HTRI participants’
self-reported illness dates (which were provided in the same
recovery survey in which a health care visit was reported)
aligned with the analysis-derived ILI event dates (which were
created during the analysis of the daily survey responses). This
permitted verification that only health care visits during the
same illness period as the ILI event period were included in the
analysis. HTRI participants were categorized as having made
or not made a health care visit only if their self-reported ILI
event period overlapped with the analysis-derived ILI event
period.

Model Validation and Evaluation
Stratified k-fold shuffle cross-validation (k=50) was used to
ensure model performance was reliable and robust. Overall, 50
models were trained on different training and validation sets
before being evaluated on a single test set and the HTRI data.
Of the FluStudy2020 data, 64% were used for k-stratified splits
consisting of 50 training sets and 16% were used for validation.
The remaining 20% of the data were set aside as the testing set.
External validation was performed using the HTRI data. The
Boruta feature selection algorithm was applied to reduce the
dimensions of the activity features to minimize the impact of
noise and reduce overfitting.

Model performance was assessed using the following metrics:
balanced accuracy, recall (sensitivity), specificity, precision
(positive predictive value), negative predictive value, F2-score,
and AUC ROC. The model performance results consisted of
the AUC ROC curves and mean performance across each k-fold
along with 95% CIs for the training, validation, and test sets.
The distribution of positive and negative predictions for the
aggregated performance (based on symptom features, activity
features, and these features combined) was described using
confusion matrices. The values in each confusion matrix
comprised the mean across each fold with their respective 95%
CIs. Feature importance analyses were performed for each
model, with the most important features summarized in feature
importance plots.

Software
Analyses were performed using Python (version 3.7; Python
Software Foundation); xgboost (version 1.5.2) was used for
modeling, and bayesian-optimization (version 1.2.0) was used
for hyperparameter optimization. Feature importance was

determined using XGBoost’s built-in feature importance. Data
processing and visualization were performed with pandas
(version 1.3.4), NumPy (version 1.21.4), and Matplotlib (version
3.5.1) [30-32]. Kedro was used to build robust and scalable data
pipelines [33]. Feature selection was performed with Boruta
(version 0.3) [34]. Statistical analysis was performed with SciPy
(version 1.7.3) [35]. Metric computation, k-fold data splitting,
and class weight calculations were performed using scikit-learn
(version 0.24.2) [36]. The Python package hrvanalysis [37] was
used to derive HRV features.

Ethical Considerations
The HTRI study and FluStudy2020 were conducted by Evidation
Health, Inc. Institutional review board approval was given by
WCG Clinical for both the HTRI study (study number: 1271380;
tracking number: 20192965) and FluStudy 2020 (study number:
1271500; tracking number: 20193003). Participants were
recruited from the Evidation consumer platform, a free
application that allows members to earn compensation for
completing surveys, sharing health activity data, and reading
health articles. Individuals were given the opportunity to enroll
into the study once they provided informed consent to participate
study activities and for use of their data. Participants earned
reward points, redeemable for money, as compensation for
completing study activities. Reward points worth up to US $10
were available on completion of enrollment, and a maximum
of US $109 could be earned over the course of the study, if all
study activities were completed. The data used for analysis were
deidentified; each participant enrolled in the study was coded
with a unique participant identification number.

Results

Participants
FluStudy2020 had 925 participants, of whom 840 (90.8%) had
activity data that met the data density criteria. Of these 840
participants, 639 (76.1%) were influenza negative and 201
(23.9%) were influenza positive (Figure S1 in Multimedia
Appendix 1). The HTRI study had 953 participants, and activity
data meeting the data density criteria were available for 848
(89%) participants. Of these 848 participants, 657 (77.5%) were
influenza negative and 191 (22.5%) were influenza positive.
Baseline demographics of participants included in the model
evaluation are presented in Table 1. Most participants were
female (764/840, 90.9% and 660/848, 77.8%) with mean ages
of 37.4 (SD 9.6) years and 37.6 (SD 9.1) years for FluStudy2020
and HTRI, respectively. Distributions of age, BMI, and gender
were balanced between the group that was influenza negative
and the group that was influenza positive. The maximum
self-reported symptom severities and wearable sensor data
during ILI days –4 to +1 are shown in Table 2 and Table S2 in
Multimedia Appendix 1, respectively.
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Table 1. Baseline demographics of participants included in the model evaluation.

