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Abstract

Background: Diabetes mellitus (DM) is a major health concern among children with the widespread adoption of advanced
technologies. However, concerns are growing about the transparency, replicability, biasedness, and overall validity of artificial
intelligence studies in medicine.

Objective: We aimed to systematically review the reporting quality of machine learning (ML) studies of pediatric DM using
the Minimum Information About Clinical Artificial Intelligence Modelling (MI-CLAIM) checklist, a general reporting guideline
for medical artificial intelligence studies.

Methods: We searched the PubMed and Web of Science databases from 2016 to 2020. Studies were included if the use of ML
was reported in children with DM aged 2 to 18 years, including studies on complications, screening studies, and in silico samples.
In studies following the ML workflow of training, validation, and testing of results, reporting quality was assessed via MI-CLAIM
by consensus judgments of independent reviewer pairs. Positive answers to the 17 binary items regarding sufficient reporting
were qualitatively summarized and counted as a proxy measure of reporting quality. The synthesis of results included testing the
association of reporting quality with publication and data type, participants (human or in silico), research goals, level of code
sharing, and the scientific field of publication (medical or engineering), as well as with expert judgments of clinical impact and
reproducibility.

Results: After screening 1043 records, 28 studies were included. The sample size of the training cohort ranged from 5 to 561.
Six studies featured only in silico patients. The reporting quality was low, with great variation among the 21 studies assessed
using MI-CLAIM. The number of items with sufficient reporting ranged from 4 to 12 (mean 7.43, SD 2.62). The items on research
questions and data characterization were reported adequately most often, whereas items on patient characteristics and model
examination were reported adequately least often. The representativeness of the training and test cohorts to real-world settings
and the adequacy of model performance evaluation were the most difficult to judge. Reporting quality improved over time (r=0.50;
P=.02); it was higher than average in prognostic biomarker and risk factor studies (P=.04) and lower in noninvasive hypoglycemia
detection studies (P=.006), higher in studies published in medical versus engineering journals (P=.004), and higher in studies
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sharing any code of the ML pipeline versus not sharing (P=.003). The association between expert judgments and MI-CLAIM
ratings was not significant.

Conclusions: The reporting quality of ML studies in the pediatric population with DM was generally low. Important details for
clinicians, such as patient characteristics; comparison with the state-of-the-art solution; and model examination for valid, unbiased,
and robust results, were often the weak points of reporting. To assess their clinical utility, the reporting standards of ML studies
must evolve, and algorithms for this challenging population must become more transparent and replicable.

(J Med Internet Res 2024;26:e47430) doi: 10.2196/47430
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Introduction

Background
In recent years, the regulatory authorization of medical devices
and digital health technologies based on big data and machine
learning (ML) has accelerated [1]. ML solutions have the
potential to transform clinical practice by automating diagnosis,
enhancing clinical decision-making, improving patient
monitoring, and personalizing treatment [2]. Diabetes care has
been among the first clinical areas to adapt ML technologies
[1,2].

Pediatric Diabetes Mellitus
Worldwide, pediatric diabetes mellitus (DM) is one of the most
common chronic conditions among children, with growing
incidence and increasingly complex presentation [3-6]. Type 1
DM (T1DM) is characterized by the lack of insulin secretion
mainly due to autoimmune etiology, whereas type 2 DM
(T2DM) is characterized by insulin resistance and metabolic
syndrome associated with obesity [5]. Approximately 20% of
children have both autoimmunity and insulin resistance [5]. A
less common form, maturity-onset DM of the young, is
attributed to a monogenic hereditary background [7,8]. Pediatric
DM represents a difficult-to-treat population. Glucose targets
frequently remain unmet in children and adolescents [9], and
chronic complications, such as kidney disease, retinopathy,
neuropathy, or hypertension, affect a significant proportion of
patients by reaching young adulthood [10,11]. The life
expectancy and quality of life of patients with pediatric DM
may be reduced to a varying degree [5].

ML in Pediatric DM
Within DM, pediatric DM has been leading the way to adopt
digital technologies and intelligent devices [1,12]. Continuous
glucose monitoring and automated insulin delivery systems are
becoming an essential part of the management of children and
adolescents with DM, with superior outcomes compared with
alternative treatments [9,13]. Regulated smartphone apps for
insulin dosing have become available for pediatric patients [14].
However, none of the currently available algorithms are optimal,
and despite the use of advanced technology, many pediatric
patients live under suboptimal glycemic control and are at risk
of potentially serious long-term consequences [9,15]. In the
quest for better disease characterization, prevention, and
treatment of pediatric DM, ML has been increasingly applied
from glucose sensors and artificial pancreas systems [16,17] to

disease management apps (eg, mobile apps for food
image–based carbohydrate counting or supporting
self-management) [18,19] or risk prediction algorithms [20].
Although the comparison of novel algorithms has been
challenging owing to methodological heterogeneity [9], artificial
intelligence (AI) or ML algorithms have not been covered by
DM technology guidelines [13,21,22]. To meet the needs of
this challenging population, it is of utmost importance that
algorithms are transparent and that their clinical value can be
assessed.

Reporting Quality of ML Studies in Medicine
Although expectations about the potential of technology to
improve disease outcomes of pediatric DM have been rising
[23,24], there has been growing concern about the transparency,
replicability, biasedness, and overall validity of research in the
field of AI and ML [25-30]. Indeed, examples of flawed or
unfair predictions by algorithms and consequent legislative
changes have sparked debate about the explainability,
interpretability, and understandability of “black box” systems
in ethical [31], philosophical [32,33], legal [34], social [35,36],
computer [37], or medical sciences [38,39]. Although the
concepts themselves remain vaguely defined or conflated [32],
users in general and health care professionals in particular have
sought explainable and interpretable ML models instead of
predictions made by “black box” systems [40,41]. Although
some ML models are “transparent” and others are “opaque” by
nature, several post hoc techniques have been developed to
make results interpretable, that is, to help medical professionals
understand how and why machine decisions were made [40,41].

The outputs of ML models are probably more dependent on the
input data than on the algorithm [42]. Therefore, the assessment
of the fairness and accuracy of clinical ML studies should
involve a thorough understanding of the processes of data
production throughout the entire life cycle, from collection to
annotation and processing [43]. Although technical aspects of
data provenance may surpass the needs of clinicians, detailed
reporting of the sources and production of data are indispensable
for transparent and reproducible ML research and development
[43].

We argue that high reporting quality standards are a prerequisite
for the assessment and ultimately the achievement of
methodological excellence in biomedical research. Although
the association between incomplete reporting and biased
treatment effects has been shown in clinical trials [44], evidence
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supports the positive effect of using checklists on reporting
quality [45,46]. Despite the growing number and widespread
adoption of reporting guidelines by leading journals over the
past decades, deficient reporting of medical research studies
remains a major concern, producing considerable waste [47].

Recognizing the limited usefulness of poorly reported studies
in clinical practice, a plethora of reporting guidelines have been
proposed for ML studies in medicine. Checklists have been
developed for different study types (eg, observational studies,
randomized trials, and health economic evaluations) and clinical
areas aimed at standardizing the mandatory elements to be
included in the study reports. These checklists are increasingly
being used by scientific journal editors in medicine as mandatory
elements for the submission of a manuscript [48]. Although
targeting different apps and audiences, most reporting guidelines
aim to ensure that results are reproducible, transparent, and,
where appropriate, provide sufficient detail for inclusion in
future evidence syntheses [26,30,48,49]. Hence, guidelines may
contribute to the adoption of technologies with potential to
benefit patients in real-world clinical settings.

