
Original Paper

Validation of 3 Computer-Aided Facial Phenotyping Tools
(DeepGestalt, GestaltMatcher, and D-Score): Comparative
Diagnostic Accuracy Study

Alisa Maria Vittoria Reiter1; Jean Tori Pantel1,2,3; Magdalena Danyel1,4,5, MD; Denise Horn1, Prof Dr; Claus-Eric Ott1,

MD; Martin Atta Mensah1,6, MD
1Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and
Humboldt-Universität zu Berlin, Berlin, Germany
2Institute for Digitalization and General Medicine, University Hospital Aachen, Aachen, Germany
3Center for Rare Diseases Aachen ZSEA, University Hospital Aachen, Aachen, Germany
4BIH Biomedical Innovation Academy, Clinician Scientist Program, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
5Berlin Center for Rare Diseases, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu
Berlin, Berlin, Germany
6BIH Biomedical Innovation Academy, Digital Clinician Scientist Program, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin,
Germany

Corresponding Author:
Martin Atta Mensah, MD
Institute of Medical Genetics and Human Genetics
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
Augustenburger Platz 1
Berlin, 13353
Germany
Phone: 49 30450569132
Fax: 49 30450569914
Email: martin-atta.mensah@charite.de

Abstract

Background: While characteristic facial features provide important clues for finding the correct diagnosis in genetic syndromes,
valid assessment can be challenging. The next-generation phenotyping algorithm DeepGestalt analyzes patient images and provides
syndrome suggestions. GestaltMatcher matches patient images with similar facial features. The new D-Score provides a score
for the degree of facial dysmorphism.

Objective: We aimed to test state-of-the-art facial phenotyping tools by benchmarking GestaltMatcher and D-Score and
comparing them to DeepGestalt.

Methods: Using a retrospective sample of 4796 images of patients with 486 different genetic syndromes (London Medical
Database, GestaltMatcher Database, and literature images) and 323 inconspicuous control images, we determined the clinical
use of D-Score, GestaltMatcher, and DeepGestalt, evaluating sensitivity; specificity; accuracy; the number of supported diagnoses;
and potential biases such as age, sex, and ethnicity.

Results: DeepGestalt suggested 340 distinct syndromes and GestaltMatcher suggested 1128 syndromes. The top-30 sensitivity
was higher for DeepGestalt (88%, SD 18%) than for GestaltMatcher (76%, SD 26%). DeepGestalt generally assigned lower
scores but provided higher scores for patient images than for inconspicuous control images, thus allowing the 2 cohorts to be
separated with an area under the receiver operating characteristic curve (AUROC) of 0.73. GestaltMatcher could not separate the
2 classes (AUROC 0.55). Trained for this purpose, D-Score achieved the highest discriminatory power (AUROC 0.86). D-Score’s
levels increased with the age of the depicted individuals. Male individuals yielded higher D-scores than female individuals.
Ethnicity did not appear to influence D-scores.

Conclusions: If used with caution, algorithms such as D-score could help clinicians with constrained resources or limited
experience in syndromology to decide whether a patient needs further genetic evaluation. Algorithms such as DeepGestalt could
support diagnosing rather common genetic syndromes with facial abnormalities, whereas algorithms such as GestaltMatcher
could suggest rare diagnoses that are unknown to the clinician in patients with a characteristic, dysmorphic face.
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Introduction

Background
Particularly in genetic syndromology, specific external
anatomical features of patients are used to evaluate differential
diagnoses [1]. Many inheritable syndromes are associated with
specific patterns of dysmorphic signs, especially of the face.
However, the clinical genetic description of a patient’s face is
complicated, and the perception and naming of abnormalities
depend on the individual examiner [2]. Establishing a clinical
genetic differential diagnosis is also complicated by the plethora
of rare genetic syndromes [3].