HTRIa participantsFluStudy2020 participantsCharacteristics

Influenza positive
(n=191)

Influenza negative
(n=657)

Overall
(n=848)

Influenza positive
(n=201)

Influenza negative
(n=639)

Overall
(n=840)

37.83 (8.95)37.47 (9.15)37.55 (9.10)38.45 (10.25)37.10 (9.35)37.42 (9.59)Age (y), mean (SD)

30.61 (6.89)30.64 (7.69)30.64 (7.51)30.72 (8.18)31.42 (8.16)31.25 (8.16)BMI (kg/m2), mean (SD)

Region, n (%)

83 (43.5)216 (32.9)299 (35.3)85 (42.3)206 (32.2)291 (34.6)Midwest

35 (18.3)99 (15.1)134 (15.8)30 (14.9)109 (17.1)139 (16.6)Northeast

48 (25.1)191 (29.1)239 (28.2)59 (29.4)198 (31)257 (30.6)South

25 (13.1)151 (23)176 (20.8)27 (13.4)126 (19.7)153 (18.2)West

Gender, n (%)

141 (73.8)519 (79)660 (77.8)178 (88.6)586 (91.7)764 (91)Female

50 (26.2)136 (20.7)186 (21.9)23 (11.4)48 (7.5)71 (8.5)Male

0 (0)2 (0.3)2 (0.2)0 (0)5 (0.8)5 (0.6)Nonbinary

Race, n (%)

0 (0)1 (0.2)1 (0.1)0 (0)2 (0.3)2 (0.2)Alaska Native, American
Indian, Native Hawaiian,
or other Pacific Islander

8 (4.2)19 (2.9)27 (3.2)3 (1.5)13 (2)16 (1.9)Asian

7 (3.7)14 (2.1)21 (2.5)6 (3)25 (3.9)31 (3.7)Black or African American

170 (89)593 (90.3)763 (90)185 (92)568 (88.9)753 (89.6)White

5 (2.6)23 (3.5)28 (3.3)5 (2.5)27 (4.2)32 (3.8)Multiple races

1 (0.5)7 (1.1)8 (0.9)2 (1)4 (0.6)6 (0.7)Other

aHTRI: Home Testing of Respiratory Illness.
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Table 2. Frequency of maximum self-reported symptom severity during ILIa days –4 to +1.

HTRIb participantsFluStudy2020 participantsCharacteristics

Influenza positive
(n=191)

Influenza negative
(n=657)

Overall
(n=848)

Influenza positive
(n=201)

Influenza negative
(n=639)

Overall
(n=840)

37.83 (8.95)37.47 (9.15)37.55 (9.10)38.45 (10.25)37.10 (9.35)37.42 (9.59)Age (y), mean (SD)

30.61 (6.89)30.64 (7.69)30.64 (7.51)30.72 (8.18)31.42 (8.16)31.25 (8.16)BMI (kg/m2), mean (SD)

Region, n (%)

83 (43.5)216 (32.9)299 (35.3)85 (42.3)206 (32.2)291 (34.6)Midwest

35 (18.3)99 (15.1)134 (15.8)30 (14.9)109 (17.1)139 (16.5)Northeast

48 (25.1)191 (29.1)239 (28.2)59 (29.4)198 (31)257 (30.6)South

25 (13.1)151 (23)176 (20.8)27 (13.4)126 (19.7)153 (18.2)West

Gender, n (%)

141 (73.8)519 (79)660 (77.8)178 (88.6)586 (91.7)764 (91)Female

50 (26.2)136 (20.7)186 (21.9)23 (11.4)48 (7.5)71 (8.4)Male

0 (0)2 (0.3)2 (0.2)0 (0)5 (0.8)5 (0.6)Nonbinary

Race, n (%)