Research Aims
Various apps and methods of ML in diabetes care have been
systematically reviewed [50,51], including specific use cases
such as the prediction of hypoglycemia [52] or complications
[53,54], diagnosis [55,56], use in disease management [24,57],
and smart devices [58]. However, to the best of our knowledge,
the reporting quality of ML studies in pediatric DM has not
been systematically reviewed.

By acknowledging the potential of ML methods in addressing
the specific treatment challenges of pediatric DM, we aimed to
systematically review the reporting quality of ML studies on
pediatric DM using a structured reporting checklist. Specifically,
we aimed to highlight areas with adequate or poor reporting
quality and identify the indicators of reporting quality.
Furthermore, we explored the association of reporting quality
with expert judgments about the overall clinical usefulness of
the reported results.

Methods

Database Search
We considered the updated PRISMA (Preferred Reporting Item
for Systematic Reviews and Meta-Analyses) 2020 statement
when reporting the results of our study [59] (Multimedia
Appendix 1). We searched the PubMed and Web of Science
databases for the 5-year period from January 1, 2016, to
December 31, 2020, using search syntaxes that combined the
terms ML, children, and DM. For ML, we constructed a
comprehensive search filter using the Medical Subject Headings
(MeSH) terms of ML and AI [60,61]. We extended the search
phrase with a list of terms from the caret package [62]. Given
the rapidly expanding list and specialized use of methods, terms
were added based on expert judgment. For studies on children,
we adapted the Cochrane child search filter [63] by removing
terms related to infants who were outside the scope of our study.
In addition to the MeSH terms, the DM filter also included
hyperglycemia, hypoglycemia, ketoacidosis, and insulin

resistance. The detailed syntaxes and dates of the search in the
PubMed and Web of Science databases are provided in
Multimedia Appendix 2 and Multimedia Appendix 3,
respectively.

Screening and Selection of Eligible Studies
Original research reports published from 2016 to 2020 were
eligible if ML methods were applied to analyze patient data on
a population of children aged 2 to 18 years with DM of any
subtype. As the primary research goal concerned the reporting
quality of the applied ML methods, outcomes and interventions
were not specified among the eligibility criteria. We restricted
our review to a 5-year window to keep track of recent advances
and maintain a feasible range. We included studies if DM or its
complications (eg, retinopathy) were the primary diagnosis or
DM was a study subpopulation (eg, population screening
studies). If the relevant age group was covered, patients aged
up to 25 years were accepted. We also included studies involving
broader age groups if the results were reported separately for
children. Both in vivo and in silico pediatric patients were
allowed. No language restrictions were applied.

All records were independently screened by 12 pairs of
reviewers formed by 6 authors. An extensive list of ML methods
was provided to aid in record screening. Differences were
resolved by consensus. Records were excluded if ineligibility
could be clearly stated and retained for full-text screening in
case of uncertainty or insufficient information.

The full-text reports were independently screened by 12 pairs
of reviewers. All eligibility criteria were recorded and had to
be reconciled in case of disagreement. Eligibility for the ML
criterion was as follows: (1) either a typical ML method was
specified (eg, bagging, boosting, bootstrap aggregated models,
decision tree, deep belief network, denoising autoencoder,
ensemble methods, genetic programming, learning, long
short-term memory, model tree, neural network, neuro-fuzzy,
random forest, random tree, and support vector) or (2) the data
analysis algorithm involved the ML workflow of training,
validation, and testing of results using any algorithm including
traditional regression methods. In case of uncertainty, a third
reviewer (AM) with technical expertise in ML methods made
the decision. The third reviewer was omitted only if reviewers
mutually agreed on the presence of criterion 1 or the absence
of both criterion 1 and 2. Interrater agreement of reviewers was
monitored during the screening of records and selection full-text
reports via absolute agreement and Cohen κ.

Assessment of Reporting Quality

Minimum Information About Clinical AI Modelling
Checklist

Overview

Given the potentially diverse application of ML in pediatric
DM, we applied the Minimum Information About Clinical
Artificial Intelligence Modelling (MI-CLAIM) checklist, a
general-purpose reporting guideline for medical AI studies
available from the EQUATOR (Enhancing the Quality and
Transparency of Health Research) network [64]. MI-CLAIM
has been developed to enable the assessment of clinical impact
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(including fairness and bias) and the replication of the technical
design process of clinical ML studies. It comprises 17 binary
“yes” or “no” items organized into 6 domains: study design
(part 1, consisting of 5 items), data and model optimization
(parts 2 and 3, consisting of 5 items), model performance (part
4, consisting of 3 items), model examination (part 5, consisting
of 5 items), and reproducibility (part 6, consisting of 1 item).
Two categorical items ask about the type of data and
reproducibility of the entire model pipeline. The data types can
be categorized as structured (ie, that can be defined and
understood by researchers) or unstructured (ie, the lack of
explicitly definable raw features, such as images, natural
language, or time series). The reproducibility of the entire
model-building pipeline is described by 4 levels: tier 1 (ie,
complete sharing of the code), tier 2 (ie, allowing a third party
to evaluate the code for accuracy and fairness and share the
results of this evaluation), tier 3 (ie, release of a virtual machine
for running the code on new data without sharing its details),
and tier 4 (no sharing). In this paper, we will refer to MI-CLAIM
items by denoting the domain and item number within the
domain (eg, item 6.1 denotes reproducibility). To aid the
reporting and review process, the MI-CLAIM checklist requires
the recording of the page numbers of a paper where relevant
information was found concerning the checklist items. To
address missing information or inadequate reporting, notes must
be taken for each item [64].

Assessment of Reporting Quality Using MI-CLAIM

In this study, MI-CLAIM was applied as follows. Six reviewers
were organized into pairs involving a medical expert (ÁH, LG,
MP, and ZZ) and an expert in computer science (GK, HMN,
and JC), who independently evaluated eligible studies along all
items of MI-CLAIM. MI-CLAIM was elaborated in group
training sessions before commencing the assessment. For the
17 binary items, response options were “yes” or “no” and
“unsure” for cases when information was provided by the
authors, but the reviewers could not come to a firm conclusion
about whether the reporting was sufficiently clear or detailed.
The final ratings relied on the expert judgment and consensus
of the involved reviewer pairs. For unanimous “yes” answers,
supporting information from the papers was extracted,
summarized, and provided in supplementary tables, but no
comments were made about missing items or inadequate
information. Only those studies were eligible for the evaluation
via MI-CLAIM, which followed the typical ML workflow:
data-driven model training and validation followed by model
testing on a designated data set [64]. Studies in which ML
algorithms were used in alternative workflows were not
evaluated using MI-CLAIM.

We added two additional items to reflect the overall purpose of
MI-CLAIM: (1) “Did the paper enable the direct assessment of
clinical impact, including fairness and bias?” (clinical impact)
and (2) “Can the technical design process of the paper be rapidly
replicated?” (replicability). For all studies, item 1 was rated by
a senior medical expert (GL) and item 2 was rated by 2 experts
who were well versed in computer science and medical data
analysis (GK and ZZ). Responses were captured on a 5-level
Likert scale (strongly agree; agree; neither agree nor disagree;
disagree; strongly disagree).