Computer vision and machine learning offer scalable
technologies that allow rapid and standardized recognition of
relevant facial anatomical parameters and automatic assignment
to a list of possible diagnoses. Several tools have been developed
(eg, [4-13]) that perform computer-aided facial phenotyping
using common patient photographs or even 3D patient images,
often referred to as next-generation phenotyping (NGP). Ideally,
NGP tools succeed in three tasks: (1) discerning patients from
unaffected controls, (2) recognizing as many syndromes as
possible, and (3) assigning the correct diagnosis.

One provider of such NGP tools is Face2Gene (FDNA Inc),
which offers a range of applications based on the DeepGestalt
[10] neural network. Initial studies have evaluated the ability
of this network to correctly detect a syndrome in a patient image,
suggesting good sensitivity (eg, [14-21]). It has been shown
that such tools can also be trained for yet unknown syndromes
by demonstrating that a new syndrome has a specific gestalt
that can be distinguished from other syndromes (eg, [22-29]).
DeepGestalt can only detect a specific syndrome if a minimum
number of images of that syndrome is included in the training
set. However, the GestaltMatcher tool—a further development
of DeepGestalt—solves this problem by matching patient images
against each other so that extremely rare or unknown syndromes
can be detected. The last layer of the neural network is used to
create a multidimensional clinical face phenotype space in which
the spatial proximity reflects the similarity between 2 patient
faces [30]. Among other studies, these findings suggest that
facial NGP could advance the diagnostic process in medical
genetics as well as support and accelerate the detection of novel
syndromes. More recently, computer-aided facial phenotyping
has been discussed for screening in telehealth applications,
especially in resource-limited settings [13]. While DeepGestalt,
in principle, is able to distinguish patients who are dysmorphic
from unaffected control individuals [20,22], it by design has a
limited ability to produce markedly different scores on
photographs of affected and unaffected individuals [20,21]. The
latest addition to the Face2Gene application suite called
D-Score, however, aims to provide a discriminatory score to
identify patients with dysmorphic facial features.

Objective
The recently described GestaltMatcher has not yet been
benchmarked in individuals without a genetic syndrome and
D-Score has not been benchmarked at all. Therefore, we
evaluated the diagnostic accuracy of D-Score in individuals of
different sexes, ages, and ethnic backgrounds and compared the
results with those of DeepGestalt and GestaltMatcher.

Methods

Deep Learning Models

DeepGestalt
DeepGestalt is a deep convolutional neural network, trained on
portrait images of individuals with genetic syndromes as
described in detail previously [10]. The classes of the network
are defined by sets of images of specific syndromes. When
DeepGestalt analyzes the facial image of the query, it calculates
and assigns a score for each of these classes, which corresponds
to the degree of similarity of the query image to that class. The
tool returns a list of syndrome suggestions ordered by the
so-called DeepGestalt score. Here, we used DeepGestalt version
21.5.0 to obtain the top-30 syndrome matches and DeepGestalt
scores for each image of the included test sets.

GestaltMatcher
GestaltMatcher is a previously described [30] encoder for
portrait photos based on a deep convolutional neural network
that creates a clinical face phenotype space [7] to match patient
portrait images by the similarity of facial features. This tool can
be used either to determine the similarity of different query
images to each other or to individually embedded images, or to
get syndrome suggestions for a single query image. In this study,
we only tested GestaltMatcher’s latter ability. For the analysis
of the test sets with GestaltMatcher (version 0.8.0), the
maximum possible number (n=100) of suggested syndromes in
the web interface was chosen to count the number of syndromes
known to this system, including syndromes supported by
DeepGestalt as well as ultrarare syndromes not supported by
DeepGestalt. When comparing the rank-dependent sensitivity
of GestaltMatcher and DeepGestalt, however, only the first 30
suggestions of GestaltMatcher were used, since DeepGestalt
only provides 30 suggestions.

D-Score
D-score is a support vector machine running on the output of a
deep convolutional neural network for the syndrome
classification of patient images. As a binary classifier, D-Score
returns a single value per image, aiming to capture the degree
of facial dysmorphism. The concept has been described
previously [20]. However, D-Score was trained and validated
on a larger data set and its architecture is more advanced and
more complex than the model described by Pantel et al [20].
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The test sets were analyzed by the beta version of D-Score
(version 0.1 beta) accessed via an applied programming
interface.

