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Abstract

Background: The presence of bias in artificial intelligence has garnered increased attention, with inequities in algorithmic
performance being exposed across the fields of criminal justice, education, and welfare services. In health care, the inequitable
performance of algorithms across demographic groups may widen health inequalities.

Objective: Here, we identify and characterize bias in cardiology algorithms, looking specifically at algorithms used in the
management of heart failure.

Methods: Stage 1 involved a literature search of PubMed and Web of Science for key terms relating to cardiac machine learning
(ML) algorithms. Papers that built ML models to predict cardiac disease were evaluated for their focus on demographic bias in
model performance, and open-source data sets were retained for our investigation. Two open-source data sets were identified:
(1) the University of California Irvine Heart Failure data set and (2) the University of California Irvine Coronary Artery Disease
data set. We reproduced existing algorithms that have been reported for these data sets, tested them for sex biases in algorithm
performance, and assessed a range of remediation techniques for their efficacy in reducing inequities. Particular attention was
paid to the false negative rate (FNR), due to the clinical significance of underdiagnosis and missed opportunities for treatment.

Results: In stage 1, our literature search returned 127 papers, with 60 meeting the criteria for a full review and only 3 papers
highlighting sex differences in algorithm performance. In the papers that reported sex, there was a consistent underrepresentation
of female patients in the data sets. No papers investigated racial or ethnic differences. In stage 2, we reproduced algorithms
reported in the literature, achieving mean accuracies of 84.24% (SD 3.51%) for data set 1 and 85.72% (SD 1.75%) for data set
2 (random forest models). For data set 1, the FNR was significantly higher for female patients in 13 out of 16 experiments, meeting
the threshold of statistical significance (–17.81% to –3.37%; P<.05). A smaller disparity in the false positive rate was significant
for male patients in 13 out of 16 experiments (–0.48% to +9.77%; P<.05). We observed an overprediction of disease for male
patients (higher false positive rate) and an underprediction of disease for female patients (higher FNR). Sex differences in feature
importance suggest that feature selection needs to be demographically tailored.

Conclusions: Our research exposes a significant gap in cardiac ML research, highlighting that the underperformance of algorithms
for female patients has been overlooked in the published literature. Our study quantifies sex disparities in algorithmic performance
and explores several sources of bias. We found an underrepresentation of female patients in the data sets used to train algorithms,
identified sex biases in model error rates, and demonstrated that a series of remediation techniques were unable to address the
inequities present.
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Introduction

Background
Artificial intelligence (AI) has been proposed as an effective
solution to many health care challenges and depends on the
construction of machine learning (ML) algorithms from health
care data. Recent research has drawn attention to the possibility
that algorithms may exhibit bias when applied to different
demographic groups [1-6]. Such biases may widen health
inequalities and negatively impact marginalized patients, such
as female patients, minoritized racial and ethnic groups, and
other neglected subpopulations [1-7].

Over the past 5 years, an increasing number of studies have
quantified disparities in algorithmic performance for
underserved populations [2-7]. Daneshjou and colleagues [2]
demonstrated that state-of-the-art dermatology algorithms tend
to perform worse on darker skin tones; Seyyed-Kalantari and
colleagues [3] exposed biases in radiology algorithms; and
Thompson and colleagues [4] reported increased false negative
errors when classifying opioid misuse disorder for Black patients
compared to White patients. Beyond specific diagnoses,
researchers have demonstrated that infrastructural AI systems
used in hospital settings can be subject to referral bias,
demonstrated by Obermeyer and colleagues [5] who highlighted
a hospital treatment allocation algorithm that overlooked the
health needs of Black patients. Yet despite the increasing
number of papers describing this issue, most of the current uses
of biomedical AI technologies do not account for the problem
of bias [5-8]. Here, we evaluate algorithmic inequity in ML
algorithms used for predicting cardiac disease, focusing on heart
failure (HF).

ML for HF
HF is a clinical syndrome in which the heart is unable to
maintain a cardiac output adequate to meet the metabolic
demands of the body [9]. Traditionally, algorithmic tools capable
of identifying at-risk patients have played a key role in
informing decisions on HF management and end-of-life care
[10-12]. In recent years, ML algorithms that leverage
biochemical data have been proposed as a superior alternative
to traditional statistical models for identifying at-risk patients

with HF [13]. A range of ML techniques outperforms traditional
risk scores in forecasting HF-related events [13]. Yet given that
existing medical research has described sex differences in both
the presentation and management of HF, algorithms trained on
existing data may perform differently for male versus female
patients [14,15].

Sex Differences in HF
HF presents differently in female patients compared with male
patients [14]. Female patients experience a wider range of
symptoms, including higher fluid overload and lower
health-related quality of life [14,15]. Moreover, female patients
who present with HF are on average older, sustain a higher
ejection fraction (EF) throughout later stages of the disease, and
have a lower incidence of previous ischemic heart disease [15].
Furthermore, the biochemical tests used to detect cardiac disease
have been demonstrated to perform less well for female patients
[16]. Troponin is 1 key biomarker used to predict disease, which
has been demonstrated to be less sensitive in female patients
[16]. Standard troponin criteria fail to detect 1 out of 5 acute
myocardial infarcts occurring in female patients [16].
Historically, the neglect of sex differences in cardiac
pathophysiology has disadvantaged female patients, and if not
considered during ML development, these inequities may
manifest in the novel algorithms being integrated into cardiac
care [14-19].