Extraction of Additional Data Items
In addition to the assessment of reporting quality, the first
author, publication year, Scimago subject category of the
publication (engineering and medicine) [65], title, main goal,
applied ML method, input data, characteristics of the pediatric
training and testing samples, and key findings of the included
papers were extracted by a single reviewer (ZZ). Quantitative
characteristics were extracted (eg, sample size), and inductive
coding was applied to group studies into categories according
to their goals, features of the training and test samples, and input
data.

Evidence Synthesis
We provided qualitative summaries of the answers to the
MI-CLAIM by study and item. For each study, we denoted the
count of “yes,” “no,” and “unsure” answers as well as the
categories for data type (item 2.5) and reproducibility (item 6.1)
as the MI-CLAIM profile of a study. For quantitative analysis,
reproducibility (item 6.1) was dichotomized as “any sharing”
(tiers 1-3) and “no sharing” (tier 4). In addition, the count of
“yes” ratings for each study was referred to as reporting quality.

We assessed the association between reporting quality and
continuous, dichotomous, and polytomous study characteristics
using Pearson correlation, 2-sample t test, and one-way
ANOVA, respectively. The normality of the distribution of
reporting quality was tested using the Shapiro-Wilk test. The
association between study characteristics and reporting quality
(ie, “yes” ratings) was assessed via cross-tabulation and the
Fisher exact test for each MI-CLAIM item.

Furthermore, we evaluated the correlation between reporting
quality and the overall expert assessment of clinical impact.
The association between reproducibility (item 6.1) and overall
expert assessment of replicability was tested using a 2-sample
t test.

Results

Screening and Selection of Eligible Reports
The searches in PubMed and Web of Science databases yielded
717 and 336 records, respectively. After removing 9 duplicates,
1043 publication records were screened, 298 full-text reports
were checked for eligibility, and 28 reports were eligible for
our review. Research activity increased rapidly over time: 64%
(18/28) of papers were published during the last 2 years, and
43% (12/28) were published in 2020 alone. (For web-based
papers, the year of publication was subsequently updated in
some cases). We assessed 21 reports using MI-CLAIM. Due to
initial differences between reviewers, 20.4% (213/1043) of the
records were reconciled. The absolute agreement and Cohen κ
between reviewers’ initial judgments were 79.6% (range
63%-94%) and 0.47 (range 0.15 to 0.83), respectively. In the
screening of full-text reports, 12 could not be retrieved due to
lack of institutional access (Multimedia Appendix 4), 286 were
assessed, 24.1% (69/286) were reconciled between reviewers,
and in 13.6% (39/286) of the cases, a third reviewer was invited
after the reviewers’ discussion to decide on the ML criterion.
Altogether, the absolute agreement and κ of reviewers’ initial
judgments regarding full-text selection were 67% (range
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20%-85%) and 0.30 (range 0.06-0.30), respectively (Multimedia
Appendix 5). Details of the search, screening, and inclusion are

provided in the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) flowchart (Figure 1).

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart of included studies. MI-CLAIM: Minimum
Information About Clinical Artificial Intelligence Modelling.

Characteristics of Included Studies
The characteristics of the 28 included studies are summarized
in Table 1.
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Table 1. Summary of included studies.

Key findingTest sampleTraining sampleMLa methodGoalStudy

ML methods applied with an ML workflow (reporting quality was assessed via MI-CLAIMb)

In various parameter set-
tings, time in range 77.8%-

5-d test period af-
ter training on the

In silico adolescents and chil-
dren from a cohort of 28 pa-

Model-free actor-
critic learning algo-
rithm

Develop an enhanced rein-
forcement learning model
for personalized insulin
delivery and glucose con-

Daskalaki
et al [66],
2016 86.4% for adolescents and

74.8%-80.5% for children.
same in silico pa-
tient cohort.

tients from the UVA-Padova
simulator; 2 outlier children
were excluded: approximatelytrol: artificial pancreas
10 adolescents assumed andsystem for pediatric

T1DMc approximately 8 children. Four-
day open-loop period followed
by 5-d training.

On the basis of a linear
combination of sensitivity

8 randomly select-
ed patients with

8 children (mean age 14.6, SD
1.5 y) with T1DM from a single

ELM-NNf vs PSO-

NNg, MR-FISh,

FISi, and MRj

Detection of HGd in pa-
tients with T1DM from the

ECGe signal

Ling et al
[67],
2016 and specificity (γ), ELM-NN

was a superior classifier of
HG vs other algorithms with

T1DM from the
same center

center monitored overnight for

nocturnal HG using CGMk for
360-480 min

a sensitivity of 0.78 and a
specificity of 0.60

Distinct subgroups for CVD
risk exist within the child-
hood-onset T1DM cohort

Testing via k-fold
cross-validation on
the same patient
cohort (k not report-
ed)

561 participants from the Pitts-
burgh Epidemiology of Dia-
betes Complication prospective
cohort study; T1DM onset: age
<17 y, between 1950 and 1980

TSSAmDetermining subgroups of
childhood-onset T1DM

based on 25-y CVDl risk

Miller et
al [68],
2016

On the basis of a linear
combination of sensitivity

5 randomly select-
ed patients with

10 children with T1DM moni-
tored 10h overnight for noctur-

DBNn vs BBNNo,

WNNp, FFNNq,
and MR

Detection of HG from
ECG signal in pediatric
T1DM

Phyo et al
[69],
2016 and specificity (γ), DBN was

a superior classifier of HG
T1DM from the
same center

nal HG using CGM from a sin-
gle center (training and valida-
tion set) vs other algorithms with a

sensitivity of 0.80 and
specificity of 0.50

HG in children with T1DM
can be detected from an

5 randomly select-
ed patients with

From 15 T1DM children from
a single center (12 with HG,

Combinational

MR-NLNr with

Detect HG from ECG sig-
nal in patients with T1DM

Ling et al
[70],
2017 ECG signal with a sensitivi-

ty of 0.79 and a specificity
of 0.54

T1DM from the
same center

mean age 14.6, SD 1.5 y),
monitored 360-480 min
overnight for nocturnal HG us-
ing CGM and ECG, 5/5 random-

HPSOWMs vs

MR-NLN, NLNt,
WNN, FFNN, and
MR ly selected for training and val-

idation

HG can be predicted from
the identified 7 volatile or-

Leave-one-out
cross-validation

128 breath samples from 56
patients

LDA1u with brute
force feature selec-

Identify HG biomarkers
from breath of children
with T1DM.

Siegel et
al [21],
2017 ganic compounds with a

sensitivity of 0.91 and a
specificity of 0.84

using the training
sample

tion by testing all
possible combina-
tions of predictors.