Test Sets

Overview
In this study, we analyzed images of 3 data sets (London
Medical Database [LMD], GestaltMatcher Database [GMDB],

and data previously described in Pantel et al [20]; Figure 1 [20]
and Table 1) as a retrospective sample. We aimed to analyze as
many cases as possible using only 1 frontal image per case and
restricting the test set to those cases that are not included in the
training sets of DeepGestalt, GestaltMatcher, or D-Score. For
syndromic cases, the diagnosis was established either clinically
or molecularly. No other information was entered into the facial
analysis applications besides the frontal images.

Figure 1. Workflow of analyses. GMDB: GestaltMatcher Database; LMD: London Medical Database. *Binary classifier uses only 1 score.
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Table 1. Characteristics of the image data sets.

Total,
N

GMDBb test set,
n

LMDa test set,
n

Pantel et al [20] healthy control cohort,
n

Pantel et al [20] syndromic cohort,
n

47963654496323323Included images (total)

47953654496323322D-Score

10001Failed D-Score

47963654496323323DeepGestalt

47943654496321323GestaltMatcher

20020Failed GestaltMatcher

486346199N/Ac17Number of syndromes

Sex

16171299—d159159Female

18591535—162162Male

132082049622Unknown

Ethnicity

17671221—273273White

655567—4444Other

2374186649666Unknown

aLMD: London Medical Database.
bGMDB: Gestalt Matcher Database.
cN/A: not applicable.
dNot available.

London Medical Database Set
This test set was built from 496 images of the LMD showing
individuals with a genetic syndrome.

GestaltMatcher Database Set
The GMDB is a user-curated database of facial images of
individuals with genetic syndromes. From this database, 3654
portrait photographs were included in our study that were not
part of the training sets.

Literature Images
This data set was previously used by Pantel et al [20] comprising
a total of 646 images, including 323 images of clinically or
molecularly diagnosed patients (Pantel syndromic cohort) with
17 genetic syndromes (19 images for each syndrome) and 323
sex-, ethnicity-, and age-matched control images (Pantel healthy
control cohort).

Ethical Considerations
This study was approved by the ethics committee of the
Charité-Universitätsmedizin Berlin (EA2/190/16).

Statistical Analyses

Overview
Statistical analyses were performed using Python (version 3.8;
Python Software Foundation). The code and data required to
reproduce statistical analyses can be found in Multimedia
Appendix 1 (see also the readme.txt for further information).

Comparison of DeepGestalt and GestaltMatcher
The algorithms performing a multiclass comparison—that is,
DeepGestalt and GestaltMatcher—were compared regarding
their numbers of supported syndromes, distributions and heights
of yielded scores, sensitivities, and false positive rates. Since
DeepGestalt’s output was limited to 30 suggestions, for reason
of comparability, a syndrome was also only considered to be
supported if it was suggested at least once on rank 30 or better
in GestaltMatcher. Top-1, top-10, and top-30 sensitivities, that
is, the ability to respectively place the correct diagnosis on the
first, within the first 10, or within the first 30 ranks of the results
list, were calculated for each supported syndrome represented
by at least 5 cases in the testing data sets. Sensitivities were
additionally calculated for the images of patients in the literature
image set. Mean sensitivities were averaged by the syndrome,
not by the number of images, giving each syndrome the same
weight. Any syndrome suggestion other than the syndrome
featured by the person depicted was considered a false positive.
As the tools do not support a class label “inconspicuous face,”
any suggestion was defined as a false positive in unaffected
controls. Top-1, top-5, top-10, and top-30 false positive rates
of each syndrome falsely suggested by a tool were calculated,
representing the fraction of cases in which a syndrome was
falsely suggested as the top-1 or within the first 5, 10, and 30
suggestions, respectively. False positive rates of patient and
control images were tested for a possible correlation using a
linear regression model and Pearson correlation coefficient.
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Validation of the Binary Classification Performance of
DeepGestalt, GestaltMatcher, and D-Score
We tested the ability of all 3 models (DeepGestalt,
GestaltMatcher, and D-Score) to distinguish portrait images of
individuals affected with a genetic syndrome from those of
healthy controls. As they return a list of scores, only the highest
scores (top-1 scores) assigned to an image by DeepGestalt and
GestaltMatcher were compared with the single number output
of D-Score. Mann-Whitney U tests were used to analyze
possible differences in the yielded scores (1-sided for
dysmorphic vs nondysmorphic cohorts and 2-sided for any other
comparisons). The area under the receiver operating
characteristic curve was calculated as a metric of accuracy.
Analyses were also performed for clinically relevant
patient-specific subgroups. For images for which this
information was available, output data were separated by age
group, sex, and ethnicity. We used the age groups 0 to 2 years
(babies and toddlers), 3 to 10 years (children), 11 to 20 years
(teenagers), 21 to 40 years (young adults), 41 to 60 years
(middle-aged adults), and older than 60 years (older adults). As