In our research, we scope the published literature reporting
algorithms that predict HF and investigate whether existing
papers give attention to bias in ML algorithms. Furthermore,
we examine the data sets of existing models for demographic
representation, evaluate demographic inequities in algorithmic
performance, and assess the efficacy of a series of
bias-mitigation techniques.

Methods

Study Design
Our analysis consists of two stages: (1) a literature review of
papers describing ML models used to predict HF and (2) a
quantitative analysis of identified models, evaluating inequities
in algorithm performance. The flowchart in Figure 1 provides
an overview of our approach.
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Figure 1. A flowchart detailing the steps of our methodology, including (1) the initial literature search and qualitative evaluation of identified studies
and (2) the identification of data sets and interrogation of algorithms for demographic bias. FAGTB: Fair Adversarial Gradient Tree Boosting; HF: heart
failure; ML: machine learning; UCI: University of California Irvine.

Stage 1 Literature Review: Qualitative Evaluation of
Published Papers
We searched PubMed and Web of Science between April 1,
2022, and May 22, 2022, to identify ML algorithms used to
predict cardiac disease adhering to PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)

guidelines for systematic reviews (Figure 2 [20] and Tables S1
and S2 in Multimedia Appendix 1 [21,22]). All abstracts were
reviewed, and papers were included for full-text review if they
met the following criteria: (1) the target diagnosis was HF, (2)
the model used biochemical markers to predict disease, and (3)
the computational methods involved an ML approach (including
supervised, unsupervised, and deep learning).
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Figure 2. PRISMA 2020 flow diagram for new systematic reviews which included searches of databases and registers only (PRISMA templated
obtained from PRISMA at https://prisma-statement.org/prismastatement/flowdiagram.aspx) **Reasons for exclusion: Reason 1: The study did not focus
on biochemical data or laboratory tests, instead utilizing different modalities (eg, visual data from radiological scans); Reason 2: The study did not use
machine learning techniques (eg, it used traditional statistical methods); Reason 3: The study did not describe empirical research, involving the
development of ML models for prediction of cardiac disease (eg, instead the paper was a review or commentary); Reason 4: The retrieved study was
not a full paper, instead it was a conference or meeting abstract.

Of the retained papers, full texts were then reviewed to evaluate
whether authors (1) reported the demographic make-up of data
sets and (2) evaluated demographic inequities in algorithm
performance, meaning that the authors specifically examined

differences in algorithmic performance by demographic groups
defined by protected characteristics [17].

Throughout the literature review, any identified open-source
data sets were maintained for use in stage 2.
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Stage 2: Quantitative Evaluation of Model
Performance
Two open-source data sets were uncovered in our literature
review: (1) data set 1: University of California Irvine for Heart
Failure Prediction [21] and (2) data set 2: University of

California Irvine Cleveland Heart Disease data set for
identifying coronary artery disease (CAD) [22]. Descriptive
statistics were performed on both data sets, evaluating the mean
and variance of the data set variables for sexes separately,
affected by disease or death (Table 1 and Tables S3-S5 in
Multimedia Appendix 1).

Table 1. Descriptive statistics of the variables in data set 1 (heart failure; N=299), stratified by target (death) and sexa.

Sex and death (target variable)bVariables

Male (sex=1; n=194)Female (sex=0; n=105)

Death (HF death=1)Survived (HF death=0)Death (HF death=1)Survived (HFc death=0)

62 (32.96)132 (68.04)34 (32.38)71 (67.62)Total count, n (%)

66.9 (13.5)58.8 (10.7)62.2 (12.3)58.6 (10.6)Age (years), mean (SD)

0.4 (0.5)0.4 (0.5)0.6 (0.5)0.5 (0.5)Anemia (Boolean), mean (SD)

759.3 (1532.3)582.8 (853.2)507.7 (779.7)462.0 (517.7)Creatinine phosphokinase (mcg/L), mean (SD)

0.3 (0.5)0.4 (0.5)0.6 (0.5)0.5 (0.5)Diabetes mellitus (Boolean), mean (SD)

31.2 (10.7)39.4 (10.4)37.5 (14.6)41.9 (11.6)Ejection fraction (percentage), mean (SD)

0.4 (0.5)0.3 (0.5)0.5 (0.5)0.4 (0.5)High blood pressure (Boolean), mean (SD)

254,663.7 (94,060.8)254,232.4 (94,985.6)259,512.7 (107,588.6)289,757.6 (98,655.9)Platelets (kiloplatelets/mL), mean (SD)

1.8 (1.4)1.2 (0.7)1.9 (1.6)1.1 (0.6)Serum creatinine (mg/dL), mean (SD)

135.3 (3.8)137.1 (4.2)135.5 (6.7)137.4 (3.6)Serum sodium (mEq/L), mean (SD)

0.4 (0.5)0.5 (0.5)0.1 (0.3)0.0 (0.1)Smoking (Boolean), mean (SD)

aFull details of data set variables are available in Tanvir et al [21].
bFor the death variable, a value of 1 indicates mortality.
cHF: heart failure.