0 (0)1 (0.2)1 (0.1)0 (0)2 (0.3)2 (0.2)Alaska Native, American Indi-
an, Native Hawaiian, or other
Pacific Islander

8 (4.2)19 (2.9)27 (3.2)3 (1.5)13 (2)16 (1.9)Asian

7 (3.7)14 (2.1)21 (2.5)6 (3)25 (3.9)31 (3.7)Black or African American

170 (89)593 (90.3)763 (90)185 (92)568 (88.9)753 (89.6)White

5 (2.6)23 (3.5)28 (3.3)5 (2.5)27 (4.2)32 (3.8)Multiple races

1 (0.5)7 (1.1)8 (0.9)2 (1)4 (0.6)6 (0.7)Other

aILI: influenza-like illness.
bHTRI: Home Testing of Respiratory Illness.

Assessment of the XGBoost Model for Influenza
Prediction During ILI Days –4 to +1
XGBoost models informed by symptom-only data, activity-only
data, or a combination of both symptoms and activity data were

evaluated across training, validation, and test sets for FluStudy
2020. ROC curves and stratified k-fold cross-validation analyses
for all models are presented in Figure 1, with confusion matrices
shown in Figure S2 in Multimedia Appendix 1.
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Figure 1. Receiver operating characteristic (ROC) curves for extreme gradient boosting (XGBoost) model discrimination between participants who
were influenza positive and participants who were influenza negative for FluStudy2020 and Home Testing of Respiratory Illness (HTRI) data. XGBoost
model performance was assessed for symptom-only data, activity-only data, and a combination of symptom and activity data. The mean performance
across each k-fold and 95% CI for the training, validation, and test sets are presented. Mean values + or – the margin of error are shown for area under
the curve (AUC), balanced accuracy (BA), sensitivity (SE), specificity (SP), positive predictive value (PPV), negative predictive value (NPV), and
weighted harmonic mean of precision and recall (F2). The red line represents random guess, and the blue line represents mean ROC +95% and –95%
CI.

For the training and validation sets, the model trained on the
combined symptom and activity data (training area under the
curve [AUC]=0.77; validation AUC=0.74) consistently
outperformed the models trained on the symptom-only data
(training AUC=0.73; validation AUC=0.72) and activity-only
data (training AUC=0.68; validation AUC=0.65; Figure 1).
When applied to the FluStudy2020 test set, the model
performance with the combined symptom and activity data was
closely aligned with that of the symptom-only data (combined
symptom and activity test AUC=0.74; symptom-only test
AUC=0.74). We extended our evaluation to the HTRI study,
where the model trained on combined symptom and activity
data (evaluation AUC=0.75) outperformed the model trained
on the symptom-only data (evaluation AUC=0.74), confirming
the results of the FluStudy2020 training and validation sets.

Feature importance plots for each model are presented in Figure
2. For the combined symptom and activity model, cough, mean
RHR during main sleep, fever, and total minutes in bed were
the most important, with mean feature importance values of
0.21, 0.17, 0.15, and 0.15, respectively. For the symptom-only
model, fever, cough, and sore throat were the most important,
with mean feature importance values of 0.36, 0.33, and 0.10,
respectively. The heart low-frequency/high-frequency ratio,
total minutes in bed, mean RHR during main sleep, and heart
normalized low-frequency power were the top features
influencing activity-only model predictions, with mean feature
importance values of 0.34, 0.17, 0.15, and 0.15, respectively
(Figure 2). Calibration plots highlighting the degree of
correspondence between the estimated probability of
influenza-positive cases and observed influenza cases for each
model are presented in Figure 3.
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Figure 2. Feature importance plots for symptom-only data (A), activity-only data (B), and a combination of symptom and activity data (C). Values are
presented as mean (95% CI). HR: heart rate; HRV: heart rate variability; RHR: resting heart rate; RR interval: the time elapsed between 2 successive
R-waves of the QRS signal on the electrocardiogram.
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Figure 3. Calibration plots for FluStudy2020 and Home Testing of Respiratory Illness (HTRI) data, as assessed using symptom-only data, activity-only
data, and a combination of symptom and activity data. The red dashed line represents perfect calibration, and the blue dots represent mean calibration
+95% and –95% CI.