the ethnicity of most images was White (defined as being of
apparently solely European descent), we built 2 groups of
ethnicities: White and other. We did not define a cutoff for
syndromic or inconspicuous for any of the tools.

Results

Syndrome Classification With DeepGestalt and
GestaltMatcher
In total, 4796 images were used to test DeepGestalt,
GestaltMatcher, and D-score. To investigate and compare the
scope of diagnoses for which DeepGestalt and GestaltMatcher
can be used, we counted the number of syndromes suggested
by each tool. Among all matches, DeepGestalt and
GestaltMatcher suggested a total of 340 and 1128 different
syndromes, respectively. There was an intersection of 284
syndromes proposed by both tools (Figure 2A). A total of 56
syndromes were returned only by DeepGestalt, whereas 844
syndromes were exclusively suggested by GestaltMatcher
(Figure 2A).
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Figure 2. Comparison of DeepGestalt and GestaltMatcher: (A) Venn diagram showing the number of syndromes supported by DeepGestalt (purple)
and GestaltMatcher (grey). (B) Histogramme of top-30 scores yielded by DeepGestalt and GestaltMatcher in patient and control images. Sensitivities
of (C) DeepGestalt and (D) GestaltMatcher for syndromes featuring at least 5 analyzed images among all patients included images with mean sensitivity
averaged by syndrome. Linear regressions of false positive rates of (E) DeepGestalt’s and (F) GestaltMatcher’s top-30 results in matched control (y-axis)
and patient (x-axis) images of the literature data set. (High resolution image available in Multimedia Appendix 2). FPR: false positive rate; h: healthy
control; s: patient with syndrome.

The level of a yielded score is designed to increase with the
likelihood of a correct syndrome suggestion. However, this
might falsely be interpreted by a user as a direct metric for the
probability of a suggested syndrome to be a true positive result.
To elucidate the actual distributions, we analyzed the scores

returned by DeepGestalt and GestaltMatcher in the top-30
(Figure 2B). Gestalt scores assigned by DeepGestalt ranged
predominantly from 0.05 to 0.5, while those assigned by
GestaltMatcher were mostly between 0.2 and 0.5. We found
that DeepGestalt returned higher scores for syndromic subjects
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with a peak around 0.16 compared to a peak around 0.1 for the
healthy cohort. In contrast, GestaltMatcher scores showed a
higher degree of overlap with a peak around 0.33 for the patient
cohort and a peak at even higher values around 0.35 for the
controls. Overall, the values assigned by GestaltMatcher were
higher than those of DeepGestalt but did not differ between
patients and controls.