Using these data sets, we rebuilt the ML algorithms described
in the published literature and performed an additional analysis
exploring inequities in algorithmic performance for demographic
subgroups. As the only protected characteristic reported was
sex, we focus on sex disparities in performance. Despite our
initial aim to focus on HF, we retained an uncovered CAD data
set to investigate whether trends identified for HF generalized
to patients with CAD [22]. Tables S3 and S4 in Multimedia
Appendix 1 provide details on data set 1 and data set 2,
respectively.

Model Reproduction
We rebuilt the models described in the existing literature for
these data sets, focusing on random forest (RF) algorithms,
which have been widely reported to be the most effective models
[23]. For both data sets, data was split into test or training
subsets (0.7:0.3), RF models were built using SciKit Learn, and
RF parameters were tuned using GridSearch CV (SciKit Learn).
We adopted a bootstrapping approach to quantify uncertainty,
such that models were built, trained, and tested 100 times, from
which average results were derived with SD.

Statistical Analysis
Across the 100 runs, sex differences in each algorithm
evaluation metric (equations 1-10) were calculated and averaged,
with accompanying statistical tests performed to evaluate for
statistical significance of any identified sex disparities. Our

method for examining differences in algorithmic error rates
builds on the foundational work from Buolamwini and Gebru
[24], who demonstrated that a range of ML algorithms for facial
recognition performed poorly on darker-skinned female patients.
To evaluate for statistical significance, independent 2-tailed t
tests were performed where the data was normally distributed,
and Mann-Whitney U tests were performed where the data was
not normally distributed. Kolmogorov-Smirnov tests were used
to assess for normality [25].

Variations in Model Development

Overview
We then introduced a variety of changes to the model
development, to evaluate the impact on the identified sex
disparities in performance.

Changes to Model Training Data
In total, 1 widely proposed bias mitigation technique includes
preprocessing the training data of a model to account for
demographic representation, with previous research highlighting
the benefit of training on demographically balanced or
demographically stratified data sets [26]. We therefore created
a range of data sets with varied sex representation and assessed
for the impact on algorithm performance disparities. To form
the sex-balanced data set, we used the oversampling function
of SMOTE(), which has been proposed as an effective method
for improving the representation of underserved populations in
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ML data sets [27]. The SMOTE package generates new minority
data points based on existing minority samples through linear
interpolation [26,27]. Models were rebuilt as per the Model
Reproduction section, using 4 different training data sets
(sex-imbalanced, sex-balanced, and sex-specific; Tables S6 and
S7 in Multimedia Appendix 1): (1) original sex-imbalanced
training data, (2) sex-balanced training data, (3) female-only
training data, and (4) male-only training data experiments.

Changes to Feature Selection
To understand why models make certain decisions, researchers
in the domain of “explainable AI” have demonstrated how
feature evaluation may provide important information regarding
model performance for different subpopulations [26,28]. To do
this, Shapley values have been widely accepted as a unified
measure of feature importance since their proposal in 2017 [29].

In our experiments, we first perform an exploratory analysis,
comparing feature importance for models trained on the male
versus female data sets. Second, we create 4 feature subsets
from the original data sets, to evaluate the impact of changing
the feature selection on performance disparities. As described
in the introduction, existing clinical research has described
demographic differences in the biochemical and clinical markers
of HF disease (eg, sex differences in EF and troponin levels)
[16]. Thus, we delineate 4 different feature subsets that vary in
this information, to examine whether certain feature subsets
perform better for different demographic groups. These four
feature subsets are described in detail in Tables S8 and S9 in
Multimedia Appendix 1 and include (1) features with sex, (2)
features without sex, (3) biochemical features, and (4) clinical
features.

Our final series of experiments are therefore performed across
the four training data sets (sex-imbalanced, sex-balanced, and
sex-specific), and the four feature sets giving 16 total
experiments: (1) original sex-imbalanced training data
experiments (across four feature subsets), (2) sex-balanced
training data experiments (across four feature subsets), (3)
female training data experiments (across four feature subsets),
and (4) male training data experiments (across four feature
subsets)

Model Evaluation and Identification of Performance
Disparities
Models are evaluated using global evaluation metrics (eg,
accuracy) and specific error rates (eg, false negative rate [FNR];
equations 1-10). The difference between male and female scores
is calculated to give a model’s “sex performance disparity”
(equation 10). To evaluate for statistical significance,
Kolmogorov-Smirnov Tests were used to assess for the
normality of the data, following which independent 2-tailed t
tests were performed where the data were normally distributed,
and Mann-Whitney U tests were performed where the data were
not normally distributed.

