
Original Paper

Reinforcement Learning to Optimize Ventilator Settings for Patients
on Invasive Mechanical Ventilation: Retrospective Study

Siqi Liu1*, PhD; Qianyi Xu2*, BEng; Zhuoyang Xu3, MSc; Zhuo Liu3, MSc; Xingzhi Sun3, PhD; Guotong Xie3, PhD;

Mengling Feng2,4, PhD; Kay Choong See5, MBBS
1National University of Singapore Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
2Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
3Ping An Healthcare Technology, Beijing, China
4Institute of Data Science, National University of Singapore, Singapore, Singapore
5Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Hospital, Singapore, Singapore
*these authors contributed equally

Corresponding Author:
Mengling Feng, PhD
Saw Swee Hock School of Public Health
National University of Singapore
12 Science Drive 2
Singapore, 117549
Singapore
Phone: 65 65164984
Email: ephfm@nus.edu.sg

Abstract

Background: One of the significant changes in intensive care medicine over the past 2 decades is the acknowledgment that
improper mechanical ventilation settings substantially contribute to pulmonary injury in critically ill patients. Artificial intelligence
(AI) solutions can optimize mechanical ventilation settings in intensive care units (ICUs) and improve patient outcomes. Specifically,
machine learning algorithms can be trained on large datasets of patient information and mechanical ventilation settings. These
algorithms can then predict patient responses to different ventilation strategies and suggest personalized ventilation settings for
individual patients.

Objective: In this study, we aimed to design and evaluate an AI solution that could tailor an optimal ventilator strategy for each
critically ill patient who requires mechanical ventilation.

Methods: We proposed a reinforcement learning–based AI solution using observational data from multiple ICUs in the United
States. The primary outcome was hospital mortality. Secondary outcomes were the proportion of optimal oxygen saturation and
the proportion of optimal mean arterial blood pressure. We trained our AI agent to recommend low, medium, and high levels of
3 ventilator settings—positive end-expiratory pressure, fraction of inspired oxygen, and ideal body weight–adjusted tidal
volume—according to patients’ health conditions. We defined a policy as rules guiding ventilator setting changes given specific
clinical scenarios. Off-policy evaluation metrics were applied to evaluate the AI policy.

Results: We studied 21,595 and 5105 patients’ ICU stays from the e-Intensive Care Unit Collaborative Research (eICU) and
Medical Information Mart for Intensive Care IV (MIMIC-IV) databases, respectively. Using the learned AI policy, we estimated
the hospital mortality rate (eICU 12.1%, SD 3.1%; MIMIC-IV 29.1%, SD 0.9%), the proportion of optimal oxygen saturation
(eICU 58.7%, SD 4.7%; MIMIC-IV 49%, SD 1%), and the proportion of optimal mean arterial blood pressure (eICU 31.1%, SD
4.5%; MIMIC-IV 41.2%, SD 1%). Based on multiple quantitative and qualitative evaluation metrics, our proposed AI solution
outperformed observed clinical practice.

Conclusions: Our study found that customizing ventilation settings for individual patients led to lower estimated hospital
mortality rates compared to actual rates. This highlights the potential effectiveness of using reinforcement learning methodology
to develop AI models that analyze complex clinical data for optimizing treatment parameters. Additionally, our findings suggest
the integration of this model into a clinical decision support system for refining ventilation settings, supporting the need for
prospective validation trials.
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Introduction

Mechanical ventilation is the foundation of critical care medicine
and is one of the most common interventions for patients
admitted to intensive care units (ICUs). Studies showed that
approximately one-third of ICU patients require mechanical
ventilation in the United States [1]. In recent years, due to the
COVID-19 pandemic and aging populations in many countries,
mechanical ventilation in ICU use has been constantly
increasing.

Despite decades of research, choosing the optimal ventilator
strategy for a patient remains imprecise. Appropriate ventilator
settings are important but complicated by significant interpatient
variability. Current clinical guidelines provide one-size-fits-all
recommendations but do not personalize the treatment for
different ICU patients. In particular, existing clinical guidelines
do not address personalized optimal settings for mechanical
ventilation, including positive end-expiratory pressure (PEEP)
level, fraction of inspired oxygen (FiO2), and ideal body
weight–adjusted tidal volume [2]. With the understanding that
mechanical ventilation itself can cause and potentiate lung
injury, it is important to choose appropriate ventilatory strategies
to mitigate ventilator-induced lung injury [3]. Nonetheless, even
guideline recommendations may not be adhered to, as a wide
discrepancy in practice exists and evidence-based interventions
are underused for the task [4].

The drive to discover an effective solution capable of managing
the intricate ICU environment and providing personalized
treatment to each patient is a compelling motivator. One
particularly promising approach is the use of reinforcement
learning (RL) for formulating treatment recommendations,
supported by the following reasons. First, RL is a
decision-making tool that can learn complex sequential
decisions, making it a natural fit for critical care applications.
Second, RL can take individual patients’ health conditions and
disease histories into account, hence providing more
personalized treatment decisions that have the potential to
surpass existing clinical practices. However, the RL method for
mechanical ventilation guidance needs further evaluation before
committing resources for prospective clinical studies. We
therefore aimed to test the concept that RL can optimize
ventilator settings for patients on invasive mechanical
ventilation, by applying RL on existing large ICU databases.

