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Abstract

In recent years, there has been explosive development in artificial intelligence (AI), which has been widely applied in the health
care field. As a typical AI technology, machine learning models have emerged with great potential in predicting cardiovascular
diseases by leveraging large amounts of medical data for training and optimization, which are expected to play a crucial role in
reducing the incidence and mortality rates of cardiovascular diseases. Although the field has become a research hot spot, there
are still many pitfalls that researchers need to pay close attention to. These pitfalls may affect the predictive performance,
credibility, reliability, and reproducibility of the studied models, ultimately reducing the value of the research and affecting the
prospects for clinical application. Therefore, identifying and avoiding these pitfalls is a crucial task before implementing the
research. However, there is currently a lack of a comprehensive summary on this topic. This viewpoint aims to analyze the existing
problems in terms of data quality, data set characteristics, model design, and statistical methods, as well as clinical implications,
and provide possible solutions to these problems, such as gathering objective data, improving training, repeating measurements,
increasing sample size, preventing overfitting using statistical methods, using specific AI algorithms to address targeted issues,
standardizing outcomes and evaluation criteria, and enhancing fairness and replicability, with the goal of offering reference and
assistance to researchers, algorithm developers, policy makers, and clinical practitioners.
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Background

Cardiovascular diseases (CVDs) refer to both ischemic and
hemorrhagic diseases that affect the heart, brain, and systemic
vasculature, such as heart failure (HF), atrial fibrillation, acute

coronary syndrome (ACS), myocardial infarction (MI), coronary
heart disease (CHD), stroke, and cerebrovascular disease. As
the most common noncommunicable diseases worldwide, CVDs
remain a major cause of death in both low- and high-income
countries. In 2019, there were 18.6 million deaths due to CVDs
[1]. As awareness of the serious threat that CVDs pose to human
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health has grown, many studies have focused on developing
tools and guidelines for predicting these diseases. These
prediction models can help identify individuals at high risk of
developing CVDs, enabling preventive measures to be taken in
a timely manner and potentially reducing both the human and
economic costs of the disease. In this context, effective CVD
risk prediction and prevention are critical to addressing this
global challenge [2,3]. As a result, developing reliable and
feasible prediction models for CVDs has become an ongoing
area of exploration and study.

Early in 1976, the first CVD risk prediction equations were
developed by the Framingham Heart Study, called the
Framingham risk score (FRS). As one of the most classic CVD
risk models, this score was widely applied all over the world in
the following decades to provide important guidance for public
health and clinical practice [4]. With the development of CVD
preventive research, other important prediction tools have
emerged for regional applicability, such as the Systematic
Coronary Risk Evaluation model in Europe, the QRISK in the
United Kingdom, the pooled cohort equation (PCE) for
atherosclerotic CVDs (ASCVD) reported recently by the
American College of Cardiology and American Heart
Association guideline, and so on [5,6]. These models have a
common feature: they all consist of fixed equations and lack
scalability and are thereby defined as traditional models.

Although traditional models remain the most popular tools in
the field of CVD prevention, they have proven to be inefficient
and inflexible in the face of rapidly expanding amounts and
types of data and increasing clinical requirements for precise,
comprehensive, and continuous CVD risk prediction and
treatment recommendations. The ideal risk prediction models
are expected to include the broadest possible range of parameters
and clinically relevant outcomes and to provide real-time and
continuous support for doctors’ decision-making, such as
suggestions for smoking cessation, physical activity, diet, and
medication use [7]. Obviously, the traditional models are no
longer competent for these responsibilities.

Machine learning (ML) involves endowing computers with the
ability to simulate or replicate human learning behavior,
allowing them to acquire new knowledge or skills, reorganize
existing knowledge structures, and continually improve their
performance. As an important subset of artificial intelligence
(AI), it has emerged as a promising research area in recent years
[8-10]. ML models have also led to a significant evolution in
the field of CVD risk prediction, allowing for the handling of
new features of existing variables, such as nonlinearity and
temporal dynamics, as well as novel variables such as
electrocardiography results, medical images, and even genomics
data [11-21]. Our recent systematic review [22], which included
486 AI-CVD prediction models across 79 articles, identified
that AI has initiated a promising digital revolution in CVD risk
prediction, characterized by an increase in the number and
dimensions of predictors, as well as a notable diversity in applied
algorithms, encompassing 66 specific algorithms across 13
categories.

Despite the stronger predictive ability and more promising
development prospects of ML models compared with traditional

ones, the development and clinical application of AI prediction
technology are still strictly limited by a series of key problems.
In the field of CVD prediction, this situation appears more
severe than in other disease prediction or prognosis research
[22-24]. As our systematic reviews have found [22], all current
published AI-CVD prediction models exhibited a high risk of
bias, lacked independent external validation, and had no clinical
implementation. Moreover, the onset of CVDs is an
exceptionally prolonged process, making prospective clinical
validation of a flawed model potentially very costly in terms of
research resources and possibly harmful to populations.
Therefore, summarizing the potential pitfalls in AI-CVD
prediction model research is crucial. Providing researchers with
adequate warnings and references before initiating their studies
is not only necessary but also of significant importance.

Although there are already some criteria in AI research that can
be used as references, such as the Prediction Model Risk of Bias
Assessment Tool (PROBAST) [25], Transparent Reporting of
a Multivariable Prediction Model for Individual Prognosis Or
Diagnosis (TRIPOD) [26], and AI transparent, replicable,
ethical, and effective research (AI-TREE) [27], summarizing
and analyzing key considerations and strategies during the
research process will directly contribute to the practical
implementation, replication, dissemination, and clinical
application of model studies [28]. This holds significant practical
significance not only for researchers but also for algorithm
developers, cohort investigators, policy makers, health care
providers, and professionals. Russo and Bonassi [29] previously
outlined several “pitfalls” encountered in AI studies in
nutritional epidemiology, including issues related to
measurement methods, confounding factors, nonlinearities,
missing data, overfitting, and interpretability, among others.
Similarly, Chiarito et al [30] identified a few “pitfalls” in their
review of AI and CVD risk prediction [30]. However, there is
currently a lack of a comprehensive and systematic summary
specific to the AI-CVD prediction field. In this paper [25,27,31],
we summarize and analyze these existing problems and their
possible solutions, aiming to provide guidance and references
during the process of the development of AI models for the
prediction of CVDs and other diseases.