Our choice of evaluation metrics is guided by the clinical
consequence of each of these scores.

The existing research on algorithmic bias has highlighted the
importance of examining error rates, particularly in medicine

where a false negative clinically translates to missed diagnoses
or opportunities for treatment [3-6,26]. As described by Afrose
and colleagues [26], focusing on global metrics of performance
such as area under the receiver operating characteristic curve
scores can neglect subtler disparities arising from differences
in error rates affecting subgroups. When selecting a bias
assessment metric, previous studies have chosen to focus on
FNR and false positive rate (FPR), due to the clinical
implications of these errors [4,30,31]. Equations 5-8 places the
error rates in their clinical context, demonstrating that the FNR
represents missed diagnoses and potentially missed treatment.
For the error rates, we use the threshold of 0.5, as we are
investigating performance inequities in the existing reported
models that used these default settings.

Error rate definitions are as follows:

Clinical implications of error rates are as follows:

True Positive Rate = Correct diagnosis that patient
as disease (5)

False Positive Rate = Misdiagnosis of disease when
patient is healthy (6)

True Negative Rate = Correct diagnosis that patient
is healthy (7)

False Negative Rate = Misdiagnosis that patient is
healthy when patient has disease (8)

The accuracy evaluation metric is calculated as follows:

Sex performance disparity is calculated as follows:

Sex performance disparity = Score for male patients
(mean) – Score for female patients (mean) (10)

Fairness Techniques: Fair Adversarial Gradient Tree
Boosting
We implemented a recent fairness technique to evaluate whether
these approaches applied to bias in HF algorithms. The Fair
Adversarial Gradient Tree Boosting (FAGTB) is a recent
technique proposed by Grari et al [8] for mitigating bias in
decision tree classifiers and the authors demonstrate the success
of their technique on 4 data sets. The authors focus on 2
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definitions of fairness: demographic parity and equalized odds
[8]. The equalized odds metric focuses on model FPR and FNR,
and hence we highlight this for our paper. A summary of these
fairness metrics is provided in Section S1 in Multimedia
Appendix 2 for further interest.

The definition of equalized odds is as follows:

To assess for the equalized odds the authors measure the
disparate mistreatment, which computes the absolute difference
between FPR and the FNR for both demographics.

The disparate FPR is calculated as follows:

The disparate FNR is calculated as follows:

We compare the performance of the FAGTB algorithm to a
standard Gradient Tree Algorithm. As per the original FAGTB
paper, we repeat 10 experiments randomly sampling 2 subsets
(0.8:0.2) and report evaluation metrics for the test set.

Ethical Considerations
Ethical approval was not required for this study as all data used
were sourced from publicly available open-source data sets
[21,22] under a CC-BY 4.0 license. No direct patient contact
or sensitive personal data was involved, ensuring compliance
with research standards.

Results

Literature Review Search Results
Our search returned 127 papers, of which 60 met the criteria
for full review and 3 highlighted sex differences in model
performance. In the papers that reported sex, there was a
consistent underrepresentation of female patients. No papers
investigated racial or ethnic differences. Further, 1 paper focused
specifically on female patients with HF, in which Tison et al
[32] highlighted that HF was more common in people who were
older, White, with a higher mean number of pregnancies, a
higher BMI, and were less likely to have Medicare.

Descriptive Statistics and Feature Importance

Data Set 1 (HF)
The mean descriptive statistics for each feature present in the
HF data set are provided in Table 1, which demonstrates subtle
sex differences in the presentation of the disease. For HF deaths,
male patients tend to be older than their female counterparts,
with a higher creatinine phosphokinase, lower likelihood of
diabetes, lower EF, and lower blood pressure.

Our exploratory analysis identified further sex differences on
examining feature importance. Figure 3 compares the rankings
of feature importance for ML models built to predict HF built
from the female data set compared to the male data set. These
differences are important as existing ML algorithms built on
mixed-sex cohorts suggest that EF can be used alone for
modeling, an approach that may disadvantage female patients
[23].

Figure 3. Comparison of feature rankings for male and female patients, ordered by SHAP values. SHAP: Shapley additive explanations.

Data Set 2 (CAD)
Table S5 in Multimedia Appendix 1 provides details of the CAD
data set and demonstrates that female patients with CAD have
higher resting blood pressure and higher cholesterol compared
to male patients. The categorical variable “resting
electrocardiogram” is also higher for female patients, due to a
higher incidence of left ventricular hypertrophy.

Model Results and Performance Disparities
We replicated the algorithms described in the existing literature,
reproducing the same previously reported mean predictive
accuracies of 84.24% (3.51 SD) for data set 1 and 85.72% (1.75
SD) for data set 2 [23]. In Tables 2 and 3, we present the
disparity in performance for the sexes, where a positive value
indicates a higher value for male patients (see equation 10).
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For data set 1, Table 2 demonstrates that in 13 out of 16
experiments, the FNR is higher for female patients, meeting the
threshold of statistical significance (mean difference of –17.81%
to –3.37%; P<.05). Figure 4 represents this disparity in

performance graphically, providing the point estimates of FNR
for the sexes separately and highlighting that the disparity in
FNR persisted across the variations in training data and selected
features.