NN and MARSw: better fit

(R2) and accuracy (median

Patients with
T1DM from the
same center

Patients with T1DM from a
single center (N=252, mean age
14.95, SD 3.2 y); reference da-

NNv (1000 random
models) and MAR-
Splines compared

Predict insulin resistance
from sex, BMI, glucose,
and lipid parameters in pe-
diatric T1DM

Stawiski
et al [71],
2018

error of prediction) vs refer-
ence model

(N=63, mean age
15.15, SD 2.9 y)

ta: euglycemic hyperglycemic
clamp

vs reference model
(linear regression)

GPac with dot-product ker-
nel provided lowest

25% randomly se-
lected data sets
from the same 10
in silico patients

29-d observation of 10 in silico
children using the UVA-Padova
simulator, randomly split to
50% training and 25% valida-
tion data sets

FFNN, LSTMx,

ELMy, SVRz, GP-

RBFaa, GP-DPab

Compare the performance
of ML algorithms in the
prediction of HG on a 30-
min horizon in pediatric
T1DM

Bois et al
[72],
2019a

RMSEad and best clinical

accuracy on CG-EGAae with
approximately 99% accept-
able predictions for eug-
lycemia
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Key findingTest sampleTraining sampleMLa methodGoalStudy

DCP with novel loss func-
tion had promising perfor-
mance in long-term glucose
predictions, with improved
clinical acceptability (85.5%
accurate predictions CG-
EGA)

25% of the data set
from the same 10
in silico patients
used for testing in
4-fold cross-valida-
tion

28-d data from 10 in silico
T1DM children from UVA-
Padova simulator. 75% of data
used for training in 4-fold
cross-validation

A DCPaf model
with parameter esti-
mates using FFNN,
GP with dot-prod-
uct kernel, and
ELM vs 2 alterna-
tive predictors:

ACPag and AWAah

Develop a model to im-
prove the accuracy of
long-term (120 min) glu-
cose predictions in pedi-
atric T1DM

Bois et al
[73],
2019b

RF predicted best NAFLD
from metabolomic and clini-
cal features with AUROC
0.94 (sensitivity of 0.73,
specificity of 0.97)

Sample size approx-
imately 186 (1 of 3
out of the same
559 patients), se-
lected randomly

Sample size approximately 373;
2 of 3 of the total 559 patients
aged 2-25 y, NAFLD: 222
(T2DM: 220), control 337
(T2DM: 328) from 3 studies:
Emory University Pediatric
Liver Biopsy Data repository,
SweetBev Trial, and Yale Pedi-
atric NAFLD Cohort

Correlation-based
feature selection,
then SVM feature
selection (informa-
tion gain), then
classification by

LRaj, NBak, and

RFal

Develop a plasma screen-

ing panel for NAFLDai in
children using metabolom-
ic data

Khusial
et al [74],
2019

U-Net provided as accurate
results in the test sample as
literature reports of human
operators and outperformed
V-Net

Patients selected
from Beta-JUDO
study (N=10, age
10-18 y)

Patients with T2DM from the
Tellus study (N=45, age 18-80
y)

2 CNNam architec-
tures: U-Net and
V-Net

Quantification of subcuta-
neous and visceral adipose
tissue from MRI scans

Langner
et al [75],
2019

Nocturnal HG could be de-
tected from EEG signal with
a sensitivity of 0.82 and
specificity of 0.52

50% of the same 5
adolescents (139
total episodes, 45
hypoglycemic)

50% of data from 5 adolescents
with T1DM (age 12-18 y) from
a single-center overnight HG
study (139 total episodes, 45
hypoglycemic)

BNNanDetect nocturnal HG from
EEG signals

Ngo et al
[76],
2019

Conditional SVM and NB
outperformed LR in the
classification of TEDDY
data, with the potential to
discover new biomarkers for
IA

5-fold cross-valida-
tion repeated 200
times on the same
data set

418 case-control pairs from The
Environmental Determinants of
Diabetes in the Young (TED-
DY) study: genetic, lipidomic,
metabolomic biomarkers of

IAar

Conditional LR,

NB, SVMao with
radial basis func-
tion kernel, SVM
with linear kernel,

RF, LDA2ap, and

RPCLRaq were
compared

Develop a data preprocess-
ing method (conditional
classifier) to make classifi-
cation algorithms applica-
ble for omics data in
matched case-control stud-
ies

Stanfill et
al [77],
2019

Clinical accuracy 99.3% for
30-min and 95.8% for 60-
min glucose predictions us-
ing CG-EGA, improved
performance vs the standard
ARM

In silico: 7 d test
on the same co-
hort; clinical: 4 d
test on the same
patients

In silico: 10 adolescents, 10
children (30-d training, 7-d
validation) from UVA-Padova
simulator; clinical: retrospec-
tive CGM data from 141 pa-
tients with T1DM from a single
center (mean age 13.5, SD 5.2
y), mean (SD) CGM time: 64.4
(46.6) d

GCN1-3as vs

ARMat, RF,

GBMau, FCav

Compare a novel glucose
prediction model vs alterna-
tive algorithms on real-life
and in silico patients with
T1DM

Amar et
al [78],
2020

RF identified 30-60 min HG
with a sensitivity of >0.91
and specificity of >0.90

Sample size approx-
imately 34 (30% of
data randomly se-
lected from 112
children) in 10
replications

Sample size approximately 78
(70% of data from 112 chil-
dren) with T1DM (mean age
12.7, SD 4.8 y), 90 d follow-up
using Dexcom G6 CGM device

LR with LASSOaw

feature selection,
and RF classifiers
used on 26 extract-
ed features from
CGM data

Predict HG from glucose
sensor data in pediatric
T1DM

Dave et al
[79],
2020

Predictors for IA (ROC

AUCax 0.91) and T1DM
(ROC AUC 0.92) were
identified and should be fur-
ther validated

The model was
tested via 5-fold
cross-validation on
the training sample

67 children from the Diabetes
Autoimmunity Study in the
Young (DAISY) cohort, 22
with T1DM, 20 with persistent
IA and 25 from control

ROFI-P3 integra-
tive ML: combin-
ing optimal classi-
fiers (LR, RF,

KNN, LDA2,
SVM, and NB)
with iterative fea-
ture set selection
for best predictive
performance

Prediction of the develop-
ment of IA and T1DM
from genetic, immunolog-
ic, metabolomic, and pro-
teomic biomarkers

Frohnert
et al [80],
2020
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Key findingTest sampleTraining sampleMLa methodGoalStudy

Plasma microRNA can be
used for the prognostic
stratification of children
with T1DM based on C-
peptide loss

Two external vali-
dation cohorts: 18
children with re-
cent onset T1DM
and 26 children
with recent onset
T1DM from 2 sep-
arate clinical cen-
ters

150 children with T1DM: re-
cent onset (n=88), 12 mo post-
diagnosis (n=32), 24 mo postdi-
agnosis (n=30) from a single
center

FFNN for classifi-
cation

Identify circulating plasma
microRNA with prognostic
value for the progression
of pediatric T1DM (stratifi-
cation based on C-peptide
loss)

Garavelli
et al [81],
2020

DCNN improved RMSE,

MARDba, and time lag of
glucose forecast vs alterna-
tive methods

The same 10 in sil-
ico adolescents,
90-d observation

10 in silico adolescents (UVA-
Padova simulator); 90-d obser-
vation

DCNNay vs NN,

LVRaz with exoge-
nous input, ARM
with exogenous in-
put, SVR

GluNet: personalized 30-
to 60-min glucose forecast
in T1DM from CGM data,
meal, insulin dose
(GluNet)

Li et al
[82],
2020

DRL improved time in range
(61.6%) vs the standard in-
sulin bolus calculator
(54.9%)

Same as the train-
ing cohort: after
personalized train-
ing, 90 d testing
with identical pa-
rameter settings for
the test and control
cohorts

10 in silico adolescents (UVA-
Padova simulator), long-term
general training, 180 d of per-
sonalized training

DRLbb vs standard
insulin bolus calcu-
lator

Develop and insulin bolus
calculator planned for a
smartphone app connected
to CGM: artificial pancreas
system for pediatric T1DM

Zhu et al
[83],
2020

Best time in range for dual-
hormone DRL (78.8%) fol-
lowed by single hormone
DRL (65.9%) followed by
LGS (55.5%)

Testing personal-
ized models in the
same cohort for 90
d (10 in silico ado-
lescents)