Design and Summary of a Framework for
Presenting Existing Pitfalls

To develop a framework outlining the key pitfalls, the following
process was executed (Figure 1). A literature review of existing
assessment guidelines or tools related to AI or ML medical
research was performed, with the search strategy of “assessment
tool/guideline”+“AI/ML”+“bias” and their synonyms and related
terms (details are shown in Multimedia Appendix 1). Full-text
articles in English related to human participants were included,
while low-quality or irrelevant articles, such as those discussing
the current state of ML or AI or guidelines outside the scope of
this study, were excluded. Detailed information is provided in
Figure 1. The inclusion and exclusion process was conducted
by YQC, YC, and GWZ. Ultimately, 31 papers were included
in the preliminary summary of candidate items (Multimedia
Appendix 2 [25,27,31-60]). Subsequently, incorporating the
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risk issues identified in our previous systematic review of
AI-CVD prediction models [22], a final framework was further
discussed and confirmed by a panel of experts. This panel
included AI experts (TCJ and MG), statisticians (ZWZ),
clinicians (DXG, XZ, and GWZ), and information technology
specialists (WH), among others. As summarized in Multimedia
Appendix 3 [15,18,21,28,61-100], the framework encompasses
four major categories with 15 subcategories: (1) data quality

(data source, subjective factors of researchers, incomplete data,
and parameter acquisition methods); (2) data set characteristics
(small sample size, low event rate, characteristics of the data
distribution, and multimodal data); (3) model design and
statistical methods (outcome definitions, incomplete inclusion
of covariates, overfitting, and defects in evaluation criteria);
and (4) clinical implications (generalization, interpretability,
and AI ethics).

Figure 1. The flowchart for developing a framework for this paper based on the assessment guidelines or tools in the field of medical artificial or
machine learning research. CVD: cardiovascular disease; ML: machine learning.
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The Effectiveness of the ML Models Still
Largely Depends on Data Quality

Overview
Data are undeniably a fundamental element in ML models,
which are inherently sensitive to the quality of the data used for
training and validation. The adage “garbage in, garbage out” is
particularly pertinent here [101]; poor-quality input data can
also result in a biased ML model, and even minor errors or
biases in training data can lead to unforeseen consequences in
a model’s predictions. These considerations raise ethical
concerns regarding the reliability of decisions based on ML
model predictions. Consequently, understanding and mitigating
pitfalls in data collection, preprocessing, analysis, and
application become critically important. Specific methods
involve selecting objective indicators collected through
reasonable means based on a thorough evaluation of data
authenticity.

Data Recourse Is the Key Factor
It is well-known that data accuracy is a key influencing factor
for data-based prediction models, as inaccurate data can
significantly impact the predictive ability of subsequent models.
One of the main reasons for data inaccuracy is the collection of
subjective data, such as self-reported data on blood pressure
(BP), obesity, and family history, as noted by Hippisley-Cox
et al [102] and Manuel et al [103] in traditional models, based
on the Canadian Community Health Survey (104,219
participants) and QResearch database (3,610,918 participants),
respectively. In fact, AI models have encountered the same
dilemma [104,105]. As reported by Han et al [61] in their ML
research based on the Korea Initiatives on Coronary
Calcification (86,155 patients), inaccurate data from
self-administered questionnaires had a limited contribution to
model development; after feature selection based on information
gain ranking (such as the history of diabetes and hypertension,
this limitation resulted in an exclusion of important predictive
factors from 10 most pertinent variables of a future all-cause
mortality (ACM) events. Ultimately, this underestimation of
important risk factors may lead to insufficient attention being
paid to them, thereby misdirecting primary prevention strategies
such as aggressive glycemic control.

Similar to traditional models, the most effective solution in AI
models is still to collect objective data, instead of relying solely
on self-reported data whenever possible. Even electronic health
records (EHR) can contain incorrect data, which may be difficult
to detect and therefore easily overlooked [62]. For example, in
a study conducted by Rodriguez et al [63], race data, which
were obtained from a community-based EHR with 231,622
participants, were mainly self-reported, while other data were
inferred through validation methods that were based on PCE,
leading to possible misclassification, and may affect the risk
prediction for ASCVD. By way of illustration, it is advocated
by Teoh [64] that the diagnosis or the value of the check index
should be applied to further confirm the disease status of the
participants, including hypertension, diabetes, and dyslipidemia
reported by the participants themselves, and they found that the
area under the curve (AUC) dropped from 0.623 to 0.608 when

the diabetes examination inputs were removed (including blood
glucose, glycated hemoglobin [as standardized by Japan
Diabetes Society], and glycated hemoglobin [as standardized
by National Glycohemoglobin Standardization Program]). These
examples clearly demonstrate the impact of data authenticity
on the robustness of the models. Unfortunately, even some
classic scoring tools, such as PROBAST, TRIPOD, and
CREMLS (Consolidated Reporting Guidelines for Prognostic
and Diagnostic Machine Learning Models), do not specify
methods for collecting objective data [32,33,106,107].
Therefore, we suggest the implementation of appropriate
validation measures during model development.

The Subjective Factor of Researchers Is a Potential
Interference
In some studies, basic background, sociodemographic, and
follow-up information may be collected by local doctors and
nurses [65,108,109]. Although these interviewers have been
strictly trained, the data collection process is likely to be
interfered with by their personal thoughts. Benjamins et al [66]
reported that in the Glycometabolic Intervention as Adjunct to
Primary Percutaneous Intervention in ST-Segment Elevation
Myocardial Infarction-III study, which included 222 people and
defined ventricular function dysfunction as an outcome, using
data created by local observers to train and validate the U-Net
model may result in an unstable model quality. Liu et al [67]
analyzed the registry data of 53,213 inpatients in the
Cardiovascular Department of Xiangya Hospital; they found
that student extractors, who manually filled missing data using
a hierarchical mean filling method, subjectively adjusted
variable parameters of the extracted data based on experience
and introduced a potential risk of bias. Although these reports
mention the potential impact of researchers’ subjective factors
on the models, they lack effective proof methods, highlighting
that such factors are often overlooked and difficult to evaluate.
Therefore, it is essential to identify subjective factors of
researchers before the study.