Table 2. Sex performance disparities for models built from data set 1 (heart failure disease)–sex performance disparities are calculated as the performance
for male patients minus the performance for female patients (see equation 10). Thus, a positive value indicates a higher score for male patients and a
negative value indicates a higher score for female patients. All disparities are presented alongside results of significance testing, where significant
differences between the sexes are highlighted with a footnote (P<.05).

Feature subset used in model trainingDisparity in model perfor-
mance (score for male pa-
tients – score for female pa-
tients)

P valueClinical fea-
tures

P valueBiochemical fea-
tures

P valueFeatures with-
out sex

P valueFeatures with
sex

Sex-imbalanced training data

.49–0.50.880.10.30–0.72.03a1.63Accuracy disparity (%)

.600.47.091.51.610.43<.01a3.14ROC_AUCb disparity
(%)

.049a–3.49.01a–5.15.02a–3.84<.01a–7.53FNRc disparity (%)

<.01a2.56<.01a2.11<.01a2.97.071.26FPRd disparity (%)

Sex-balanced training data

<.01a–3.63<.01a–9.42<.01a–7.25<.01a–4.78Accuracy disparity (%)

<.01a8.32.830.15<.01a4.27<.01a7.0ROC_AUC disparity
(%)

<.01a–16.09.04a–3.37<.01a–13.91<.01a–17.81FNR disparity (%)

.24–0.54<.001a3.07<.01a5.37<.01a3.90FPR disparity (%)

Female training data

<.01a–9.64<.01a–12.32<.01a–9.75<.01a–10.95Accuracy disparity (%)

.07–0.53<.01a–2.92.230.57.570.60ROC_AUC disparity
(%)

.01a1.55.27–2.24<.01a–10.91<.01a–7.42FNR disparity (%)

.04a–0.48<.01a8.08<.01a9.77<.01a8.61FPR disparity (%)

Male training data

<.01a–2.46<.01a–8.73<.01a–5.73<.01a–5.46Accuracy disparity (%)

<.01a8.32.049a–1.59<.01a4.54<.01a4.98ROC_AUC disparity
(%)

<.01a–16.58.33–1.68<.01a–13.32<.01a–13.96FNR disparity (%)

.35–0.06<.01a4.86<.01a4.24<.01a4.00FPR disparity (%)

aIndicates a statistically significant difference (P<.05) between the model’s performance on male versus female patients.
aROC_AUC: area under the receiver operating characteristic curve.
bFNR: false negative rate.
cFPR: false positive rate.
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Table 3. Sex performance disparities for models built from data set 2 (coronary artery disease)—sex performance disparities are calculated as the
performance for male patients minus the performance for female patients (see equation 10). Thus, a positive value indicates a higher score for male
patients, and a negative value indicates a higher score for female patients. All disparities are presented alongside results of significance testing, where
significant differences between the sexes are highlighted with a footnote (P<.05).

Feature subset used in model trainingDisparity in model perfor-
mance (score for male pa-
tients – score for female pa-
tients)

P valueClinical fea-
tures

P valueBiochemical fea-
tures

P valueFeatures with-
out sex

P valueFeatures with
sex

Sex-imbalanced training data

.610.25.800.13.170.64.500.32Accuracy disparity (%)

<.01a3.91<.01a3.05<.01a4.24<.01a3.86ROC_AUCb disparity
(%)

<.01a–12.38<.01a–10.81<.01a–12.52<.01a–11.66FNRc disparity (%)

<.01a4.57<.01a4.71<.01a4.04<.01a3.94FPRd disparity (%)

Sex-balanced training data

<.01a–2.86<.01a–7.32<.01a–5.12<.01a–4.01Accuracy disparity (%)

<.01a–2.75<.001a–7.18.01a–4.91.01a–3.89ROC_AUC disparity
(%)

<.01a6.61<.01a15.59<.01a10.54<.01a7.69FNR disparity (%)

.06–1.11.29–1.23.19–0.72.870.10FPR disparity (%)

Female training data

<.01a–8.69<.01a–11.49<.01a–11.34<.01a–9.25Accuracy disparity (%)

<.01a–8.45<.01a–11.10<.01a–10.95<.01a–8.97ROC_AUC disparity
(%)

<.01a17.86<.01a27.23<.01a22.60<.01a18.98FNR disparity (%)

.09–0.96<.01a–5.02.20–0.70.07–1.04FPR disparity (%)

Male training data

<.01a6.10.02a–1.66<.01a5.66<.01a6.38Accuracy disparity (%)

.01a5.86.071.52<.01a5.57<.01a6.30ROC_AUC disparity
(%)

<.01a–12.64.171.67<.001a–10.10<.01a–10.12FNR disparity (%)

.150.92.241.38.07–1.04<.01a–2.48FPR disparity (%)

aIndicates a statistically significant difference (P<.05) between the model’s performance on male versus female patients. To determine statistical
significance, the Kolmogorov-Smirnov tests were first run on the sex-stratified results to determine the distribution of data (normal or not). Independent
2-tailed t tests were used where data were normally distributed, and Mann-Whitney U tests were used when data were not normally distributed.
bROC_AUC: area under the receiver operating characteristic curve.
cFNR: false negative rate.
dFPR: false positive rate.