Methods

Overview of the Methods
For our study, we named the RL-based artificial intelligence
(AI) solution “EZ-Vent.” The framework of the proposed

solution is shown in Figure 1. We first collected mechanically
ventilated patients’health data and intensivists’ treatment actions
from 2 large electronic health record (EHR) datasets in the
United States. We then trained a type of RL-based model, named
the Batch Constrained Deep Q-learning (BCQ), to learn from
physicians’ treatment actions and to develop an optimal strategy
for setting mechanical ventilation. This type of learning is
commonly referred to as batch learning in RL. However, many
traditional RL algorithms have been unsuccessful in the batch
setting, while the models they produced often suffered from
overestimation and exhibited poor performance when presented
with data not included in the provided batch. In contrast to
traditional RL algorithms, the BCQ algorithm imposes
constraints to ensure that the learned policy remains reasonably
close to physicians’ policy. For this reason, we chose to
implement BCQ in our solution due to its capacity to develop
a safe policy from observational data. Given the crucial
significance of safe policy learning in health care applications,
the proposed AI solution may then be integrated as a component
of a clinical decision support system, assisting intensivists in
making optimal decisions for critically ill patients who require
mechanical ventilation.

Our proposed AI solution recommends optimal ventilator
settings for PEEP, FiO2, and tidal volume levels by considering
the individual patients’ conditions including their demographic
features, physiological status, and multiple comorbidities.
Compared to the existing guidelines, the proposed solution can
adjust treatment recommendations based on changes in a
patient’s condition. Moreover, we developed a set of flags
designed to detect sudden changes in patients’ health and
leveraged the timing of these flags to partition patients’
trajectories into discrete time-varying intervals. We anticipated
that these timings correspond to critical decision points for
physicians to intervene in practice. If our model were to be
implemented at the bedside in real time, it has the potential to
assist intensivists in making more informed and optimized
decisions. Studies have reported ICU mortality rates as high as
86% to 97% for invasive mechanical ventilation [5-7], and
improved ventilator settings would greatly benefit critically ill
patients. As such, our proposed AI solution holds promise for
improving patient outcomes in ICUs for those requiring
mechanical ventilation.

Although general improvements in ICU outcomes and changes
in ventilation practices over time would positively affect the
model in the training process, the proposed BCQ model would
automatically learn from the good practices and avoid bad
practices to achieve the best long-term return, which is the
survival of the patients.
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Figure 1. Proposed EZ-Vent framework. We collected data on ventilated patients from EHR and trained a policy to recommend optimal ventilator
settings. EHR: electronic health record.

Study Population and Datasets
The observational data for mechanically ventilated patients were
extracted from 2 large EHR databases in the United States: the
Medical Information Mart for Intensive Care IV (MIMIC-IV)
database [8] and the e-Intensive Care Unit Collaborative
Research (eICU) database [9]. We included patients who were
aged 16 years and older, and whose ventilation duration was at
least 24 hours. Only the first ICU admission for each patient
was considered, and we studied the first 48 hours of ventilation
data.

We excluded patients who did not have data for mortality,
height, or sex. In addition, we excluded patients whose

mechanical ventilation duration exceeded 2 weeks, because
patients who required long-term mechanical ventilation may
not be representative of the general population of patients who
require mechanical ventilation. Lastly, we excluded patients
who have missing ventilation settings of PEEP, FiO2, and tidal
volume recorded for the entire ventilation duration.

After those exclusions, 5105 patients in the MIMIC-IV dataset
and 21,595 patients in the eICU dataset remained. The flowchart
for cohort selection is shown in Figure 2. We conducted a 5-fold
cross-validation on the eICU dataset. The full MIMIC-IV dataset
was held out as the testing set.
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Figure 2. Overview of exclusion criteria and the number of patients left after each round of selection. eICU: e-Intensive Care Unit Collaborative
Research; FiO2: fraction of inspired oxygen; ICU: intensive care unit; MIMIC-IV: Medical Information Mart for Intensive Care; MV: mechanical
ventilation; PEEP: positive end-expiratory pressure.

Outcome Variables
The primary outcome was hospital mortality. Mortality
outcomes are the most important outcomes for patients in the
ICUs, given the high mortality for patients in ICUs in general.
Mortality is a definitive measure of success in interventions,
given the ultimate goal of ICU care is to save lives.

Secondary outcomes were the proportion of optimal oxygen
saturation (SpO2) and the proportion of optimal mean arterial
blood pressure (MBP). The optimal ranges of SpO2 and MBP
were defined as follows: 94%<SpO2<98% [10] and 70 mm
Hg≤MBP≤80mm Hg [11].