The most common and effective approaches to address this
issue are to improve training and supervision of data collectors.
While both traditional and ML models require manual data
processing, some studies have shown that AI can potentially
replace humans in data processing to reduce the impact of
subjective factors. For instance, in the Systolic Blood Pressure
Intervention Trial (SPRINT) and the Hong Kong eHealth cohort
studies with 8133 and 1094 participants, respectively, Tsoi et
al [68] used a K-means clustering ML algorithm to identify
variations in BP without the need for human adjustment, which
resulted in low clustering similarities (Davies-Bouldin Index:
0.653 in SPRINT and 0.680 in the Hong Kong eHealth cohort).
This not only further highlights the importance of controlling
subjective factors in model construction but also provides an
alternative solution beyond simply enhancing training.

Incomplete Data Also Affect the Effectiveness of ML
Models
Incomplete data are a common problem in retrospective studies
and may significantly impact the final predictive results of ML
studies. For instance, in the Melbourne Collaborative Cohort
Study with 32,611 participants, Sajeev et al [69] reported that
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32% of high-density lipoprotein cholesterol data were missing
and that this resulted in a lower AUC of 0.753 (95% CI
0.729-0.777) in a logistic regression (LR) model, while an AUC
of 0.874 (95% CI 0.833-0.915) was achieved in another similar
LR model that was developed by the North West Adelaide
Health Study, which had only 41 missing data among 3654
participants. It is also argued by Han et al [61] that unmeasured
factors could introduce bias in their ACM prediction ML model,
which used the Korean Initiatives on Coronary Calcification
registry, a retrospective cohort. The severity of this issue lies
in its potential to also cause underestimation or neglect of the
impact of risk factors in actual clinical practice, thereby affecting
CVD prevention strategies.

Both traditional and ML models face the issue of missing data.
In traditional models, missing data are often directly excluded,
which can impact model stability and weaken its significance
[70,108,110]. In contrast, ML models use several statistical
methods to address the problem of missing data and optimize
the models, such as multiple imputation, multiple imputation
with chained equations, logitBoost, multiple imputation by fully
conditional specification, Markov chain Monte Carlo method,
median imputation, and k-nearest neighbor (KNN) imputation
[71,72,111,112]. The application of these statistical methods
gives ML models an advantage over traditional models in
handling missing data. For instance, in a study that included
423,604 participants from the UK Biobank, Alaa et al [73] used
the missForest algorithm to impute missing data in an ML
model, achieving a significantly higher AUC of 0.774 (95% CI
0.768-0.780) than with FRS (AUC=0.724, 95% CI 0.720-0.728).
In the ATTICA prospective study involving 2020 participants,
Dimopoulos et al [112] excluded variables with missing values
in >70% of the individuals. In order to improve the performance
of the CVD risk estimator, the missing data in part of the
remaining 22 variables were then imputed by KNN imputation,
resulting in relatively high accuracy rates (KNN: 96%, random
forest [RF]: 99%, decision tree classifier: 99%). Therefore, ML
models can better manage missing data due to the application
of the aforementioned statistical methods. Furthermore, ML
models also can register patients with missing necessary
variables in traditional models [62], providing an advantage in
handling incomplete data. In addition, besides the
aforementioned statistical methods, Weng et al [71] used a novel
approach in the Clinical Practice Research Datalink (CPRD)
study that included 378,256 patients, using missing data as an
independent variable to predict the risk of CVDs. Specifically,
they created dummy variables to indicate missing continuous
variables and a separate category of “unknown” to represent
missing categorical variables such as the Townsend deprivation
index and race, with an acceptable AUC of 0.764 (95% CI
0.759-0.769) and a specificity of 70.7% in the neural networks
model eventually. Although this method needs to be further
confirmed, exploring such new approaches provides additional
options for ML models in handling missing data, thereby
enhancing AI-CVD prediction models.

Appropriate Parameter Acquisition Method Is Another
Important Factor
In most studies predicting the risk of CVDs, researchers have
typically used one-time measurements of risk factors, ignoring

the fact that some factors exhibit significant variability over
time, such as systolic BP (SBP), plasma glucose levels,
low-density lipoprotein, and serum total cholesterol [113-115].
As demonstrated in the SPRINT study mentioned in The
Subjective Factor of Researchers Is a Potential Interference
section, BP measured at fixed times (visit-to-visit BP variability)
can vary greatly from 24-hour ambulatory BP variability

(r2<0.026), for the data that are acquired intermittently with a
short follow-up time may introduce bias in the data [68]. These
common problems illustrate that variables measured at a certain
time point cannot necessarily represent the true level of the
variable in the population. In fact, there have already been
diagnostic criteria for multiple measurements of some risk
factors in guidelines, for single measurements are likely to
introduce significant bias within clinical work. For example,
Stergiou et al [116] advocated that a minimum of 2 to 3 office
visits at 1- to 4-week intervals are frequently necessary for the
office BP assessment.

The solving method is to use repeated measurements of risk
factors to improve the model prediction [117]. In the National
Health Insurance System-National Health Screening Cohort
(NHIS-HEALS) study with 361,239 participants selected, Sung
et al [74] advocated that by offering discrimination and
calibration with repeatedly measured data, the deep learning
model takes advantages in CVD risk prediction in the EHR era
(female participants: AUC=0.94, 95% CI 0.91-0.97 in; male
participants: AUC=0.96, 95% CI 0.95-0.97 in). In another study
including 80,964 people, multiple SBP recordings from EHR
(provided by UK primary care) were analyzed. It was found
that the multiple SBP recordings had a better correlation with
CVDs than a single recording, as identified by an increased
hazard ratio from 1.22 (95% CI 1.18-1.30) to 1.39 (95% CI
1.31-1.46) with the use of repeated measured factors [75].
Besides, in the NHIS-HEALS study, Cho et al [76] handled
continuous variables by using their mean, minimum and
maximum values, and SDs in the developing of recurrent neural
network models and achieved a high level of discriminative
accuracy (female participants: AUC=0.921, 95% CI
0.908-0.934; male participants: AUC=0.896, 95% CI
0.886-0.907), which was highlighted by authors as significant
improvement compared with single-measured method [76].
Furthermore, collecting data multiple times can enhance data
consistency and to the benefit of exploring the changing trend
of data.