To measure the tools’ quality, we explored their sensitivities
for the syndromes included in our data sets. We were able to
evaluate 110 syndromes in DeepGestalt and 103 syndromes in
GestaltMatcher with at least 5 images per supported syndrome
(Figure 2C and D). DeepGestalt and GestaltMatcher both ranked
7 syndromes correctly on top-1 in all cases. The syndromes that
were always suggested correctly on rank 1 by both tools were
Mental Retardation X-Linked 102, Van Den Ende-Gupta
syndrome, and Ohdo syndrome. GestaltMatcher did not suggest
the correct diagnosis in the top-30 for 2 syndromes. Overall,
DeepGestalt showed higher sensitivities than GestaltMatcher,
achieving an average top-1 sensitivity of 56% (SD 29%), an
average top-10 sensitivity of 79% (SD 23%), and an average
top-30 sensitivity of 88% (SD 18%), while the correct diagnosis
was returned by GestaltMatcher at rank 1 on average in 43%
(SD 30%), within the top-10 in 67% (29%), and within the
top-30 in 76% (SD 26%) of patient images. To directly compare
results yielded by the current version with those yielded by an
earlier version of DeepGestalt, we also explored the current
sensitivities of both tools exclusively on the patient cohort of
the “literature image” set. Also on these images, DeepGestalt
outperformed GestaltMatcher (top-1 sensitivity 58%, SD 28%
vs 38%, SD 24%; top-10 sensitivity 91%, SD 10% vs 79%, SD
19%; and top-30 sensitivity 97%, SD 6% vs 93%, SD 9%;
Multimedia Appendix 3).

To test the specificity of syndrome suggestions, we explored
false syndrome suggestions by DeepGestalt and GestaltMatcher.
The vast majority of syndromes were infrequently suggested

by DeepGestalt with only 19 syndromes being suggested among
the top-30 ranks in more than 50% of patient or control images
(Figure 2E). False syndrome suggestion rates strongly correlated
between patient and control images (r=0.88). The most
frequently falsely suggested syndrome in either cohort was
Angelman syndrome (healthy controls false positive rate
[FPR]=0.83 and patient cohorts FPR=0.72). False positive rates
of GestaltMatcher were lower with only 4 syndromes being
suggested among the top-30 ranks in more than 50% of either
patient or healthy control images (Figure 2F). GestaltMatcher
false positive rates also showed a strong correlation between
patient and control images (r=0.91) and suggested Angelman
syndrome as the most frequent false positive result (healthy
controls FPR=0.84 and patient cohorts FPR=0.72). False positive
suggestion rates of DeepGestalt and GestaltMatcher strongly
correlated in both the controls (r=0.91) and the patient cohort
(r=0.91, Multimedia Appendix 4). Angelman syndrome was
not only the syndrome that was most frequently suggested by
either tool among the top-30 ranks, but together with Fragile X
syndrome, it was also the most frequently implied among the
top-10, top-5, and on the first rank (Multimedia Appendix 5).

Discriminatory Power of GestaltMatcher, DeepGestalt,
and D-Score
To benchmark their ability to discern patients from controls,
we examined and compared scores yielded by D-Score and
first-rank scores of DeepGestalt and GestaltMatcher (Figure
3A). First-rank DeepGestalt scores were lower in the healthy
control cohort (median 0.23, IQR 0.169-0.347) than in the
patient cohorts (Pantel syndromic median 0.409, IQR
0.255-0.696; LMD median 0.41, IQR 0.217-0.754; and GMDB
median 0.37, IQR 0.21-0.685). First-rank DeepGestalt scores
showed high variances and overlapped between patient and
control images with lower quartiles of the patient cohorts being
between the median and upper quartile of the control cohort.
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Figure 3. Accuracy of DeepGestalt, GestaltMatcher and D-Score. (A) Distributions of the scores yielded by D-Score (D, turquoise), GestaltMatcher
(GM, grey), and DeepGestalt (DG, purple), in the different test sets. (B) Receiver operating characteristic curves (ROC) of D-Score (D, turquoise),
GestaltMatcher (GM, grey), and DeepGestalt (DG, purple). (High resolution version available in Multimedia Appendix 6). AUC: area under the curve;
GMDB: GestaltMatcher Database; LMD: London Medical Database; ROC: receiver operating characteristic.

Median first-rank GestaltMatcher scores were higher than
median first-rank DeepGestalt scores but similar between control
and patient images (Pantel control GestaltMatcher median 0.42,
Pantel syndromic GestaltMatcher median 0.427, LMD
GestaltMatcher median 0.414, and GMDB GestaltMatcher
median 0.388). First-rank GestaltMatcher scores were less
variable than the first-rank DeepGestalt scores.