RL: A Primer
RL is a goal-oriented AI method where a computer agent, acting
as a decision maker, analyzes available data within its defined
environment, derives a policy for taking actions, and optimizes
long-term rewards. The agent is the computational model we
want to develop. In general, an agent obtains evaluative feedback
(reward) about the performance of its action at each consecutive
time step, allowing it to improve the performance of subsequent
actions by trial and error. Mathematically, the sequential
decision-making process is called the Markov Decision Process
(MDP). We define the 5-tuple MDP as (S, A, P, R, γ):

• State: A state st ∈ S is the state at time t in state space S. In
this study, it represents the health status of a patient at each
timestamp. We constructed the patient’s state by using 40
relevant physiological features containing demographics,
laboratory values, and vital signs (see Table S1 in
Multimedia Appendix 1 for the full list).

• Action: An action at ∈ A is the treatment option that the
agent takes at each time step t, which influences the next
state st+1. In our study, the action space was constructed as
18 possible discrete actions from combinations of low,
medium, and high levels of the 3 ventilator settings: PEEP,
FiO2, and ideal body weight–adjusted tidal volume (Figure
S1 in Multimedia Appendix 1.

• Transition probability: P(st|at) → st+1 is the probability of
transiting from the state st to the next state st+1 given an
action at.

• Reward: R is the observed feedback given a state-action
(st, at) pair. The reward of our model reflected the objective
of an RL agent, which was to improve survival and achieve
oxygen saturation and mean arterial pressure within their
respective optimal ranges. Hospital mortality was used as
the terminal reward, whereas SpO2 and MBP were applied
as intermittent rewards.

• γ ∈ {0,1} is the discount factor.

We assume the process of ventilator adjustment has Markov
property. That is, the state space is completely observable, the
state transition probability P is only related to the last state and
the last action, and the immediate reward is only related to the
state and the action taken in the corresponding step.

The solution of the MDP is an optimized set of rules, that is,
the RL policy. The ability of RL to learn complex sequential
decisions makes it suitable for critical care applications, and
we hope to use its capability of learning to provide
individualized treatment policies that could improve the survival
of patients who are mechanically ventilated.
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Specifically, we aim to train an RL policy π: S × A {0,1}, which
specifies the probability of taking each action in each state

through Q-learning, where Qπ(s, a) is the value of taking action
a in state s using policy π and is defined as the expected sum
of future rewards, discounted by γ at each time step as follows:

Qπ(s, a) = E{rt+1 + γrt+2 + γ2rt+3 + ... |π(s, a)}

RL: Time-Varying Intervals and Flags
We applied time-varying intervals to discretized state and action
pairs. For each patient’s treatment trajectory, we analyzed the
data from the first hour of using mechanical ventilation until
the 48th hour or until ventilator weaning, whichever came
earlier. Then we cut the trajectories into 4-hour time steps,
except for cases when flags were raised to further cut the
trajectories. We designed the set of flags as follows: (1) the
SpO2 dropped under 90%, (2) the partial pressure of oxygen
(PaO2) dropped under 60 mm Hg, and (3) pH <7.25 or pH >7.45.
When any flag was raised, the trajectories would be further cut
into shorter time steps. We designed this set of flags to reflect
real-world conditions, where such flags would prompt changes
in ventilator settings. Next, we selectively merged time steps if
they were too short, with a minimum time interval of no less
than 1 hour. For multiple values in 1 time step, we computed a
time-weighted average value. Patients that had at least 1 of the
3 actions empty for all the time steps were removed.

Data imputation is common in EHR data analysis as some data
are manually entered by the doctors, which may cause them to
be recorded less frequently. Similar ways such as k-nearest
neighbor imputation and time-windowed sample-and-hold
method have been applied to handle data imputation in previous
works [12,13]. In the literature that reported the percentage of
imputed data, the percentage of imputation was as high as 95%
[13]. In our study, 66.28% (n=14,314/21,595) of patients in the
eICU database had data requiring imputation. Among these
patients, a median 87% (IQR 64%-95%) of data were imputed.
Data in the MIMIC-IV database were more complete, with
33.8% (n=1724/5105) of patients requiring imputation. Among
these patients, a median 72% (IQR 47%-89%) of data were
imputed. The distribution of data that require imputation was
reported in Figure S6 for eICU and S7 for MIMIC-IV in
Multimedia Appendix 1. Missing values were imputed with the
nearest value before the time step, and if this was not available,
missing values were imputed with the value from the next time
step. Binary state variables were represented using 0 or 1.
Continuous state variables were normalized or log-normalized
to (0, 1) as appropriate.

RL: Model Development
One major drawback of using historical EHR data to train an
RL model is extrapolation error. The term extrapolation is a
statistical technique for estimating values that extend beyond a
particular collection of data or observations. Extrapolation error
is caused by the mismatch between the data distribution in the
offline dataset and future observations. To mitigate this problem,
we applied the BCQ model in this study, which is an RL model
that has the advantage over other RL algorithms in the batch
setting by addressing the extrapolation error [14].