Data Set Characteristics Largely Affect
the Effectiveness of the ML Models

Overview
The impact of the data set characteristics used for ML on risk
prediction is crucial and should not be disregarded. This includes
several elements: the impact of the small sample size and low
event rates, the alignment of data distribution characteristics
with the model, and the challenges associated with the
application of multimodal data. These pitfalls can significantly
impede ML studies, highlighting the critical need for heightened
attention in the various stages such as research design,
implementation, data analysis, model construction, paper
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preparing, and even in submission and peer review processes.
Specific methods include using sufficiently large cohorts,
extending follow-up periods, using specific AI algorithms to
address targeted issues, and selecting clinical routine
examinations as risk factors whenever possible.

Small Sample Size Is a More Serious Problem
It is well known that insufficient sample size will lead to the
risk of bias for the study in the traditional model, and the
evaluation standard of sample size has been developed by the
PROBAST [106]. Therefore, in order to improve the credibility
of research conclusions, more and more researchers have used
large data sets that are multiethnic cohorts with high quality
[77,118-120], although there are still many substandard studies
[108,121]. However, in the field of ML prediction models, the
problem of insufficient sample size seems to be more serious.
In our previous research of 79 CVD risk prediction studies, the
number of participants included in the ML model could even
be as low as 80 [22]. The lack of a sufficient sample has become
the biggest contributor to the high risk of bias [28]. For example,
in a retrospective observational study of 420 patients,
Ponomartseva et al [78] stated that when the sample size is
smaller than the optimal ML method size, the accuracy of the
model may change. In another study carried out with 451
consecutive patients from a tertiary hospital, conventional
univariate and multivariate analyses were limited because of
the small sample size; the median accuracy of artificial neural
network (ANN) models in predicting recurrent stroke was only
75%, as reported by Chan et al [79].

Although a larger population size was prone to the better
performance and reliability of the models, as revealed by Alaa
et al [73] in an experiment with a series of subpopulations of
varying sizes and a fixed number of variables, the sample size
of the ML algorithms is dependent on various factors, including
the types of algorithms, the number of index, the features of the
sample, and so on [122-124]. For example, the classical events
per variable method, which often follows the “one in ten rule”
for the sample size calculation, may not be applicable to certain
ML algorithms due to their specific operation mechanism [22].
Therefore, it is strongly recommended that the sample size
calculation be performed before initiating ML research,
considering the various factors mentioned above, due to dramatic
differences in the mechanisms of sample size calculation
between ML and traditional models. Meanwhile, the upcoming
PROBAST-AI, a special tool for bias evaluation for AI models,
has been expected to provide a reference standard [125-127].
Before this, we are inclined to recommend using the “one in
ten rule” as the minimum standard to include as many samples
as possible.

Application of the ML Models Is Also Troubled by
Low Event Rate
The low incidence rate, a common problem for prediction model
construction, may restrict the generalizability and predictive
ability of the prediction model in practice [74,80,128]. It may
lead to the bad performance of the model in general or cause
bias in predictions for a particular segment that has a low
incidence rate. For example, on the basis of the data from 13,291
participants from 7 epidemiological cohorts, Jdanov et al [77]

found that the low incidence rate of CVD deaths (<7% in male
participants and <1% in female participants) at a young age
(aged 45-54 years) affected the prediction outcomes at young
ages, with a substantial underestimation of CVD mortality risk
by 40% to 45% for male individuals and 3% to 4% for female
individuals. Therefore, based on this reasoning, if applied in
clinical practice, the low event rate may result in the
underestimation of a substantial number of individuals who are
at high risk for CVD, thus reducing the role of primary
prevention.

The problem of low event rate can be overcome by the following
methods, such as filtering of oversampled data using
noncooperative game theory [80], synthetic minority
oversampling technique [129], random oversampling [130],
random undersampling [19], bootstrapping [81], and the stacking
paradigm [131]. However, these methods can only improve the
performance of the ML from the statistical method and cannot
solve the problems with the data themselves. By using the data
solely from the DaVita Inc EHRs (124,097 participants),
Goldstein et al [82] reported a direct way to increase the
incidence rate by broadening the outcome range and showed
good training and test set loss at the same time. However, by
using this method, the outcome will become more heterogeneous
and will decrease the quality of the prediction model, and thus
this method may not be an adequate option. The better approach
may be to extend the follow-up duration or to include more
different populations as mentioned above to improve the
reliability of ML [61].

Characteristics of the Data Distribution Underscore
the Critical Importance of Model Selection
The cornerstone of constructing predictive models lies in the
analysis, mining, and use of data relationships between
covariates (risk factors) and gold standards (outcome events).
Traditional statistical methods often rely on the assumption of
linearity when building predictive models. However, it is
essential to acknowledge that in clinical practice, many risk
factors and outcome events exhibit nonlinear relationships,
although linear relationships may predominantly characterize
some factors, such as glycated hemoglobin or smoking
pack-years. For instance, Angeli et al [83] and Lip et al [84]
reported a J-curve relationship between BP and CVDs or ACM.
Similarly, dietary factors such as salt, carbohydrates, and fats
have demonstrated U- or J-shaped relationships with CVD
outcomes [132,133]. Unfortunately, certain ML algorithms are
not well suited to handle nonlinear relationships, including linear
regression, LR, and so on. Consequently, if linear algorithms
are used to construct predictive models that incorporate
nonlinear elements, the result may lead to inaccurate associations
and distorted effect estimates. In a study based on the National
Health and Nutrition Examination Survey cohort (37,079
participants), Dutta et al [85] developed 6 AI models with
nonlinear factors (eg, BP) for predicting CHD, and expectedly,
the LR algorithm achieved the worst performance (AUC=0.713).
Similarly, Wang et al [70] included 40,711 participants from
the Life Risk Pooling Project cohort to build 4 AI models with
nonlinear factors (eg, BP) for predicting CVDs and also found
the worst performance in linear naive Bayes algorithm
(AUC=0.786, 95% CI 0.726-0.735; P=.001) [70]. In addition,
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many predictive models aimed to assess long-term risk for
adverse events, but commonly used ML models often struggle
with handling time-to-event variations and censored patient
data, significantly limiting their performance. Li et al [72]
demonstrated that LR algorithms that neglect censoring tend to
substantially underestimate CVD risk to only 2.2% to 5.8%
when compared with Cox models that had a risk of 9.5% to
10.5%, which are better suited for survival data analysis.