Discussion

Principal Findings
To our knowledge, this is the largest study of commercial
wearable sensors for the early detection of influenza
incorporating the virological confirmation of influenza infection.
The study was specifically designed to test, in the real world,
the hypothesis generated in experimental settings that wearable
sensor data may predict the onset of viral respiratory infection.
For the combined symptom and activity model, the most
important variables were cough, mean RHR during main sleep,
fever, and total minutes in bed; for the symptom-only model,
the most important variables were fever, cough, and sore throat;
and for the activity-only model, the most important variables
were heart low-frequency/high-frequency ratio, total minutes
in bed, mean RHR during main sleep, and heart normalized
low-frequency power. The best-performing machine-learning
model for influenza detection was trained on the combined
symptom and activity data and had a mean training AUC of
0.77. Model performance was validated on an independent data
set (HTRI) not used for training, which yielded a mean AUC
of 0.75. The accuracy of the combined machine-learning model
was further confirmed by calibration plots for combined

symptom and activity data, which were well calibrated compared
with symptom-only or activity-only plots. Our model
performance is significantly lower than that in other studies
using machine-learning algorithms to predict influenza infection
using wearable sensor data, which achieved accuracies of up to
94% [4,11]. However, these results were from small cohort
(n=31 and n=20) challenge studies, where participants used
research-grade wearable sensors and remained in controlled
environments for up to 10 days following challenge with either
influenza A virus subtype H1N1 or influenza A virus subtype
H3N2 [4,11]. Grzesiak et al [4] noted that model accuracy was
associated with both the knowledge of the timing and dosage
of inoculation and the high-fidelity measurements of
research-grade sensors. Our results suggest that findings from
research-grade sensors tested in a highly controlled experimental
setting may not easily translate to scalable low-fidelity
commercial-grade sensors deployed in the real world.

With the FluStudy2020 training and validation sets, the
best-performing model for influenza detection used a
combination of symptom and activity features. However, in the
FluStudy2020 test set, model performance was similar between
the combined symptom and activity data model and the
symptom-only data model. This implies the activity features do
not significantly improve the model performance. In contrast,
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Quer et al [5], using similar methods to discriminate between
symptomatic individuals who were positive or negative for
COVID-19, found that a model combining symptom and sensor
data performed significantly better than one considering
symptoms alone (AUC 0.80, IQR 0.73-0.86 vs AUC 0.71, IQR
0.63-0.79). The different results observed may simply reflect
differences between influenza and COVID-19, which have
several nonoverlapping symptoms; notably, their model included
data from onset day to day 7, whereas our model included data
from day –4 to day 1. Our model restricted the data period, as
the clinical utility of wearable sensors as an early warning tool
for influenza would depend on their ability to detect infection
early in its course, when the individual could take action to limit
the spread or seek medical attention.

A key strength of our study is the laboratory confirmation of
influenza in symptomatic patients using a highly accurate
reverse transcription polymerase chain reaction test, which
provides an accurate ascertainment of true positives and true
negatives. Another strength of our study is that demographic,
clinical, and Fitbit device data from a large, real-world
population of >800 participants were used in model
development. For the combined model (symptom and activity
data), cough, total minutes in bed, and mean RHR during main
sleep were the top 3 features influencing model predictions. Of
the top 17 most important features influencing model
predictions, 9 (53%) were HRV metrics. Deviations in HRV
metrics have been associated with infection status and the
severity of various bacterial and viral illnesses [4,7,10-12,22].
In addition, Hirten et al [22] showed that the mean of the SDs
of normal-to-normal interval (the mean amplitude of the
circadian pattern of the SD of the interbeat interval of normal
sinus beats) was associated with a COVID-19 diagnosis,
irrespective of symptomatology. Another study demonstrated
that HRV acrophase and HRV midline estimating statistic of
rhythm (MESOR) were among the most important predictors
of COVID-19 infection, along with age and BMI [8]. Future
analyses should consider the impact of biological and lifestyle
factors, such as sex, menstrual cycle, and alcohol consumption,
on HRV and other physiological features [9,10,38,39].