10 in silico adolescents (UVA-
Padova simulator), 1500 d gen-
eralized training followed by
30 d personalized training

Dual-hormone
DRL vs single hor-
mone DRL vs
state-of the art

LGSbc control
strategy

Single-hormone (insulin)
and dual-hormone (in-
sulin+glucagon) dosing al-
gorithm for closed-loop
glucose control of T1DM

Zhu et al
[84],
2020

42 predictor markers identi-
fied for T1DM, associated
with 3 biological pathways

78 randomly select-
ed children from
the TEDDY study

236 children (118 matched
pairs with or without islet au-
toimmunity or T1DM) from the
TEDDY study

Integrative ML:
product of posteri-
or probability and

ROFIbd

Predicting the develop-
ment of IA and T1DM
from metabolomic markers

Webb-
Robert-
son et al
[85],
2021

ML methods applied without an ML workflow (reporting quality was not assessed via MI-CLAIM)

Good acceptability, im-
proved carbohydrate accura-
cy, and fewer counting er-

rors and better HbA1cbf vs
controls

NRNRbeCNN to identify
food images

Test the usability and im-
pact on carbohydrate
counting accuracy of an
ML-based carbohydrate
counting app (iSpy) in pe-
diatric T1DM

Alfonsi et
al [18],
2020

No connection was found
between low-grade inflam-
mation and the development
of insulin resistance

NR345 adolescents (mean age
17.5, SD 1.8 y), lean and over-
weight or obese

RF used for classi-
fication

Explore the role of inflam-
mation in the pathogenesis
of insulin resistance among
adolescents with obesity

Adabimo-
hazab et
al [86],
2016

Greater median and IQR
values for glucose fluctua-
tion predict DM or predia-
betes in children with cystic
fibrosis

NR142 children (age <17 y) with
cystic fibrosis from a single
center using CGM

Hierarchical and k-
means cluster anal-
ysis

Predict cystic fibrosis–relat-
ed DM from CGM data

Brugha et
al [87],
2018

Innate inflammatory bias
levels are associated with
T1DM progression rate and
responsiveness to abatacept.

NR116 children with T1DM,
within 100 d from diagnosis (62
control, 54 treated with abata-
cept)

RF, hierarchical
clustering

On the basis of immunoreg-
ulatory profiles, identify
pediatric T1DM subtypes
at clinical onset to predict
postonset insulin secretion
and responsiveness to
abatacept therapy.

Cabrera
et al [88],
2018
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Key findingTest sampleTraining sampleMLa methodGoalStudy

New-onset T1DM has char-
acteristic fecal microbial
flora; not known if cause or
consequence of autoimmuni-
ty

NRNew-onset T1DM pts (N=31,
mean age 10.3, SD 4.1 y) vs
sex-matched healthy controls
(N=25, mean age 10.3, SD 4.1
y)

Supervised classifi-
cation: RF, Elastic
Net (L1L2); unsu-
pervised analysis:

WGCNAbg

Define gut microbial com-
position of new-onset pedi-
atric T1DM

Biassoni
et al [89],
2020

Time in range of AI-DSS
was statistically noninferior
when compared with physi-
cians

NRNRDreaMed Advisor
Pro, continuous
glucose monitoring
device with insulin
pump, details of
the ML method not
provided

Compare the performance

of an AI-DSSbh vs clini-
cians for insulin dosing in
pediatric T1DM

Nimri et
al [90],
2020
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Key findingTest sampleTraining sampleMLa methodGoalStudy

With >23% adherence to
screening recommendations,
artificial intelligence–based
diabetic retinopathy screen-
ing is cost-saving for pa-
tients

NRNRArtificial intelli-
gence–based diag-
nosis of diabetic
retinopathy from
digital fundus im-
age. Methods not
described in the
paper

Economic evaluation of
AI-based diabetic
retinopathy screening vs
standard care in pediatric
DM from the patient per-
spective

Wolf et al
[91],
2020

aML: machine learning.
bMI-CLAIM: Minimum Information About Clinical Artificial Intelligence Modelling.
cT1DM: type 1 diabetes mellitus.
dHG: hypoglycemia.
eECG: electrocardiogram.
fELM-NN: extreme learning-based feed forward neural network.
gPSO-NN: particle swarm optimization based neural network.
hMR-FIS: multiple regression–based fuzzy inference system.
iFIS: fuzzy inference system.
jMR: multiple regression.
kCGM: continuous glucose monitor.
lCVD: cardiovascular disease.
mTSSA: tree-structured survival analysis.
nDBN: deep belief neural network.
oBBNN: block-based neural network.
pWNN: wavelet neural network.
qFFNN: feed forward neural network.
rMR-NLN: multiple regression–based neural logic network.
sHPSOWM: hybrid particle swarm optimization with wavelet mutation.
tNLN: neural logic network.
uLDA1: linear discriminant analysis.
vNN: neural network.
wMARS: multivariate adaptive regression splines.
xLSTM: long short-term memory.
yELM: extreme learning machine.
zSVR: support vector regression.
aaRBF: radial basis function.
abGP-DP: Gaussian process regression with dot-product kernel.
acGP: Gaussian process regression.
adRMSE: root mean square error.
aeCG-EGA: continuous glucose error grid analysis (Clarke error grid).
afDCP: derivatives combination predictor.
agACP: artificial neural network combination predictor.
ahAWA: adaptive weighted average fusion algorithm.
aiNAFLD: nonalcoholic fatty liver disease.
ajLR: logistic regression.
akNB: naive Bayes.
alRF: random forest.
amCNN: convolutional neural network.
anBNN: Bayesian neural network.
aoSVM: support vector machine.
apLDA2: latent Dirichlet allocation.
aqRPCLR: random penalized conditional logistic regression.
arIA: islet autoimmunity.
asGCN: gradually connected neural network.
atARM: autoregressive model.
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auGBM: gradient boosting machine.
avFC: fully connected neural network.
awLASSO: least absolute shrinkage and selection operator.
axROC AUC: receiver operating characteristic area under curve.
ayDCNN: dilated convolutional neural network.
azLVR: latent variable regression.
baMARD: mean absolute relative difference.
bbDRL: deep reinforcement learning.
bcLGS: low glucose insulin suspension.
bdROFI: repeated optimization for feature interpretation.
beNR: not reported.
bfHbA1c: hemoglobin A1c.
bgWGCNA: weighted correlation network analysis.
bhAI-DSS: AI-based decision support system.

Most studies (n=6) focused on the discovery of etiologic or
prognostic biomarkers of T1DM [77,80,81,85,88,89], followed
by studies aiming to predict hypoglycemia using noninvasive
methods such as ECG or EEG signals, breath volatile organic
compounds (n=5) [21,67,69,70,76], insulin bolus calculators
for closed-loop glucose control (n=5) [66,82-84,90], accurate
prediction of glucose levels or hypoglycemia from continuous
glucose monitor (CGM) data (n=4) [72,73,78,79], etiologic or
risk factors for insulin resistance or T2DM (n=4) [71,74,75,86],
and other goals such as long-term cardiovascular risk
stratification [68], accurate carbohydrate counting via a
smartphone app [18], prediction of cystic fibrosis–related DM
from CGM signal [87], and the economic evaluation of diabetic
retinopathy screening via AI versus standard care [91].