Therefore, it is imperative to emphasize that the application of
nonlinear AI algorithms plays a pivotal role in the research of
constructing predictive models that encompass intricate data
relationships. These algorithms have the capability to capture
and model intricate patterns, interactions, and dependencies
within the data that may not be adequately addressed by linear
approaches. As in the 2 examples elaborated in the previous
paragraph, support vector machine (SVM) had the best
performance with an AUC of 0.776 in the study by Dutta et al
[85], and RF had the best performance with an AUC of 0.892
in the study by Wang et al [70]. When it comes to survival data,
random survival forest (RSF) appears to exhibit superior
performance, owing to their ability to handle complex,
time-dependent relationships and censored data more effectively,
ultimately resulting in more accurate survival predictions. For
instance, in a study based on the Atherosclerosis Risk in
Communities cohort (14,842 participants), Zhuang et al [86]
developed 4 survival models (Cox proportional hazards model,
Akaike information criteria for Cox regression, least absolute
shrinkage and selection operator for Cox regression, and RSF),
and the RSF algorithm achieved the best performance in
predicting CHD (AUC=0.80, 95% CI 0.79-0.81) and ACM
(AUC=0.78, 95% CI 0.77-0.78). Another example is meant by
Ambale-Venkatesh et al [87], where 6814 participants from the
Multi-Ethnic Study of Atherosclerosis (MESA) cohort were
used for ACM risk. Eventually, the RSF algorithm (AUC=0.84)
performed the best, yielding better results compared to those
obtained with other algorithms (eg, Cox least absolute shrinkage
and selection operator: AUC=0.80).

Multimodal Data–Based Prediction Model Pitfalls
Limit Clinical Applications
The number of studies of multimodal data–based prediction
models for CVDs has risen substantially recently, and there
have been a variety of data types, such as radiomics [88,134],
proteomics [135], and genomics [136]. The multimodal
data–based prediction model, which integrates available
heterogeneous data into a unified framework, can fully consider
the importance of each modality and incorporate information
from multiple aspects, thus improving model performance [136].
However, the clinical accessibility of the used multimodal data
presents another pitfall. As advocated by Pujadas et al [88],
there was a limitation in the multimodal data–based CVD
prediction model with cardiovascular magnetic resonance
radiomics, because cardiovascular magnetic resonance was not
a routine examination. More significantly, according to the
AI-TREE criteria, the inclusion of unconventional or
difficult-to-obtain examination results is a crucial factor
influencing the clinical application of the model [27]. This may
be solved by applying more commonly used tests (eg,
electrocardiogram [ECG]) or disease-specific imaging

examinations. For instance, it is reported by Lou et al [89] that
ECG-based patient characteristics from 2 hospitals in the
Tri-Service General System were used for CVD risk prediction,
and the deep learning models performed well, yielding excellent
results (AUC>0.90). Another example of the solution was
carried out by Chao et al [21], who included clinical routine
30,286 low-dose computed tomography data from 2085 patients
with lung cancer in the National Lung Cancer Screening Trial
to construct a deep learning CVD risk prediction model.
Therefore, we suggest that multimodal model studies should
focus on the practicality of data acquisition to enhance the
feasibility of primary prevention of CVDs.

In addition, studies emphasizing multimodal data often disregard
the inclusion of classical risk factors, neglecting essential
parameters crucial for comprehensive prediction models. The
overarching focus on multimodal data variables can lead to
decreased model performance due to the absence of integrated
incorporation of traditional risk factors. For instance, in the
ECG methods, for the prompt identification of coronary events
study (499 patients), Al-Zaiti et al [15] constructed ACS risk
prediction models by using 554 temporal-spatial features of the
12-lead ECG without clinical examination factors such as total
cholesterol or lifestyle variables such as smoking, which led to
unsatisfactory validation performance (LR model: AUC=0.67;
gradient boosting machine [GBM] model: ACS=0.71).
Therefore, it is strongly recommended that the inclusion of
classic predictive factors should form the cornerstone for
constructing multimodal models. This is evident in the Singapore
epidemiology of eye diseases study (comprised of over 70,000
images), where Cheung et al [134] not only applied imaging
data but also comprehensively incorporated multiple types of
variables in CVD risk estimators, and the best model achieved
a perfect AUC of 0.948 (95% CI 0.941-0.954).

Challenges Arising From Model Design
and Statistical Methods

Overview
In AI-CVD prediction research, model design and statistical
methods play a critical role not only in aspects of model
performance such as discrimination and accuracy but also in
reproducibility and generalizability for clinical application. Key
pitfalls in this area include issues of outcome definitions,
incomplete inclusion of covariates, overfitting, and inadequate
evaluation metrics. Some of these pitfalls stem from inherent
problems associated with AI algorithms, necessitating
researchers to thoroughly understand and mitigate their impact.
In addition, other pitfalls can arise from design and
implementation choices made by researchers, underscoring the
need for careful planning and execution to avoid such issues
during the research process. Specific methods include designing
studies with standardized outcomes and evaluation criteria,
incorporating all necessary variables, and using appropriate
algorithms and validation techniques.