D-Score distributions differed between the control cohort
(median 0.065) and the patient cohorts (Pantel syndromic
median 0.959, LMD median 0.99, and GMDB median 0.989)
with nonoverlapping IQR. D-Score showed little variability
with control scores clustering toward 0 and patient scores toward
1.
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As a major metric of the power to discern patient and control
images, we investigated the receiver operating characteristic
(ROCs) curves of DeepGestalt, GestaltMatcher, and D-Score
(Figure 3B). D-Score yielded the highest curve with an area
under the curve (AUC) of 0.86. DeepGestalt achieved the
second-best outcome with an AUC of 0.73. As expected,
GestaltMatcher did not achieve separability of the 2 classes
with an AUC of 0.55.

Confounders of D-Score
To test for performance differences resulting from
patient-specific characteristics known to possibly confound face
classification systems, we also examined performance metrics
on respective subsets (age, sex, ethnicity, and diagnosis) of our
cohort.

Distributions of first-rank scores of DeepGestalt and
GestaltMatcher were comparable for all age groups regarding
both patient and control images (Multimedia Appendix 7).
However, D-scores tended to increase with growing age,
particularly for control images (Multimedia Appendix 7).
Nevertheless, the ROC of D-scores of minors (younger than 21
years of age, AUC=0.87) was not markedly different from the
ROC for all age groups (Figure 3B). Upon evaluation of the 17
syndromes included in the Pantel syndromic cohort, first-rank
GestaltMatcher scores did not vary depending on a patient’s
diagnosis, while we found minor differences in the first-rank
DeepGestalt score distributions and strong differences in
D-Score distributions (Multimedia Appendix 8).

First-rank DeepGestalt and GestaltMatcher scores did not differ
between female and male individuals, whereas D-scores tended
to be higher in photos of male individuals than in images of
female individuals for both the Pantel syndromic and control
cohort. This strong difference was not seen in the larger GMDB
cohort (Multimedia Appendix 9).

Strongly significant differences in score distributions of White
and other individuals were only seen in the GMDB patient
cohort (Multimedia Appendix 10).

Discussion

Principal Findings
We evaluated the recently developed algorithms GestaltMatcher
and D-Score in comparison to the established DeepGestalt.
D-Score provides an estimate for the degree of dysmorphism
of a face, while DeepGestalt showed the best sensitivity by rank.
GestaltMatcher offers a large number of detectable syndromes.

Capable of achieving the same task of suggesting dysmorphic
syndromes based on patient images, DeepGestalt and
GestaltMatcher have specific strengths and weaknesses. When
comparing the ranges of scores yielded by DeepGestalt and by
GestaltMatcher, we found that GestaltMatcher scores on average
exceeded DeepGestalt scores. This information is crucial for
use in the clinical field, as physicians must be aware that scores
obtained through analysis by the new GestaltMatcher cannot
be interpreted identically to scores produced by DeepGestalt.
While DeepGestalt shows higher sensitivities for the syndromes
it supports, the number of syndromes supported by

GestaltMatcher is more than 3 times greater. The average
sensitivities of both tools are sufficient for diagnostic decision
support. The sensitivity of DeepGestalt version 21.5.0 tested
here is comparable to that of version 19.1.7 tested in a previous
study [20], suggesting that the version updates carried out so
far have had a minor impact on DeepGestalt’s performance.
Nevertheless, users need to be aware that specificities for a few
officially supported syndromes are very low, for example,
GestaltMatcher failed to identify 2 syndromes (Mental
Retardation X-linked and Arthrogryposis, distal type 3). Less
syndromes are frequently falsely suggested by GestaltMatcher
than by DeepGestalt, implying GestaltMatcher has a greater
specificity. This could be expected as GestaltMatcher includes
a much larger number of syndromes than DeepGestalt, lowering
the chance of individual syndromes appearing as a match. The
tendency of the 2 algorithms to falsely suggest certain
syndromes correlated strongly. Among the most frequent false
suggestions were Angelman syndrome, Fragile X syndrome,
and Rett syndrome which feature rather mild facial
dysmorphism. Thus, caution is needed when interpreting
classification results listing such diagnoses.