The BCQ model consists of 2 modules, a supervisor network
and a policy network. The supervisor network is used to mimic
the physicians’ policy from the observational data. The policy
network fits the optimal policy under the constraint of the
supervisor network, where only the actions likely to be taken
in the observational data are considered and evaluated. The final
optimized policy is then expected to lead to good future
outcomes as well as to select a safe action.

In this study, the loss of the BCQ model is defined as the
combination of 2 loss functions: L = LQ + βLP, where LQ is the
value loss and is defined as:

LP is the probability loss and is defined as LP = –log (P(st, at)).
The final RL policy is defined as:

In the training stage, when BCQ receives the training sample,
the supervisor network will first learn the mapping from state
to action, that is, which action would be taken based on historical
data. Then, the policy network will optimize its policy with the
reward information and the output of the supervisor network.
This training process is iterated several times until we derive
the final AI policy.

For the supervisor network, we adopted a fully connected stream

with 2 hidden layers of 256 units to infer the action value Qπ(s,
a) function and a fully connected stream with 2 hidden layers
of 256 units to infer the state-action probability P(st, at). Each
hidden layer contained the rectified linear unit activation. The
policy network had the same structure as the supervisor network.
The learning rate was 0.0003, the discount factor γ was 0.99,
the batch size was 32, the tracking rate α was 0.01, the
extrapolation threshold τ was 0.05, and the trade-off factor of
2 kinds of loss functions β was 1. We trained the RL model
using the Adam optimizer.

We designed a clinically guided reward function that produced
a reward (penalty) when the patients’ state improved
(deteriorated) based on short-term and long-term health
outcomes. The short-term health indicators were the patients’
MBP as well as SpO2. At each intermittent (ie, nonterminal)
time step of a patient’s trajectory, the patient would receive a
positive short-term reward b if MBP fell within the range of
70-80 mm Hg ] or c if SpO2 fell within 94% to 98% based on
the literature on maintaining optimal levels of vital signs and
blood gases, and the patient would receive a penalty (negative
reward) of –b/2 or –c/2 when MBP and SpO2 fell out of the
range. We applied the range (94%, 98%) of SpO2 for the
intermittent reward design due to the following reasons:
conservative O2 therapy has been variably defined in various
randomized controlled trials (RCTs). RCTs investigating the
lower SpO2 threshold have found evidence of increased
mortality from SpO2 <93% [15]. Other RCTs did not show any
increased mortality in their conservative groups if these groups
attained an SpO2 (or equivalent PaO2) within 94% to 98% (eg,

J Med Internet Res 2024 | vol. 26 | e44494 | p. 5https://www.jmir.org/2024/1/e44494
(page number not for citation purposes)

Liu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


a conservative group of ICU randomized trial comparing 2
approaches to oxygen therapy [16] had time-weighted PaO2

~80 mm Hg and the lowest SpO2 group of Pragmatic
Investigation of Optimal Oxygen Targets [17] had SpO2 around
94%). At terminal time steps, each patient would receive a final
reward a (or penalty –a/2) if a patient survived (or became
deceased) at discharge. The overall reward function was defined
as follows:

where ST, Ssur, and Sdec sets represented terminal, survived, and
deceased patient states, and a, b, and c were parameters that
were tuned during training. The reward information at each time
step would help BCQ learn those action patterns from physicians
that lead to good short-term and long-term outcomes.

To account for potential cointerventions that would affect the
MBP and survival, we included the maximum dose of
vasopressor (Table S1 in Multimedia Appendix 1) over every
4-hour time window of mechanical ventilation within patient
states for our RL model. In addition, as differences in illness
severity could also modify mortality risk, we included the
patients’ Elixhauser score, sequential organ failure assessment
(SOFA) score, number of systemic inflammatory response
syndrome criteria, vital signs, and laboratory test results (Table
S1 in Multimedia Appendix 1) in the patient state to reflect
differences in patients’ illness severity over time. The treatment
action from the model was conditioned on all the state variables
so that state differences were handled in the model.

RL: Benchmark Policies
We evaluated our RL-based policy by comparison with 3
benchmark policies:

• Random policy: All 18 discrete actions have equal
probabilities to be chosen.

• One-size-fits-all policy: The action with the highest
probability in the cohort is always chosen.

• Physicians’ policy: The actual observed policy in the
validation and testing sets.

RL: Evaluation Metrics
We used extensive quantitative and qualitative analyses to
evaluate the performance of the learned AI policy and
benchmarks. First, to understand the relationship between the
expected return of the learned policies and the clinical outcomes,
we mapped the expected return to the estimated outcome
occurrence. We sorted the expected returns of the physicians’
policy into discrete bins and obtained the average empirical

mortality rate from the patients in each bin. The empirical
mortality estimate was used to derive a relationship between
the range of computed returns of the AI policy against the
observed mortality. This estimation process was performed for
secondary outcomes too.