A smaller disparity in the FPR was statistically significant for
male patients in 13 out of 16 experiments (–0.48% to +9.77%;
P<.05). The sex performance disparities in accuracy and area
under the receiver operating characteristic curve varied
depending on the underlying shifts in the error rates for each

sex (Table 2 and Figure 5). On examining the individual error
rates, we see consistencies in the sex disparities across feature
sets, most notably an overprediction of disease for male patients
(higher FPR) and an underprediction of disease for female
patients (higher FNR: Table 2).
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Figure 4. Data set 1 (heart failure): a series of violin plots showing the sex-stratified performance (false negative rate [0%-100%]) of the random forests
trained across the 4 feature sets, on the different variations in training data. The plots show male (orange) and female (gray) FNR alongside each other,
in groups of 4 (divided by a line) according to the training data used (sex-imbalanced, sex-balanced, female, and male). The feature set used is indicated
within each training data group (features with sex, features without sex, biochemical features, and clinical features). See Multimedia Appendixes.

Figure 5. Data set 1 (heart failure): a series of violin plots showing the sex-stratified performance (accuracy [0%-100%]) of the random forests trained
across the 4 feature sets, on the different variations in training data. The plots show male (orange) and female (gray) accuracy alongside each other, in
groups of 4 (divided by a line) according to the training data used (sex-imbalanced, sex-balanced, female, and male). The feature set used is indicated
within each training data group (features with sex, features without sex, biochemical features, and clinical features). See Multimedia Appendixes.
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Our findings for data set 2 were similar to those for data set 1,
such that models built on the original sex-imbalanced data set
demonstrated a higher FNR for female patients (mean difference
of –10.81% to –12.52%; P<.05; Table 3) and a higher FPR for
male patients (3.94% to 4.71%; P<.05; Table 3). Figure 6
visualizes the disparity graphically, and demonstrates that, unlike

data set 1, the disparity in error rates reversed when training on
sex-balanced data and female-only data (Figure 6). Figure 7
illustrates the disparity in accuracy between the sexes, where
we see that the direction of the disparity varies depending on
the training data and feature set (Figure 7).

Figure 6. Data set 2 (coronary artery disease): a series of violin plots showing the sex-stratified performance (false negative rate [0%-100%]) of the
random forests trained across the 4 feature sets, on the different variations in training data. The plots show male (orange) and female (gray) FNR
alongside each other, in groups of 4 (divided by a line) according to the training data used (sex-imbalanced, sex-balanced, female, and male). The feature
set used is indicated within each training data group (features with sex, features without sex, biochemical features, and clinical features). See Multimedia
Appendixes. FNR: false negative rate.
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Figure 7. Data set 2 (coronary artery disease): a series of violin plots showing the sex-stratified performance (accuracy [0%-100%]) of the random
forests trained across the 4 feature sets, on the variations in training data. The plots show male (orange) and female (gray) accuracy alongside each
other, in groups of 4 (divided by a line) according to the training data used (sex-imbalanced, sex-balanced, female, and male). The feature set used is
indicated within each training data group (features with sex, features without sex, biochemical features, and clinical features).

Variations in Training Data

Sex-Balanced Training Data
Training on sex-balanced data led to a fall in mean accuracy
for all patients in data set 1 (76%, SD 3.46% vs 84.24%, SD
3.51%), with a more substantial drop in mean accuracy for male
patients (73.61%, SD 4.84% vs 84.84%, SD 4.16%; Table 4
and Figure 5). The opposite trend was seen in data set 2, with
models trained on sex-balanced data outperforming models
trained on sex-imbalanced data for all patients (87.65%, SD

1.77% vs 85.72%, SD 1.75%) and for female patients (89.66%,
SD 2.44% vs 85.48%, SD 4.12%; Table 4). The models trained
on sex-balanced data in data set 2 reduced the FNR for both
sexes when using the full feature set (female patients 4.79%,
SD 2.58% vs 24.86%, SD 11.35%; male patients 12.48%, SD
4.11% vs 13.19%, SD 3.26%; Table 4 and Figure 6). The
differences between the data sets may relate to underlying
differences in the 2 cardiac conditions. Further, the failure to
improve performance with sex-balanced training data may
reflect the issues of mixing data that has conflicting indicators
for disease.
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Table 4. Model results when trained on sex-specific subsets for all patients and male or female patients separately, looking at the “features including
sex” subset.