J Med Internet Res 2024 | vol. 26 | e47645 | p. 7https://www.jmir.org/2024/1/e47645
(page number not for citation purposes)

Cai et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The Outcome Definitions May Be Detrimental to the
Significance of the Study
The definitions of the CVD outcomes show considerable
heterogeneity in both traditional and ML models, concluding
from the facts that there have always been some differences
more or less in the detailed definitions among almost all studies.
All the 3 versions of QRISK set the end points as CVDs, which
are defined as a composite outcome of CHD, stroke, and
transient ischemic attacks [5,111,137]. Systematic Coronary
Risk Evaluation in Europe aimed to predict fatal CVDs, so its
end point was CVD mortality [138]. PCE and Prediction for
ASCVD Risk in China defined ASCVD as nonfatal MI, CHD
death, or fatal or nonfatal stroke [139,140]. The outcomes of
adding social deprivation and family history to CVD risk
assessments were CVD-cause mortality, CHD, cerebrovascular
disease, or interventions for coronary artery (coronary artery
bypass grafting or percutaneous transluminal coronary
angioplasty) [141]. These differences, to some extent, limit the
comparability, reliability, and generalizability of the models,
thereby affecting their clinical applicability for CVD prediction.

In studies of ML prediction models, heterogeneity is even more
significant, with various origins of outcome definitions, such
as disease codes (International Classification of Diseases [ICD],
Ninth Revision [ICD-9] or ICD-10), self-reports, and other
international guidelines. For example, in a study with 31,466
participants from the UK Biobank, You et al [90] defined CVD
events as MI or stroke with ICD-9 and ICD-10 codes.
Conversely, Cho et al [76] in the NHIS-HEALS study,
developed risk prediction models that used death from CVDs,
MI, coronary arterial intervention, or bypass surgery stroke as
the outcome definitions with only ICD-10 codes. This
heterogeneity in outcome definitions can lead to significant
issues such as bias in model performance evaluation, reduced
generalizability, challenges in data integration and
standardization, difficulties in clinical application, and even
misguidance in CVD prevention strategies. Therefore, it is
crucial to address this problem adequately. To mitigate these
issues, we strongly recommend that risk prediction models be
developed with standardized use of ICD codes. This
standardization would help in achieving consistent outcome
definitions, thereby improving the reliability, generalizability,
and clinical applicability of the prediction models.

Incomplete Inclusion of Covariates May Diminish the
Study’s Value
In many CVD risk prediction studies, several classical risk
factors have been omitted. This phenomenon is not limited to
retrospective studies using existing databases but is also
prevalent in prospective research. By way of illustration, Chua
et al [81] included 638 participants from Sandwell and West
Birmingham Hospitals NHS Trust (local data set) to build 2
atrial fibrillation risk calculators. They did not include classical
factors such as BP and smoking status and achieved a low
accuracy performance with an AUC of 0.684 (95% CI 0.62-0.75)
and 0.697 (95% CI 0.63-0.76), respectively. In the China Health
and Retirement Longitudinal Study, Chen et al [91] included
9821 participants in the development of a stroke risk calculator.
However, this classical public data set lacked classic variables

such as total cholesterol, which resulted in a mediocre
performance (AUC=0.7388) in the model. Such omissions may
potentially lead to inadequate consideration of confounding
factors, resulting in model bias and decreased performance or
even rendering the model practically inapplicable [142]. From
a statistical perspective, these classic risk factors can be
considered confounders, and ignoring them may cause
confounding, which represents a critical error and is a primary
source of systematic errors that can manifest when assessing
causality, potentially leading to misinterpretation of the results
[143]. In accordance with the AI-TREE criterion [27], a key
consideration is whether the available data can effectively
address the clinical question at hand. In other words, a data set
lacking essential predictors that are known to be relevant to an
outcome is unlikely to satisfactorily address related inquiries.
Therefore, studies that exclusively focus on model development
while disregarding considerations for clinical application may
deviate from sound research principles.

One potential approach to mitigate these challenges is to ensure
that potentially biased features, such as ethnicity and social
determinants of health, are explicitly incorporated into the
models [142,144]. As suggested by Suri et al [28] in a study on
understanding bias in ML systems for CVD risk assessment,
achieving a robust ML-based design for CHD and CVD
prediction necessitates the integration of traditional, laboratory,
image-based, and medication-based biomarkers. In the realm
of clinical research, where there is often a high number of
variables and confounding factors, the adoption of high-capacity
AI models is warranted [145,146]. For instance, Kakadiaris et
al [80] obtained 6459 participants from the MESA cohort to
build a CVD risk calculator based on SVM. They included all
classic risk factors such as age, sex, smoking status, diabetes,
SBP, total cholesterol, and high-density lipoprotein and achieved
a rather high AUC of 0.94 (95% CI 0.93-0.95). In addition, in
a study conducted with an outpatient health care system, Ward
et al [62] enrolled 262,923 participants with risk factors that
contained all classic risk factors as mentioned above for ASCVD
risk prediction, and the AI model performed well with an AUC
of 0.835 (95% CI 0.825-0.846). These also indicated the
importance of incorporating complete covariates for accurate
modeling, which is more conducive to individualized, precise,
systematic, and comprehensive prediction and assessment of
CVDs. This, in turn, facilitates targeted prevention and
monitoring.

Overfitting Determines the Performance of ML Models
Overfitting, a more severe problem in ML, means that the data
can fit relatively perfectly with the derivation queue during
training and derivation, but it will yield large biases and
unreliable results when applied to other data, consequently
leading to difficult generalization of the model [147,148]. The
influence factors accounting for overfitting of ML models are
summarized as follows: the features of algorithms, the number
of variables, cohorts, outcome events, and so on. It is found in
the research performed by Weng et al [71] that the more
complex the model, the more likely it was prone to overfitting,
while Commandeur et al [92] revealed that the few numbers of
the derivation or the low event rate will cause the overfitting
problem, which can be assessed by comparing the accuracy of
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the training set and the test set. These reports suggest that
selecting appropriate algorithms and addressing the issue of
low event rates have a decisive impact on preventing model
overfitting, necessitating thorough consideration by researchers
during study design.