Treatment recommendation is an off-policy learning problem,
which aims to learn an optimal policy using trajectories from
an observed behavior policy (physicians’ policy). Evaluating
the learned policy with off-policy estimation (OPE) methods is
crucial for health care applications to avoid the high risk of
failure or negative impact. OPE methods use examples from
the behavior policy to evaluate the performance of the learned
policy. Precise evaluation with OPE remains a challenging
problem. Previous studies have used the V-curve method
[18,19], observed mortality [19,20], importance sampling
evaluation [21], and eligibility traces [22]. In this work, we
adopted multiple evaluation metrics. We followed the V-curve
method to qualitatively evaluate changes in mortality with action
differences. We also quantitatively estimated the mortality rate
and performed importance sampling with one type of importance
sampling estimator, namely Consistent Weighted Per-Decision
Importance Sampling (CWPDIS) [23], which is defined as:

where Dbeh is a retrospective trajectory set generated by
physician policy πcl, and n = (Sn0, an0, rn1, sn1, an1, rn2, ..., snT–1,
anT–1, rnT) is a specific trajectory with state, action, and reward
in each time step. Note that CWPDIS is based on important
sampling, which is a general technique for accomplishing OPE.
Compared with other OPE methods, CWPDIS could make
unbiased evaluations with higher sampling efficiency. In
addition, we used a random forest classification model to rank
the importance of various predictors for the actions under the
physicians’ policy (Figures S3-S5 in Multimedia Appendix 1).
This allowed us to understand physicians’ behavior regarding
the choice of ventilator settings.

Ethical Considerations
The collection of patient information and creation of the research
resource in the MIMIC-IV database was reviewed by the
Institutional Review Board at the Beth Israel Deaconess Medical
Center (number 2001-P-001699/14), which granted a waiver of
informed consent and approved the data-sharing initiative. For
the eICU database, it has been approved by the Institutional
Review Board of the Massachusetts Institute of Technology.
After completing the National Institutes of Health’s online
training course and the Protection of Human Research
Participants Examination, we had the access to extract data from
both the MIMIC-IV and the eICU databases. The study data are
anonymous and deidentified.
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Results

Patient Characteristics
Patient characteristics of the selected cohorts from the
MIMIC-IV and eICU datasets are provided in Table 1. There
were no statistically significant differences in age, sex, or body
weight. However, we observed that patients in the MIMIC-IV

dataset had greater illness severity compared with those in the
eICU dataset. Patients in the MIMIC-IV dataset had higher
Elixhauser scores (5.0 [0.0, 12.0] vs 3.0 [0.0, 7.0]), higher
reintubation rate (30.7% vs 16.7%), longer hospital stay (291.0
hours [171.0, 477.0] vs 191.4 hours [120.1, 307.5]), and higher
hospital mortality rate (31.1% vs 18.2%) compared to patients
in the eICU dataset.

Table 1. Patient characteristics.

eICU (N=21,595)MIMIC-IV (N=5105)Variables

9244 (42.8)2154 (42.2)Female (%)

64.0 (53.0, 74.0)65.0 (53.0, 76.0)Age (years), median (IQR)a

81.9 (68.0, 99.7)80.9 (67.6, 97.2)Body weight (kg), median (IQR)a

3661 (16.7)1565 (30.7)Reintubation (%)

3.0 (0.0, 7.0)5.0 (0.0, 12.0)Elixhauser score, median (IQR)a

2.0 (0.0, 4.0)2.0 (0.0, 4.0)First SOFAb score, median (IQR)a

191.4 (120.1, 307.5)291.0 (171.0, 477.0)Hospital LOSc (h), median (IQR)a

3934 (18.2)1590 (31.1)Hospital mortality (%)

5.0 (5.0, 5.0)5.3 (5.0, 10.0)PEEPd, (cmH2O), median (IQR)a

49.2 (40.0, 61.1)50.0 (40.0, 60.0)FiO2 (%), median (IQR)a

7.8 (6.9, 8.8)7.2 (6.4, 8.3)Tidal volumee (ml/kg IBWf), median (IQR)a

a25th percentile, 75th percentile.
bSOFA: sequential organ failure assessment.
cLOS: length of stay.
dPEEP: positive end-expiratory pressure.
eTidal volume: ideal weight-adjusted tidal volume.
fIBW: ideal body weight.

Performance of the RL Method
We plotted the action frequency distributions of the physicians’
policy and the learned AI policy. We compared the learned
policy against the physicians’ policy for low (<5), medium
(5-15), and high (>15) SOFA score levels for patients in the
eICU (Figure 3) and the MIMIC-IV databases (Figure S3 in
Multimedia Appendix 1). For each SOFA group, we counted
the number of actions for the 3 action categories: PEEP, FiO2,
and tidal volume. Actions taken by physicians were different
from those suggested by AI. The learned policy recommended
more low-level actions for PEEP and FiO2 and high-level actions
for tidal volume. Relationships between the range of computed
returns of the learned policy against various outcomes for both
the eICU validation set and the MIMIC-IV test set are shown
in Figure 4. The figures show that policies with higher returns
were associated with lower mortality and higher proportions of
optimal SpO2 and MBP.