Data set 2 (coronary artery disease)Data set 1 (heart failure)Results

Male train-
ing data
(n=358)

Female train-
ing data
(n=358)

Sex-balanced
training data
(n=715)

Sex-imbalanced
training data
(n=522)

Male train-
ing data
(n=136)

Female train-
ing data
(n=136)

Sex-balanced
training data
(n=272)

Sex-imbalanced
training data
(n=209)

82.63 (1.94)86.06 (1.67)87.65 (1.77)85.72 (1.75)75.12 (3.71)74.68 (3.53)76.0 (3.46)84.24 (3.51)All patients,
mean accura-
cy (SD)

79.44 (3.20)90.69 (2.38)89.66 (2.44)85.48 (4.12)77.85 (5.21)80.15 (4.43)78.39 (19.68)83.21 (6.37)Female pa-
tients, mean
accuracy (SD)

85.82 (2.30).81.44 (3.02)85.65 (2.23)85.80 (2.14)72.39 (5.32)69.20 (5.96)73.61 (4.84)84.84 (4.16)Male patients,
mean accura-
cy (SD)

22.32 (5.25)4.00 (2.74)4.79 (2.58)24.86 (11.35)78.66 (14.0)74.04
(17.68)

85.25 (14.58)35.98 (16.72)Female pa-
tients, mean

FNRa (SD)

12.20 (3.41)22.97 (5.20)12.48 (4.11)13.19 (3.26)64.70 (14.9)66.62
(17.32)

67.43 (16.6)28.45 (10.41)Male patients,
mean FNR
(SD)

aFNR: false negative rate.

Sex-Specific Training Data
For data set 1, mean accuracy for all patients when trained on
sex-imbalanced data (84.24%, SD 3.51%) falls when training
both on female-specific data (74.68%, SD 3.53%) and
male-specific training data (75.12%, SD 3.71%), likely related
to the smaller training data. For data set 2, mean accuracy for
all patients when trained on sex-imbalanced data (85.72%, SD
1.75%) improves when training on female-specific data
(86.06%, SD 1.67%) and falls when training on male-specific
training data (82.62%, SD 1.94%). The overall improvement
seen in the data set 2 models when trained on female data, relates
to the increase in accuracy for female patients (90.69%, SD
2.38% vs 85.48%, SD 4.12%) co-occurring with a smaller
decrease in accuracy for male patients (81.44%, SD 3.02% vs
85.80%, SD 2.14%; Table 3 and Figure 7).

Unsurprisingly, performance for each sex is lowest when trained
on the opposing sex (Table 4, Figures 4-7). In data set 1,
same-sex training was preferable to opposite-sex training;
however, this did not improve results compared to the models
built from sex-imbalanced and sex-balanced training data, likely
relating to the smaller sample size (Table 4). In contrast, data
set 2 had greater training data available and demonstrated that

sex-specific training is beneficial to both sexes above the
sex-imbalanced models (Table 4).

Variations in Feature Sets
Models built on the biochemical features subset gave the worst
performance in terms of accuracy and FNR (Figures 4-7). For
data set 2, biochemical features included just cholesterol and
fasting blood sugar, and so, the fall in performance may relate
to information loss. Additionally, Table S5 in Multimedia
Appendix 1 highlights the different biochemical profiles for
male and female patients who were sick, with female patients
who were sick demonstrating a far higher cholesterol level than
their male counterparts (mean values: 279.2 female patients
who were sick vs 247.5 male patients who were sick).

FAGTB Model
The disparity in false negative rate (DispFNR) was consistently
higher than the disparity in false positive rate (Table 5).
Compared to the Gradient Boosting Classifier, the FAGTB
reduced the DispFNR for both data sets (data set 1: 0.20 vs 0.21;
data set 2: 0.19 vs 0.28), however, the DispFNR that
disadvantaged female patients persisted. The fall in DispFNR
and disparity in false positive rate that occurred with FAGTB
was associated with a fall in overall accuracy for both data sets.
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Table 5. Results of bias mitigation with Fair Adversarial Gradient Tree Boosting (FAGTB).

FAGTBGradient boosting classifierResults on test set, averaged over 10 experiments

Data set 1 (heart failure): experiments run on sex-imbalanced data with all features (averaged over 10 experiments)

71.271.3Accuracy

0.080.08DispFPRa

0.200.21DispFNRb

Data set 2 (coronary artery disease): experiments run on sex-imbalanced data with all features (averaged over 10 experiments)

82.986.3Accuracy

0.060.06DispFPR

0.190.28DispFNR

aDispFPR: disparity in false positive rate.
bDispFNR: disparity in false negative rate.

Discussion

Principal Findings
Our study sheds light on an important gap in existing cardiac
ML research, with significant implications for digital health
equity. We find that the majority of published ML studies
predicting HF fail to acknowledge the underrepresentation of
female patients in their data sets and do not perform stratified
model evaluations, thus failing to assess sex disparities in
algorithmic performance. Our secondary evaluation of 2 cardiac
data sets exposed a neglected sex disparity in model
performance, highlighting the importance of integrating these
methods into future studies that use ML methods for cardiac
modeling. In our approach, we identified several potential
sources of algorithmic bias.