There are numerous approaches to reduce the impact of
overfitting, and the most commonly used include pretraining,
hyperparameter selection, regularization, and cross-validation
[149,150]. There are also other approaches, such as
data-smoothing techniques, separating training, tuning, testing
data, and the filtering of oversampled data using noncooperative
game theory algorithm [80,92]. In addition, in the Prospective
Cardiovascular Münster Study, which included 5159
participants, Voss et al [93] have proposed 3 solutions to address
overfitting for CHD event estimations: cross-validation, stopping
training when the errors in validation data sets are at a minimum,
and rendering the networks with synthetic data and modifying
them until the results are plausible. Eventually, the average
negative log likelihood (ANLL) that explains the loss function
of the model and the bias value attained comparatively minor
numbers in the probabilistic neural networks model for both
training (ANLL: 0.1712, bias: 0.0396) and testing sets (ANLL:
0.1807, bias: 0.0396).

Inadequate Evaluation Metrics Still Exist in the Field
of ML Model Prediction
The evaluation metrics help researchers assess the performance
of models, and thus, defects in them can lead to obstacles in
drawing practical conclusions. For example, although the AUC
is the most commonly used evaluation criterion for model
assessment, it may not accurately reflect the risk of CVDs in
the population. This is because a person with a very low risk
makes the same contribution to the AUC’s value as a person
with a very high risk, as noted in a study developed by the
CPRD with 3,660,000 participants [72]. Similarly, the Net
Reclassification Index has been shown to be insensitive to
changes in the model. For example, in a MESA study (5878
participants) reported by Polonsky et al [94], the Net
Reclassification Index remained substantially constant even
after including or excluding certain participants. These examples
indicate that model evaluation cannot be adequately represented
by a single metric; rather, it should be a comprehensive,
multifaceted, and complex system, especially for AI models,
in line with preventive medicine principles.

It is advisable to use a comprehensive evaluation of predictive
model capabilities by considering various metrics such as
accuracy, sensitivity, precision, specificity, F1-score, decision
curves, and so on [151], which are also required to be reported
in ML prediction studies as advocated by several reporting
guidelines [32-34]. This is not only crucial for assessing the
reliability of the model but also beneficial for its accurate
application. Some commercial medical devices, such as
ultrasound-assisted ECGs, have already contained criteria with
high transparency and high clarity that are not available for
predictive models. Thus, marketizing prediction models may
be a solution. Moreover, in contrast to the predictive model, the
intervention AI evaluation has different criteria, which are more
rigorous and systematic. For instance, as the guideline of clinical

trial reports for interventions involving AI, CONSORT
(Consolidated Standards of Reporting Trials)-AI recommended
presenting absolute and relative effect sizes for binary outcomes
[35]. Therefore, we recommend that during model development,
comprehensive calculation of these evaluation metrics is
essential, as it is crucial for subsequent model dissemination
and selection for clinical applications.

Clinical Implication Remains a Significant
Challenge in This Field

Overview
In fact, the factors affecting the clinical application of AI-CVD
models are complex. Beyond the pitfalls discussed above, 3
directly related and most prevalent factors that researchers
should particularly consider are the problem of generalization,
the lack of interpretability, and the limitations of AI ethics.
These factors not only require researchers to minimize their
impact during the study process but also necessitate
collaborative efforts from clinicians, policy makers, and even
the general public to overcome and address them. This includes
clinicians integrating AI tools into their practice, policy makers
establishing supportive regulatory frameworks, and the general
public engaging in discussions about the ethical implications.

The Problem of Generalization Has Largely Limited
ML Algorithms Application
Generalization, which represents the ability to adapt to novel
situations, is rather important for the applicability of CVD risk
prediction models. However, both traditional and ML models
have the problem of generalization, as they are developed based
on specific populations. For example, many studies have used
cohorts predominantly consisting of White individuals, men,
or participants from a single center, even during a relatively
narrow socioeconomic range with well-educated and low-risk
factor burden compared with the general population [152-155].
Thus, risk prediction models were largely restricted to
application of cross-cohorts. The Pooled Cohort Equations to
Prevent Heart Failure tool, which was developed with the data
of 11,771 individuals from 7 community-based cohorts, was
unable to offer precise HF risk estimates for individuals who
were not classified to the non-Hispanic White and non-Hispanic
Black racial or ethnic groups [7]. The Cox regression models
developed by Li et al [156] contained data from 44,869
participants from the Evidence for Cardiovascular Prevention
from Observational Cohorts in Japan research group. Models
were developed to predict death from CHD, stroke, and CVDs,
but they may lack accuracy when predicting risk in women, for
the corresponding P values of the Hosmer-Lemeshow test were
.27, .002, and .04 in women and .51, .49, and .25 in men,
respectively.

In ML, it is still a challenge to generalize models with specific
populations, although this problem has been improved to a
certain extent due to the elimination of some restrictions by AI
algorithms. It has been documented by Bouzid et al [18] that
using patients from only 1 region (even multiple hospitals)
would significantly influence the promotion of ML models. In
terms of improvement, it has been proven by Ward et al [62]
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that ML models developed in the United States or Europe could
be expanded to Asian and Hispanic populations, and they
achieved AUCs of 0.803 (95% CI 0.743-0.863) and 0.768 (95%
CI 0.663-0.874), respectively, without the limitation of race in
the PCE. In addition, the application of PCE is limited to the
population aged from 40 to 79 years, while ML models have
eliminated this limitation [62]. Moreover, the LR and SVM
algorithms have been confirmed to overcome the age limitation
(<79 years), which caused 26% of all cases in FRS not to be
classified [95].

The way to solve the problem of generalization is to include
more participants in a large data set to improve the models’
applicability as advocated by Chang et al [157] and Chen et al
[158]. For example, it has been demonstrated that the model
trained on the largest training set yielded the best performance
in external validation [11,159]. Zarkogianni et al [96] have
introduced larger data sets corresponding to patients with
different ethnicities and races to other cohorts of patients and
consequently extended the applicability of the model. Therefore,
it is advocated to conduct multicohort, multicountry, or
multiracial studies with adequate cross-validation. In the real
world, however, it is difficult to obtain large data with high
quality, which will cost lots of manpower and money and take
a long time. In response to this point, it may be a more
appropriate solution to fully use open-source databases, such
as the National Health Insurance Service-National Sample
Cohort, NHIS-HEALS, Qresearch, Early Identification of
Subclinical Atherosclerosis by Noninvasive Imaging Research,
and so on [76,92].