The OPE performance of the learned policy is shown in Table
2. We estimated the hospital mortality rate (eICU 12.1%, SD
3.1%; MIMIC-IV 29.1%, SD 0.9%), the proportion of optimal
SpO2 (eICU 58.7%, SD 4.1%; MIMIC-IV 49%, SD 1%), and
the proportion of optimal MBP (eICU 31.1%, SD 4.5%;

MIMIC-IV 41.2%, SD 1%) for the learned policy. We also
report outcomes for the physicians’ policy, including the
observed mortality rate (eICU 14.3%; MIMIC-IV 30.6%), the
proportion of optimal SpO2 (eICU 47.8%; MIMIC-IV 40.5%),
and the proportion of optimal MBP (eICU 28.2%; MIMIC-IV
37.1%) in the 2 datasets, respectively. We also performed t tests
(2-tailed) for proportions of optimal SpO2 and MBP, and Fisher
exact tests for hospital mortality rate, and calculated the P values
compared with the physicians’ policy. The results from all 3
policies achieved P values of <.001, which indicates that the
differences were very unlikely to arise from randomness.
Overall, the AI policy achieved a longer duration within optimal
SpO2 and MBP ranges with lower mortality compared to the
physicians’ policy. To examine the effectiveness of using
time-varying intervals in the action setting, we visualize a
representative patient case in Figure 5. The relationship between
mortality and discrepancy between AI and physicians’ventilator
settings is illustrated in Figure 6.

We report the feature importance with regards to choosing
ventilator settings under the physicians’policy in Figures S3-S5
in Multimedia Appendix 1. The top 10 important features
included the following: PaO2/FiO2 ratio, PaCO2, PaO2,
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creatinine level, lactate, prothrombin time, base excess, age,
admission weight, and Richmond Agitation Sedation Scale

score.

Figure 3. Comparative action distributions for physicians (blue) and learned policy (red) in the MIMIC-IV test set. Each panel represents actions taken
for different SOFA score levels: low (SOFA<5), medium (5≤SOFA<15), and high (SOFA>15). Actions taken by physicians were different from those
suggested by AI. The learned policy recommended more low-level actions for PEEP and FiO2 and high-level actions for tidal volume. AI: artificial
intelligence; FiO2: fraction of inspired oxygen; Med: medium; Mid: middle; MIMIC-IV: Medical Information Mart for Intensive Care; PEEP: positive
end-expiratory pressure; SOFA: sequential organ failure assessment.

Figure 4. Changes in observed mortality (red), proportion of optimal SpO2 (green), and proportion of optimal MBP (blue) versus the expected return
curves for learned policies in the eICU validation set and MIMIC-IV test set. The proportion of mortality (red) against the returns showed inverse
relationships, whereas the proportion of optimal SpO2 (green) and the proportion of optimal MBP (blue) against returns showed overall positive
relationships in both data sets. Overall, the figures show that policies with higher returns were associated with lower mortality and higher proportions
of optimal SpO2 and MBP. eICU: e-Intensive Care Unit Collaborative Research; MBP: mean arterial blood pressure; MIMIC-IV: Medical Information
Mart for Intensive Care; SpO2: optimal oxygen saturation.
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Table 2. Outcomes using the validation set (eICUa) and test set (MIMIC-IVb).c

95% CIP valueObserved mortali-
ty (%), mean
(SD)

Proportion of time within

MBP targete range (%),
mean (SD)

Proportion of time

within SpO2
d range

(%), mean (SD)

PolicyDataset

eICU

——g14.3 (3.6)28.2 (4.5)47.8 (5.0)Physicianf

15.17-15.23<.00115.2 (3.5*)30.7 (4.5*)49.9 (4.8*)Randomh

17.47-17.53<.00117.5 (3.8*)29.4 (4.5*)53.2 (4.9*)One-size-fit-alli

12.07-12.13<.00112.1 (3.1*)31.1 (4.5*)58.7 (4.7*)AIj

MIMIC-IV

——30.6 (0.9)37.1 (1.0)40.5 (1.0)Physician

32.29-32.31<.00132.3 (0.9*)36.2 (1.0*)34.6 (1.0*)Random

31.99-32.01<.00132.0 (0.9*)38.5 (1.0*)40.9 (1.0*)One-size-fit-all

29.09-29.11<.00129.1 (0.9*)41.2 (1.0*)49.0 (1.0*)AI

aeICU: e-Intensive Care Unit Collaborative Research.
bMIMIC-IV: Medical Information Mart for Intensive Care IV.
c*P value <.001 when compared to physicians’ policy.
dSpO2 target range: 94%<SpO2<98%.
eMBP target range: 70 mm Hg ≤ MBP ≤ 80 mm Hg.
fPhysician: the actual observed policy in the validation and testing set.
gNot applicable.
hRandom: all the 18 discrete actions have equal probabilities to be chosen.
iOne-size-fit-all: the action with the highest probability in the cohort is always chosen.
jAI: artificial intelligence policy from Batch Constrained Deep Q-learning model.