Reporting the Training and Test Samples
The characteristics of the training sample (including the
validation data set) were not reported in 3 studies [18,90,91].
Of the 25 studies reporting details, in 18 (72%), the training
sample involved human patients, in 6 (24%) only in silico
patients [66,72,73,82-84], and there were both human and in
silico patients in one study [78]. Of the 9 studies focusing on
bolus calculation or glucose prediction from CGM data, only
2 (22%) had human patients in the training sample [78,79], 6
(67%) had only in silico patients [66,72,73,82-84], and the
training sample was not characterized in one study [90]. The
size of the training sample ranged from 561 [68] to 5 [76]. Of
the 25 studies reporting details, only 10 (48%) had training
samples with more than 100 patients [68,71,74,77,78,81,85-88],
whereas 9 (36%) involved 10 or fewer patients
[67,69,70,72,73,76,82-84]. Etiologic or prognostic studies for
T1DM [77,80,81,85,88,89] and T2DM [71,74,75,86] featured
the largest training samples ranging between 56 and 418 and
45 and 373, respectively. However, of the 14 studies focusing
on insulin bolus calculators, or glucose or hypoglycemia
prediction, only 4 (29%) [21,66,78,79] involved more than 10
patients in the training sample, with 141 being the largest sample
size [78].

The test sample was characterized in 21 studies that involved
a full ML workflow. Testing was performed on the same patients
as the training in 12 (57%) studies, involving time-split in 8
studies using CGM data [66,72,73,76,78,82-84] and
cross-validation in 4 studies [21,68,77,80]. In 5 (24%) studies,
the test sample involved randomly selected patients from the
same center as the training sample [67,69-71,79]; in 2 (10%)
studies, patients from one or more external centers [75,81]; and
in 2 (10%) studies randomly selected patients from multicenter
studies [74,85]. The test sample included 10 or fewer patients
in 10 (48%) studies [67,69,70,72,73,75,76,82-84], and only 4
(19%) studies featured test samples involving more than 100
patients [68,74,77,78]. The sample sizes of the external test
samples ranged between 10 and 186 [74,75,81,85].

ML Methods Used
In the 28 included studies, we identified a plethora of ML
methods that sometimes overlapped with the techniques used
for feature engineering, dimension reduction, or other steps of
the analysis. Altogether, from the 87 proposed or comparator
methods used, we identified 61 different techniques, with
random forest (RF) mentioned in 8 studies [74,77-80,86,88,89],
followed by feed forward neural network in 5 studies
[69,70,72,73,81], logistic regression in 4 [74,77,79,80], and
multiple regression (MR) [67,69,70] and naive Bayes in to 3-3
studies [77,80]. There were 48 methods mentioned in only one
paper, and 2 papers did not specify the ML algorithm [90,91].

Assessment of Reporting Quality Using the MI-CLAIM
Profiles
The reporting quality via MI-CLAIM was assessed in 21 studies
that followed the ML workflow. The characteristics of the
assessed studies are summarized in Multimedia Appendix 6
[21,66-85]. The MI-CLAIM profiles for each study are shown
in Figure 2 [21,66-85]. The assessment details of the included
studies are provided in Multimedia Appendix 7 [21,66-85]. To
support our “yes” ratings, the summaries of reported items for
each study by the domains of MI-CLAIM are provided in
Multimedia Appendices 8-11 [21,66-85].
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Figure 2. Minimum Information About Clinical Artificial Intelligence Modelling (MI-CLAIM) profiles by studies. MI-CLAIM profile: the count of
“yes,” “no,” and “unsure” ratings for items 1.1 to 1.5, 2.1 to 2.4, 4.1 to 4.3, and 5.1 to 5.5; the classification of data type (item 2.5) as “structured” or
“unstructured” and the classification of reproducibility (item 6.1) into tier 1 to 4 or “unsure.”.

For the 17 binary items, the number of “yes” ratings ranged
between 4 and 12 (mean: 7.43), the “unsure” ratings ranged
between 0 and 7 (mean 3.62), and the “no” ratings ranged
between 2 and 12 (mean 6.95). One study provided a link to the
applied unique ML model framework [85], without disclosing
the specific code applied in the analysis. We rated
reproducibility (item 6.1) for this study as “unsure” and
dichotomized it as “any sharing.” The distribution of reporting
quality was normal (Shapiro-Wilk test; P=.11). Reporting quality
correlated positively with the year of publication, showing an
improvement over time (r=0.50; P=.02). The reporting quality
did not differ between studies using structured
[21,67,68,70-74,76,77,79,80,83-85] or unstructured data
[66,69,70,75,78,81,82] (t19=0.35; P=.73), or whether the input
data were time series [66,69,70,72,73,78,79,82-84], omics
[18,21,74,77,80,81,85], or other [68,71,75,76] (ANOVA
F2,18=2.21; P=.14), in silico [66,72,73,82-84] or human subjects
were involved [21,67-71,74-81,85] (t19=1.23; P=.24). However,

it differed between studies with different research goals
(ANOVA, F5,15=4.59; P=.01). Compared with the mean,
prognostic biomarker studies in T1DM and risk factor studies
of T2DM had significantly higher reporting quality by 2.02
(P=.04) and 2.85 (P=.01) “yes” ratings, respectively, whereas
noninvasive hypoglycemia detection studies had fewer “yes”
ratings by 2.69 (P=.006). Furthermore, higher reporting quality
was observed in studies sharing any code of the ML pipeline
[71,75,85] (t19=3.48; P=.003) and in studies published in
medical journals [21,66,68,71,74,75,78-81,84,85] (t19=3.24;
P=.004). Reporting quality correlated moderately with the
overall expert assessment of clinical impact without significant
association (r=0.40; P=.07).

Assessment of Reporting Quality by the Items of
MI-CLAIM
Figure 3 shows an assessment of reporting quality by the
MI-CLAIM items [21,66-85].
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Figure 3. Assessment of reporting quality by Minimum Information About Clinical Artificial Intelligence Modelling (MI-CLAIM) items. The wording
of MI-CLAIM items are as follows. Study design (part 1)—1.1: the clinical problem in which the model will be used is clearly detailed in the paper;
1.2: the research question is clearly stated; 1.3: the characteristics of the cohorts (training and test sets) are detailed in the text; 1.4: the cohorts (training
and test sets) are shown to be representative of real-world clinical settings; 1.5: the state-of-the-art solution used as a baseline for comparison has been
identified and detailed. Data and optimization (parts 2 and 3)—2.1: the origin of the data is described and the original format is detailed in the paper;
2.2: transformations of the data before they are applied to the proposed model are described; 2.3: the independence between training and test sets has
been proven in the paper; 2.4: details on the models that were evaluated and the code developed to select the best model are provided; 2.5: is the input
data type structured or unstructured? Model performance (part 4)—4.1: the primary metric selected to evaluate algorithm performance (eg, area under
the curve and F score), including the justification for selection, has been clearly stated; 4.2: the primary metric selected to evaluate the clinical utility
of the model (eg, positive predictive value and number needed to treat), including the justification for selection, has been clearly stated; 4.3: the
performance comparison between the baseline and proposed model is presented with the appropriate statistical significance. Model examination (part
5)—5.1: examination technique 1a; 5.2: examination technique 2a; 5.3: a discussion of the relevance of the examination results with respect to model
or algorithm performance is presented; 5.4: a discussion of the feasibility and significance of model interpretability at the case level if examination
methods are uninterpretable is presented; 5.5: a discussion of the reliability and robustness of the model as the underlying data distribution shifts is
included. Reproducibility (part 6)—choose the appropriate tier of transparency.