Limitations
Limitations pertaining to the HTRI and FluStudy2020 study
design have been discussed previously [15]. Notably, the very
small numbers of African American participants, Asian
participants, male participants, and participants aged ≥65 years
in this cohort limit the generalizability of the model. The
imbalances may be the result of differences in the likelihood of
these populations to engage with digital health services; for
example, women have been found to be more likely to use a
mobile health app than men [40]. Participants were required to
own a Fitbit device, which may predispose this cohort to
exhibiting increased levels of activity and more health-conscious
behaviors than the general population, which could limit the
generalizability of the activity-based predictive models. A single
device type (Fitbit) was used to minimize measurement errors
that could arise from the use of multiple device types in study
participants. However, this limits the generalizability of the
findings, as several other device types are in widespread use.
The self-reporting of symptoms in both studies is subjective

and prone to recall bias. However, the results of influenza tests
performed as part of the study were not provided to participants,
which could have led to a differential recall of symptoms
between participants who were influenza positive and influenza
negative. Nevertheless, we cannot rule out participants’
awareness of their disease status through seeking routine care
for their ILI outside of the study. In addition, symptom data
were collected daily to minimize the risk of incomplete or
inaccurate recall.

The studies included in this analysis were designed before the
COVID-19 pandemic but were ongoing until October 2020.
COVID-19 mitigation measures such as lockdown procedures
may have impacted participants’ regular activities and influenza
circulation during the period of these studies. Further
implications of the COVID-19 pandemic have been discussed
previously [15].

While our previous work demonstrates that the amplitude of
wearable sensor deviations differs significantly between
individuals who are influenza positive and those with ILI
symptoms only, the symptom and activity features used in model
development in this study are not unique to influenza infection
[15]. Strict symptom criteria were used to define the
symptomatic population with ILI, which may have led to the
selection of a more severe symptomatic population and limited
the ability to discriminate between participants who were
influenza positive and participants who were influenza negative.
Future studies with different study designs and less restrictive
symptom eligibility criteria should investigate the ability of
machine-learning algorithms to discriminate among a range of
other common respiratory viral infections using symptomatic
and wearable sensor data.

Finally, the validity and reliability of commercial wearable
sensors in the measurement of steps, sleep, and HR have been
a subject of debate. A systematic review including >150
publications found that Fitbit HR measurements were variable
and tended toward underestimating HR [41]. The wearable
devices used by participants in our study measured only steps,
sleep, and HR. Future studies should investigate whether more
advanced wearable sensors with more accurate accelerometers
and including additional physiological measures, such as skin
temperature and blood oxygen saturation, could improve the
performance of commercial-grade sensors in the early detection
and discrimination of respiratory viral infections.

Conclusions
We demonstrate that a machine-learning algorithm combining
symptomatic and commercial wearable sensor data during the
latent and early symptomatic phases of ILI had moderate
accuracy in detecting influenza in a large real-world cohort of
symptomatic individuals with ILI, suggesting that previous
findings from research-grade sensors tested in highly controlled
experimental settings may not easily translate to scalable
commercial-grade sensors deployed in the real world. The model
maintained consistent performance across 2 distinct studies.
The model was initially trained and evaluated on FluStudy2020
data and achieved comparable performance when validated on
the HTRI data, affirming its generalizability. If machine-learning
algorithms using commercial wearable sensors had strong

J Med Internet Res 2024 | vol. 26 | e47879 | p. 10https://www.jmir.org/2024/1/e47879
(page number not for citation purposes)

Farooq et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


predictive power and were validated, they may potentially play
a role in public health surveillance and could prompt users to
adopt infection-control behavior (eg, self-quarantine) and to
seek early medical attention, if necessary. In the future, more

advanced wearables measuring additional physiological
parameters may improve the performance of wearable sensors
in the early detection and discrimination of viral respiratory
infections.
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