Figure 5. Visualization of representative patient cases in raw, fixed, time-varying intervals for mechanical ventilator action setting. Visualization of
representative case study for mechanical ventilator settings of PEEP (left), FiO2 (middle), and ideal body weighted-adjusted tidal volume (right) using
time-varying interval (red), raw data (blue), and fixed 4-hour time interval (green). Flags to cut intervals in the time-varying setting are shown as vertical
dotted lines with yellow shadows. The flags could catch the changes in the ventilator settings. FiO2: fraction of inspired oxygen; PaO2: partial pressure
of oxygen; PEEP: positive end-expiratory pressure.
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Figure 6. Changes in observed mortality (y-axis) versus the difference between the mechanical ventilation settings recommended by the optimal policy
and the settings administered by physicians (x-axis) on the eICU validation set and MIMIC-IV test set. The x-axis indicates the differences in the quantile
number. The plots show a v-shape which indicates that mortality is the minimum when we follow the actions suggested by the policy. eICU: e-Intensive
Care Unit Collaborative Research; FiO2: fraction of inspired oxygen; MIMIC-IV: Medical Information Mart for Intensive Care; PEEP: positive
end-expiratory pressure.

Discussion

Overview
In this study, we used an RL-based AI model (BCQ) to learn
the optimal ventilation policy customized for patients who are
critically ill and require mechanical ventilation. We validated
the policy using 2 large public datasets from the United States:
the eICU and MIMIC-IV datasets. In both datasets, the learned
policy had superior performance compared to the observed
physicians’policy, based on several quantitative and qualitative
evaluation metrics.

Principle Findings
In the MIMIC-IV dataset patients exhibited a higher severity
of illness relative to those in the eICU dataset. However, this
presented an opportunity to evaluate the extrapolation capacity
of the BCQ model. The BCQ model-derived RL policy
consistently demonstrated superior performance to physicians’
policy in both datasets. Consequently, we surmised that the
BCQ model’s extrapolation ability was acceptable.

We formulated the clinical problem of choosing optimal
ventilator settings in the ICU as an RL problem. We then used
relevant physiological variables to represent patients’ health
status as states and cut the ventilator treatment trajectories into
time-varying steps to reflect the changes in patients’ conditions.
We designed a set of flags to capture the sudden changes in
patients’ health and used the flag timings to further cut the
trajectory because such timings were the likely decision points
for physicians to make necessary interventions. From the
visualization of time-varying intervals in Figure 5, we observed
that when the flags were raised (vertical dotted line),

time-varying interval setting (red lines) can better reflect the
changes in raw data (blue lines) of ventilator settings promptly
compared to fixed 4-hour time intervals (green lines).

The AI policy used a “penalty” and “reward” function to
regulate SpO2 and MBP within their optimal ranges. Notably,
the policy tried to avoid hyperoxemia due to evidence of its
harmful effects, as demonstrated by randomized trials in adults
and younger patients [24,25]. While evidence of harm in
hypertension was not as strong as in hyperoxemia, physicians
could avoid overdosing on vasopressors to minimize the risk
of arrhythmia [26]. Nonetheless, caution should be exercised
in the use of the model, and it should not be relied upon as a
standalone tool. On the contrary, it was designed as a decision
support tool that provides more personalized guidance and might
lead to better treatment plans. Physicians should evaluate the
recommendations from the model carefully and balance between
AI predictions and established treatment protocols.

From the action frequency distribution plot (Figure 3) for
patients in MIMIC-IV, we found that the actions from physicians
(red) and the actions recommended by AI policy (blue) have
some discrepancies in all ventilator settings. This result is
desirable because the supervisor network in the BCQ model
does not aim to duplicate physicians’ choices. On the contrary,
the supervisor network was used to learn good action patterns
from physicians and limit the choice of actions with constraints.
In addition, we found the learned policy recommended low-level
PEEP and high-level ideal body weight-adjusted tidal volume
more frequently compared to physicians’ current practices for
all the SOFA groups. This finding suggests that the high
PEEP-low tidal volume strategy for acute respiratory distress
syndrome [2,27] may not be optimal for all mechanically
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ventilated patients (eg, patients with focal acute respiratory
distress syndrome [28]) and should not be applied as a
one-size-fits-all approach. For the management of FiO2, the
learned policy suggested more frequent use of low and medium
levels and avoided high levels of FiO2 for all SOFA groups.
This policy suggestion is in line with the known harm from
excessive oxygenation, which has been found across different
types of critical illness [10,29,30].

We computed the learned policy’s expected return, and we
plotted it against mortality risk in Figure 4. We observed inverse
relationships between expected return and mortality (red) in
both validation and testing datasets. This indicates that the
optimal policy (high return) results in lower mortality for
patients. For the secondary outcomes related to maintaining
SpO2 and MBP within their respective optimal ranges, the
expected return showed positive relationships (green for SpO2

and blue for MBP). This indicates that the optimal policy (high
return) leads to higher proportions of SpO2 and MBP within
their respective optimal ranges.