Study Design (Part 1)
The clinical problem (item 1.1) was clearly defined in all studies,
and the research question was clearly stated (item 1.2) in nearly
all cases. However, in 1 (5%) study [79], our rating was
uncertain about the clarity of the main research question. The
characteristics of the training and test cohorts were clearly
described (item 1.3) in 8 (38%) studies [68,71-74,78,81,85],
our rating was “unsure” in 3 (14%) studies [75,83,84]. The
cohorts were poorly characterized in all insulin bolus calculator
and noninvasive hypoglycemia detection studies, receiving only
“no” ratings (Fisher exact test; P=.03). Cohort characteristics
were reported similarly in silico and in human studies. Our
ratings were rather uncertain about whether the
representativeness of the cohorts in real-world clinical settings
was demonstrated (item 1.4). Only 4 (19%) studies received a
“yes” rating [68,71,78,81], involving human sample sizes

ranging between 140 and 561. Nine studies were rated as
“unsure” (43%) [66,67,72,74,80,82-85], and in 8 (38%) studies,
the representativeness of the sample in real-world situations
was not demonstrated [21,69,70,73,75-77,79]. The
state-of-the-art solution was not included as baseline (item 1.5)
in 11 (52%) studies [21,66,68,71,72,75,76,79,81,82,85], and
we were uncertain in 5 (24%) studies [67,69,73,74,78].

Data and Optimization (Parts 2 and 3)
Data origin and format (item 2.1) and data transformations (item
2.2) were described in detail in 15 (71%) studies
[21,68,71-77,79,80,82-85] and 15 (71%) studies
[66-68,71-75,77-79,81,82,84,85] with “unsure” rating in 3 (14%)
[66,67,81,89] and 2 (10%) studies [80,83], respectively. The
independence of the training and test samples was proven (item
2.3) in 7 (33%) studies [67,70,71,74,75,81,85], and we were
“unsure” in 5 (24%) studies [72,73,82-84]. Reporting on this
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item differed according to the study aim (Fisher exact test;
P=.04). The independence of the test and training samples was
not demonstrated in studies focusing on insulin bolus calculation
[66,82-84] or hypoglycemia detection from CGM data
[72,73,78,79]. Item 2.4 requires that the details of the evaluated
models and the code to select the best model are detailed. For
this item, 11 (52%) studies received “yes”
[21,71-73,76,78-80,83-85], and 6 studies received “unsure”
(29%) rating [66,67,74,75,77,81]. The data were structured in
14 (67%) studies and unstructured in 7 (33%) studies. Our
reviewers rated the 8 studies using glucose time-series data as
structured in 5 (63%) and unstructured in 3 (38%) cases. This
suggests that our reviewers’ notions varied regarding the direct
interpretability of glucose time-series data (ie, as structured data
were defined by the authors of MI-CLAIM) [64].

Model Performance (Part 4)
The primary metric for the evaluation of model performance
was clearly stated and justified (item 4.1) in 8 (38%) studies
[21,69-71,77,78,80,85], whereas our rating was frequently
“unsure” (10/21, 48%) [66,67,72,74-76,79,81,83,84]. The
reporting in this item differed between human and in silico
studies (Fisher exact test; P=.046), with no in silico studies rated
as “yes.” The selection and justification of the primary metric
of clinical utility (item 4.2) received 6 (29%) “yes”
[69,75,76,78,80,85], and 11 (52%) “unsure” ratings
[21,66,67,71-74,77,79,83,84]. The performance comparisons
were presented with appropriate statistical significance in only
7 (33%) studies [21,77,78,80,82-84], whereas the rating was
“no” in over half of the studies (12/21, 57%)
[66,68-70,72-76,79,81,85].

Model Examination (Part 5)
Model examination techniques help to validate that model
accuracy is related to relevant inputs and explain how complex
models work (eg, quantify the importance of predictor variables
or characterize subjects with the best or poorest model
performance) [64]. While one examination technique (item 5.1)
was applied in 9 (43%) studies [66,71,74,75,77-80,85], a second
examination technique (item 5.2) was applied in only 4 (19%)
[75,77,80,85]. The use of at least one examination technique
was more frequent among publications in medical journals
(Fisher exact test; P=.02). Although model examination was
not reported in any of the noninvasive hypoglycemia studies
(Fisher exact test; P=.04), 2 examination techniques were
reported only in prognostic biomarker studies in T1DM and
risk factor studies of T2DM (Fisher exact test; P=.02) and
mainly among studies using omics data (Fisher exact test;
P=.03). MI-CLAIM suggests that examination results are more
relevant for better-performing models and should be discussed
in the context of model performance (item 5.3) [64], which was
carried out in 8 (38%) studies [66,71,74,75,78-80,85], mainly
published in medical publications (Fisher exact test; P=.005).
Furthermore, if other examination techniques are infeasible, the
results should be interpreted at the case level (item 5.4), which
we found in only 2 (10%) studies [66,75]. Model reliability and
robustness to shifts in data distribution was examined in 6 (29%)
studies [66,74,75,78,79,83], and our rating was “unsure” in 5
(24%) cases [21,71,72,80,85]. Discussions on reliability and

robustness were reported more often in medical publications
(Fisher exact test; P=.02).

Reproducibility (Part 6)
All but 3 studies received “tier 4” rating, as the code of the ML
workflow was not shared. One study shared the full code (“tier
1”), one provided a link to a downloadable calculator (“tier 3”)
and one study received “unsure” rating. Our overall expert
assessment of replicability did not differ between studies with
“any sharing” and “no sharing” of the code of the model pipeline
(t19=0.945; P=.36), suggesting that beyond the proposed tiers
of MI-CLAIM, the reported technical details have influenced
the replicability judgments.

Discussion

Principal Findings
This systematic review provides insights into reporting quality
and, hence, the potential clinical impact of studies applying ML
methods in pediatric DM populations. We applied the
MI-CLAIM checklist to assess the reporting quality of 21 studies
that followed the ML workflow of model training, validation,
and testing. In these studies, reporting quality was generally
low, with an improving trend over time. The MI-CLAIM items
on research questions and data characterization were reported
adequately most often, whereas the items on patient
characteristics and model examination were reported adequately
least often. The representativeness of the training and test
cohorts to real-world settings and the adequacy of model
performance evaluation were the most difficult to judge. On
average, we found adequate reporting for less than half of the
MI-CLAIM items, with considerable differences between studies
with different research foci. Medical papers had higher reporting
quality compared with articles published in engineering journals,
mainly because of more elaborate reporting in the model
examination domain. The number of MI-CLAIM items with a
“yes” rating showed a moderate correlation with the overall
assessment of the clinical impact by independent medical
experts. We found no association between the reproducibility
ratings on MI-CLAIM and independent experts’ assessments
of the technical replicability of studies.

Comparison With Prior Work
When writing this paper, MI-CLAIM was used in a single
review, focusing on ML in dental and orofacial pain
management, in which nearly all included papers were rated
with “yes” in 13 or more out of the 15 assessed items [92]. Our
study showed a less favorable picture with all studies having
12 or less “yes” ratings and two-thirds of studies having 7 or
less “yes” ratings out of 17 items. Our findings corroborate the
results of previous studies, raising concerns regarding the
reporting quality of ML studies [25,27,29].

Elaboration of Findings
Considering the globally increasing burden and serious
consequences of pediatric DM [3] and the rapid growth of ML
literature over the past years [48], we found few eligible studies,
usually involving small patient populations. Of the 28 eligible
studies, the training sample involved more than 100 patients in
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only 10 cases. In terms of research aims, applied methods, and
data types, the studies were diverse.