First, we detected the underrepresentation of female patients in
training data sets that may produce inequalities in model fidelity.
Despite introducing oversampling techniques to address this
omission, the disparities in performance persisted suggesting
that addressing data set representation alone is not a sufficient
measure for mitigating bias. Further, our experiments
demonstrated that oversampling could reduce overall
performance, which may result from the mixing of conflicting
data (ie, male vs female feature rankings). In addition,
oversampling with synthetic instances solely from the data set
at hand does not provide the machine with more information,
it simply redirects attention and therefore cannot easily
compensate for demographic underrepresentation [33]. When
balancing the data set, our methods did not include
undersampling due to our small data sets, however, this may
be a potential avenue for future research.

Second, we considered featurization and highlighted sex
differences in the biochemical manifestation of disease. In
current clinical practice, the diagnostic parameters used for
identifying pathology are drawn from research trials dominated
by male physiology: it is perhaps unsurprising therefore that
algorithms built from these data tend to underperform in female
disease. There is a growing body of research that critiques the
use of unisex thresholds in medicine for biochemical tests; our
sex-stratified analysis of the cardiac data sets and the identified

sex differences in feature rankings supports these proposals
[16].

There are further sources of inequitable performance that our
evaluation cannot distinguish between. It may be that the sex
differences in the physiological expression of disease mean that
the prediction is harder to extract from 1 population. As a result,
1 sex may require more complex models than another, with
differing architecture and degrees of flexibility. It may also
simply be that there are differences in the predictability of 1
group compared with another, such that if the physiology of 1
group is more opaque, it may ultimately not be possible to
resolve the observed disparities. McCradden and colleagues
[34] detail this challenge further in their review, highlighting
that differences across groups may not always indicate inequity.
There are complex causal relationships between biological,
environmental, and social factors that underpin the differences
in disease rates seen across population subgroups [34]. While
models must not promote different standards of care according
to protected characteristics, differences between groups may
not necessarily reflect discriminatory practice [34].

Our research was limited by the available information in the
data sets. The absence of race or ethnicity data precluded the
evaluation of their effects. Furthermore, the absence of other
demographic data in the studies we identified prevented the
investigation of health inequities that might impact the LGBTQ+
(lesbian, gay, bisexual, transgender, queer) community,
disadvantaged socioeconomic groups, or other subgroups.
Previous research has described historic and institutional biases
that contribute to worse health outcomes for these groups, and
evolving AI systems require the same scrutiny to ensure these
harms do not become embedded within digital systems [35-37].

Throughout this paper, we have used the terms male and female
to reference biological sex, so as not to conflate sex and gender.
With the ongoing problematic conflation of sex and gender in
medicine, stratification of model performance by either sex or
gender is often impossible, which was noted in our own work
[35-37]. Beyond the features discussed above, there is a wide
range of additional factors that we cannot account for. For
example, creatinine phosphokinase was a key feature in HF
modeling yet existing studies have demonstrated the variation
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in these levels for manual laborers and athletes, illustrating how
occupation may impact a patient’s physiology [38].

To account for the complex interactions that potentiate disease,
and the heterogeneous nature of patient cohorts, we require
more complex modeling capable of capturing the full range of
intersecting factors influencing patient health (eg, sex
differences may be mediated by income). Unsupervised
high-dimensional representation learning may be the path
forward for this purpose [39]. In addition to improving
representation, unsupervised techniques enable us to detect
neglected subpopulations without predetermining a characteristic
of interest, facilitating the identification of the previously
overlooked disadvantaged. In this sense, AI may provide a route
forward to uncovering and addressing bias, by deploying more
complex modeling that can improve patient representation and
by revealing previously neglected disparities in the provision
of care.

Conclusions and Limitations
In our paper, we have identified inequities in the performance
of cardiac ML algorithms. Our findings are limited by the small
size of the uncovered data sets, reducing their potential

generalizability, and hence we propose that larger studies
focused on this issue are required. These data sets also came
from the same source, as we found a limited number of
open-access databases due to the confidential nature of patient
data and issues of proprietary ownership. In addition, we focused
on RF models to replicate the papers uncovered in our literature
search; however, ML models may differ in their degrees of
performance disparity, and an evaluation across the range of
ML model options is an important next step.

In our paper we did not attempt to solve bias; instead, we
highlighted a problem that exists throughout cardiology that
requires further attention. The issue we have identified in these
ML models is a foundational problem across medical modeling,
in any instance where the use of an “average” is applied to a
diverse population. It is possible that unsupervised ML and
complex representational modeling may be a route forward for
capturing heterogeneity in a previously unattainable manner
and addressing issues of bias [39]. Our findings demonstrate
that examining performance inequities across demographic
subgroups is an essential approach for identifying biases in AI
and preventing the perpetuation of inequalities in digital health
systems.
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