Figure 6 highlights the mortality differences associated with
discrepancies between AI-driven and clinician-determined
ventilator settings. An effective policy has the lowest mortality
when the recommended and administered ventilator settings
coincide (the x-axis value is zero), indicating that when the
practice strictly followed the AI policy, it had the lowest
mortality. At the same time, for an effective policy, the observed
mortality should increase as the administered ventilator settings
deviate from the recommended settings of the AI policy.
Accordingly, an effective policy should have a V-shaped curve
with a minimum of 0, which we observed for the AI policy
under all the 3 action groups (PEEP, FiO2, and tidal volume).

From the quantitative evaluation using CWPDIS, we found the
learned policy had the lowest observed mortality compared with
all 3 benchmark policies. At the same time, the learned policy
achieved the highest proportion of optimal SpO2 and MBP in
both datasets. Intuitively and as expected, the random policy
had the worst outcome among all the policies.

Comparison to Prior Work
Many recent works have provided RL methods to address
treatment recommendation problems [18-21,31-33]. Deep Q
Network is one of the most popular RL models used in the
literature, which is a powerful model that can handle
high-dimensional state spaces, and noisy and incomplete input
data. However, the Deep Q Network would not perform well
when certain states are rarely observed in the historical data,
and it tends to make random treatment assignments in such
scenarios. This is referred to as extrapolation error, when a
model is used to make predictions outside the range of the input
data during training. On the contrary, BCQ is an effective tool
to avoid extrapolation error, because it is designed to be more
robust to the distribution of the data. This is achieved using a
regularization term that encourages the policy to remain close
to the initial policy during training when rare states are observed.
Other works [20,33] focus on the novel algorithms increasing
the model complexity and do not pay enough attention to the
extrapolation error.

In addition, previous RL methods used for ICU care used fixed
4-hour intervals in the action setting [18,19]. In this work, we
propose a time-varying intervals setting to capture fine-grained
treatment assignments, which is more in line with real-world
clinical practice.

Limitations
Although our study harnessed 2 large databases for derivation
and external validation of an RL model, several limitations
remain. First, the ICU environment is highly complex, with
many interacting variables that may not be fully captured in the
EHR data, thus making it challenging for the RL model to
deliver accurate and effective policy. We tried to exploit the
data using advanced modeling techniques to capture
high-dimensional state spaces’characteristics. Second, our study
is retrospective, and the results require prospective validation
to ensure safety before deploying it in the ICUs. Third, our study
trained on a patient cohort in the United States, which is a
high-income country with advanced medical care. Whether the
RL model would perform similarly in a lower-resourced country
is unknown and the model performance may not be generalizable
to such resource-limited settings. Future validation should
therefore be done in countries belonging to various World Bank
income groups.

Future Directions
Despite the above limitations, our study highlights the potential
of AI (specifically RL) to personalize medical care by
accounting for the myriad variations in patients’clinical features
and tailoring treatment recommendations according to those
variations. By using the RL model, different actions could be
used to quantify and compare the quality of the current treatment
options for a given patient, concerning mortality rate. The
proposed solution allows physicians to collaborate with the AI
agent while retaining physician control of the decision-making
process. Our method may also be applied to complex clinical
decision-making beyond mechanical ventilation, such as sepsis
management [21] and drug dosing [33].

To ensure the reliability and generalizability of our findings,
we conducted thorough validation, both internally and
externally, using 2 separate datasets. Despite these efforts, we
acknowledge the limitation of using retrospective data to model
clinical benefits. To confirm our preliminary results, randomized
trials comparing AI-guided management with usual care and
protocolized care can be done. The method of AI deployment
can also be tested under different conditions: as an advisory
versus strict implementation [34].

Conclusions
The clinical implications of using RL models to suggest
mechanical ventilation settings in ICU settings are of
considerable importance. In this study, the RL model was trained
to learn from patient data and to adjust mechanical ventilation
settings, thereby optimizing patient outcomes. As the model is
capable of continuously adapting to the patient’s evolving needs,
the AI policy has the potential to outperform current clinical
interventions and optimize personalized care for patients who
are critically ill. One possible development is the integration of
the AI agent into a clinical decision support system to optimize
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ventilation settings. However, before this can be done,
prospective validation of this method will be needed in various

ICU settings.
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Abbreviations
AI: artificial intelligence
BCQ: Batch Constrained Deep Q-learning
CWPDIS: Consistent Weighted Per-Decision Important Sampling
EHR: electronic health record
eICU: e-Intensive Care Unit Collaborative Research
FiO2: fraction of inspired oxygen
ICU: intensive care unit
MBP: mean arterial blood pressure
MDP: Markov Decision Process
MIMIC-IV: Medical Information Mart for Intensive Care
OPE: off-policy estimation
PaO2: partial pressure of oxygen
PEEP: positive end-expiratory pressure
RCT: randomized controlled trial
RL: reinforcement learning
SOFA: sequential organ failure assessment
SpO2: optimal oxygen saturation
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