According to our experience, compared with highly standardized
medical papers, such as randomized clinical studies [93],
systematic reviews [94], or economic evaluations [95], the
reading and interpretation of the involved ML papers was
challenging and time-consuming. The focus of MI-CLAIM on
the clinical utility of ML modeling may explain the higher
reporting quality of medical papers than those published in
engineering journals. Still, the general reporting pattern reflected
a “data-driven” mindset: after stating the clinical problem and
research question, data-related items were reported most
thoroughly. However, important details for clinicians, such as
the detailed description of patient cohorts, the state-of-the-art
clinical solution, and the clinical utility of the proposed models
and model examination for valid, unbiased, and robust results
were often the weak points of reporting.

We found an association between reporting quality and research
goals. Studies with a strong clinical focus, such as those seeking
prognostic biomarkers in T1DM and risk factors in T2DM, had
higher reporting quality than the more technically oriented
studies aimed at detecting hypoglycemia from CGM data or
noninvasive methods or developing insulin bolus calculator
algorithms. However, some of the reported differences were
clearly attributable to the individual styles of the research teams.
While reporting quality of the same teams, such as
Webb-Robertson et al [77,80,85], Zhu et al [82-84], Bois et al
[72,73], or Ling et al [67,69,70] fell in the same range, the
number of “yes” ratings differed up to 6 items between different
author teams in similar studies focusing on hypoglycemia
prediction or the discovery of prognostic markers for T1DM.

Although MI-CLAIM was developed as a general reporting
checklist, not as a measurement tool, our attempt to quantify
reporting quality provided several learnings. We observed that
the applicable ratings in some items depended on the underlying
methods. For example, the independence of the training and
test data could not be demonstrated in studies aimed at
developing individualized glucose control algorithms. In
contrast, the use of transparent models and a thorough
examination of feature importance are hallmarks of prognostic
marker studies, yielding naturally high scores in the model
examination domain. Specific research questions, methods, or
data types gave rise to specialized ML reporting guidelines for
certain clinical fields or research designs [30,48]. Although
MI-CLAIM provides a strong strategic framework for the
evaluation of a broad range of ML applications, in our opinion,
the evaluation of the validity and potential biases of ML studies
in specific clinical use cases of pediatric DM, such as insulin
bolus calculation or hypoglycemia detection from various
physiological signals, would require more specific technical
guidance, preferably from the medical profession, who provides
the data and ultimately uses the results for clinical
decision-making.

Some MI-CLAIM items received a high proportion of “unsure”
ratings from our team. For example, item 1.4 suggests that the
representativeness of training and test cohorts in real-world
clinical settings should be demonstrated. Despite many studies

reporting the parameter variability of T1DM simulators or the
recruitment methods and characteristics of patient samples from
diabetes clinics, we were unsure about what the established
criteria were for representative cohorts of pediatric T1DM or
T2DM. In addition, items 4.1 and 4.2 frequently received
“unsure” ratings, which require that the primary evaluation
metrics for model performance and clinical utility are clearly
stated and justified. Although some authors “cherry picked”
among multiple performance metrics to declare the superiority
of the proposed model, in many cases, the assessment of
adequate reporting was more challenging. For example, some
studies applied the Clarke Error Grid Analysis [96] to evaluate
the clinical accuracy of glucose predictions, reporting results
in all 6 regions, but did not specify the primary region of interest
(eg, potentially hazardous prediction errors). Other studies
reported both sensitivity and specificity for hypoglycemia
predictions without specifying a single measure. Furthermore,
many studies have reported meaningful measures for the
evaluation of model performance and clinical utility, without
specifying their purpose. Examples include specificity and
sensitivity, or the imaging study of Langner et al [75], which
reported 3 metrics: the Dice score [97] and absolute and relative
estimation error of adipose tissue volume. Although the metrics
were adequate for both technical and clinical evaluation of
results, owing to the lack of a single primary evaluation metric,
the MI-CLAIM items could not be rated with unanimous “yes.”
Furthermore, we found an overlap within the model examination
domain, where the same piece of information satisfied multiple
items, especially when the model examination involved
performance testing in special patient populations.

Finally, we must note the diversity of methods and nomenclature
used from data processing to feature selection, prediction, or
evaluation of results. We found nearly 2 unique ML methods
per paper, which makes the systematic search and evidence
synthesis of ML challenging. While the term “machine learning”
yielded 42,840 hits, our extended search term using specific
methods provided 235,042 hits over our study’s search period
in PubMed (Multimedia Appendices 2 and 11). While keeping
track of the novel methods in ML is nearly impossible, the
omission of specific terms carries the risk of incomplete search
results for evidence synthesis. Furthermore, due to the specific
methodological and reporting concerns about ML in medicine,
we propose that the “machine learning study” label should be
consistently used in the titles of medical studies, whose primary
results arise from the typical data-driven ML workflow. This
term has been used in the title or abstract of only 101 papers in
PubMed in the same search period and could serve as unique
identifier of clinical research using ML methods (Multimedia
Appendix 12), benefiting future information retrieval and
evidence synthesis similarly to the “randomized controlled trial”
label.

Limitations
A limitation of our study was that the literature search was
closed in early 2021; therefore, recent publications potentially
eligible for our review were not covered. In addition, given the
plethora of ML methods, although the detailed list was included
in the search syntax, some studies may have been missed during
the search phase of our study. However, we believe that the key
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observations and conclusions of our review remain unaffected.
In addition, we did not assess studies using MI-CLAIM, which
reported ML results in pediatric DM without applying the ML
workflow of model training, validation, and testing. Specific
ML reporting guidelines exist [30,48] for clinical pilot studies
[18], randomized controlled studies [90], and economic
evaluations [91]. Despite the use of MI-CLAIM for a breadth
of study types, we considered that MI-CLAIM was not
applicable for a comparable assessment of those studies that
omitted the steps of model validation and testing [86-89] with
those that followed the full ML workflow.

Furthermore, despite the involvement of both medical experts
and computer scientists in our research team, we observed high
rates of disagreement between reviewers, and our consolidated
ratings were “unsure” in over 20% of the assessed items.
Although MI-CLAIM items were elaborated in group trainings,
due to subjective judgments, some inconsistencies may have
remained in our ratings. In particular, our judgments were unsure
whether the representativeness of the training and test samples
in real-world clinical settings was adequately demonstrated or
if the selection and justification of primary model performance
evaluation metrics were adequately justified. The specification

of adequate sample characteristics and model performance
evaluation criteria for clinical decision-making in pediatric DM
and other disease areas remains an important area for future
research.

Conclusions
The reporting quality of ML studies in the pediatric population
with DM was generally low. Important details for clinicians,
such as the detailed description of patient cohorts, the
state-of-the-art clinical solution, the clinical utility of the
proposed models, and model examination for valid, unbiased,
and robust results, were often the weak points of reporting. To
allow the assessment of their clinical utility, it is of utmost
importance that the reporting standards of ML studies evolve
and algorithms for this challenging population become more
transparent and replicable. MI-CLAIM provided a strong
strategic framework for good reporting practices, which could
be further supported by disease-specific technical guidance
regarding what constitutes an adequate level of detail to inform
clinical decision-making. Higher reporting quality standards
may indirectly advance science and facilitate the uptake of
technologies that have the potential to benefit children with
DM.
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