The Lack of Interpretability in ML Algorithms Poses
a Significant Challenge
Prediction models play a crucial role in helping doctors make
accurate decisions in clinical practice. However, the “black box”
effect in many ML algorithms, such as ANNs and RF, creates
a challenge for doctors to interpret mechanisms correctly [160].
This limits the clinical utility of the models, as they become
complex for doctors to understand the impact of risk factors on
the prevalence of CVDs. In contrast to the fixed regression
coefficient in traditional models, the complexity of ML
algorithms hinders their interpretability, posing a common
problem for doctors [95,160].

To overcome or reduce the negative impact of the “black box,”
Han et al [61] suggested that information gain ranking methods
could be used, while Weng et al [71] advocated for the use of
data visualization to facilitate interpretation. Besides, in the
ECG methods for the prompt identification of coronary events
study with 1244 participants, Al-Zaiti et al [15] revealed that
by incorporating feature selection and annotation based on
clinical knowledge, LR could achieve comparable performance
to complex and expensive nonlinear algorithms such as ANN
and GBM. This approach also resolved the “black box” issue
of ANN and GBM, improving clinical utility by identifying
predominant features contributing to ACS. Furthermore,
methods such as discriminant analysis, Naive Bayes, logistic
and Cox regression, and classification provide relationships
between predictors and outcomes, enabling risk scores to be
calculated for each predictor in clinical practice [160]. In

addition, there has recently been an increasing focus on
explaining AI algorithms, with Xuan et al [97] developing a
visual analytics tool for comparing convolutional neural
networks (CNNs) to support in-depth inspection and
comparative studies of CNN models. Wang et al [98] have
reported a CNN explainer, which can show the CNN’s structure
and provides on-demand dynamic visual explanations.
Furthermore, it is exciting that explainable AI techniques have
been applied to CVD prediction models and are reasonably
expected to promote their application [161,162].

AI-Ethics Pitfalls Also Should Be Considered During
the Study Design
Informed model selection is a pivotal decision-making step in
AI, particularly when dealing with CVD risk prediction. It is
imperative to initiate the process with a rigorous assessment of
bias and fairness [144]. While it is acknowledged that most AI
algorithms may inherently carry biases, it is equally important
to benchmark these biases against those prevalent in the existing
systems. AI’s propensity to introduce bias often arises from
making unequal errors across diverse demographic groups. The
degree to which key demographic variables, including sex, age,
and ethnicity, are adequately represented in the data set and
incorporated during algorithm development significantly impacts
the predictive accuracy across subgroups. Consequently, when
these AI-derived predictions inform individual decisions, they
can either perpetuate or intensify the existing disparities [163].
This issue is exacerbated by data that may not authentically
mirror the entire target population, underscoring the ethical
imperative of ensuring fairness at every stage of the project life
cycle [164]. In the domain of CVD risk prediction, these ethical
considerations loom large. For example, Kim et al [99] and
Weng et al [71] constructed AI models for CVD risk prediction
in the Korea National Health and Nutrition Examination
Survey-VI cohort (4244 participants) and the CPRD cohort
(378,256 participants), respectively. However, they failed to
perform sensitivity analysis for race and gender subgroups,
leading to gender and ethnic bias. These issues will significantly
impact the application of the models.

There is an undeniable global demand for the development of
AI systems that can be relied upon for their trustworthiness
[165-168]. This demand is underscored by real-world examples,
such as ProPublica’s investigation into the Correctional Offender
Management Profiling for Alternative Sanctions software, which
serves as a stark illustration of how algorithmic performance
can exhibit disparities rooted in racial factors. Notably, the field
of fairness evaluation has made significant methodological
advancements that directly facilitate such analyses [169]. It is
imperative for AI developers and health care professionals to
actively engage with these tools. Researchers can effectively
showcase bias in critical subgroups, such as minority ethnic
communities or distinct age groups, through explicit presentation
of these findings. This approach not only enhances transparency
but also empowers users of the AI algorithm with the knowledge
of its strengths and weaknesses in different demographic
contexts. This consideration holds particular relevance in the
domain of AI-CVD risk prediction. Segar et al [100] included
19,080 participants from Atherosclerosis Risk in Communities,
Dallas Heart Study, Jackson Heart Study, and MESA cohort to
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build 6 AI models for predicting incident HF. They performed
sensitivity analysis for the subgroup of race and sex, and all
models performed well.

Conclusions

In conclusion, we highlight that the effectiveness and application
of ML models for predicting CVD risk are heavily reliant on
data quality, data set characteristics, model design and statistical
methods, and clinical implications. To address these challenges,

we propose practical solutions, including gathering objective
data, improving training, repeating measurements, increasing
sample size, preventing overfitting using statistical methods,
using specific AI algorithms to address targeted issues,
standardizing outcomes and evaluation criteria, and enhancing
fairness and replicability. It may provide a helpful reference
and assistance to researchers, algorithm developers, policy
makers, and clinical practitioners in the ML field of CVD
prediction.
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AI-TREE: AI transparent, replicable, ethical, and effective research
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ANLL: average negative log likelihood
ANN: artificial neural network
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AUC: area under the curve
BP: blood pressure
CHD: coronary heart disease
CNN: convolutional neural network
CONSORT: Consolidated Standards of Reporting Trials
CPRD: Clinical Practice Research Datalink
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EHR: electronic health record
FRS: Framingham risk score
GBM: gradient boosting machine
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ICD: International Classification of Diseases
KNN: k-nearest neighbor
LR: logistic regression
MESA: Multi-Ethnic Study of Atherosclerosis
MI: myocardial infarction
ML: machine learning
NHIS-HEALS: National Health Insurance System-National Health Screening Cohort
PCE: pooled cohort equation
PROBAST: Prediction Model Risk of Bias Assessment Tool
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RSF: random survival forest
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SVM: support vector machine
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