First-rank GestaltMatcher scores of affected and unaffected
cases overlapped largely, while surprisingly, unaffected cases
received a higher median score than affected cases. Thus,
GestaltMatcher can currently not be used to screen for
individuals with dysmorphic syndromes. In our experiment, the
scores assigned by DeepGestalt allowed for a certain separability
between affected and unaffected cohorts. Nevertheless, this
accuracy does not enable the identification of patients who are
dysmorphic with great certainty. The best accuracy to
differentiate between affected and unaffected was found for
D-Score. Limiting the test set to the age group predominantly
seen for syndrome evaluation (under 21 years of age) slightly
improved the accuracy.

Notably, in the patient cohort of Pantel et al [20], D-Score
yielded the highest scores in syndromes with a strong facial
dysmorphism (highest median score in Apert syndrome) and
lower scores in syndromes with mild facial features (lowest
median score in Rett syndrome). D-Scores of control images
increased with age, suggesting it is predominantly trained on
children. We suggest that clinicians may exercise caution when
interpreting scores obtained for patients older than 21 years of
age, as older faces may automatically be recognized as
dysmorphic due to signs of aging. D-Score assigned higher
scores to images of healthy male individuals than healthy female
individuals, which needs to be taken into consideration when
interpreting the obtained score values. Ethnic background was
not shown to influence the performance of either of the 3
algorithms tested. However, future studies ideally include
ethnically more diverse test sets.

Strengths and Limitations
To our knowledge, we performed the most extensive evaluation
of DeepGestalt thus far and the first comprehensive evaluations
of GestaltMatcher and D-Score. Nevertheless, there are
limitations to the analyses we conducted in this study. First, we
restricted our analysis of GestaltMatcher to the first 30 results
to match the number of results of DeepGestalt provided via
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Face2Gene CLINIC. As GestaltMatcher can match a far larger
number of patients and syndromes, an analysis including all
possible 100 results, using a larger number of syndromes and
even images of undiagnosed patients, would provide a more
comprehensive assessment of its performance. Second, the
number of healthy control images is limited, and we tested for
possible confounders of D-Score, which constrained the number
of (both patient and control) cases in some subgroups. To
evaluate the influence of these and other possible confounders
such as facial hair, glasses, positioning, and lighting, further
research using larger test sets is necessary. Third, a direct
comparison of the D-score to other algorithms, designed to
discern images of patients who are dysmorphic from those of
healthy controls is needed. Recently, Porras et al [13] described
such a tool achieving an AUC of 0.94 on a private data set.
Unfortunately, no tool other than D-score is available for the
broader public for testing purposes. Thus, benchmarking
different tools on the same data set has not been possible.

Future Directions
Even though the algorithms cannot replace the expertise of a
physician in medical genetics, they could potentially play a
complementary role in future decision-making. D-Score showed
the best separation between syndromic and nonsyndromic
images, giving it a potential future role as a screening tool.
GestaltMatcher could be applied as a “second-line” test to
analyze patients’ images that yielded no or only low-similarity
matches in the DeepGestalt analysis.

Physicians must exercise caution when using tools tested in this
study, as the scores assigned vary between the tools and can
thus not be interpreted identically. A prospective study, as
recently conducted to assess the application of DeepGestalt in
the clinical field [21], is needed to further investigate the
functionality of GestaltMatcher and D-Score in a point-of-care
setting.
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Code and data required to reproduce statistical results from this study.
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Multimedia Appendix 2
Comparison of DeepGestalt and GestaltMatcher (high resolution).
[PNG File , 597 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Sensitivities of (A) DeepGestalt and (B) GestaltMatcher in the patient cohort of the "literature image" set. Higher bars indicate
higher mean sensitivity, averaged by syndrome. Far left: mean sensitivity across all represented syndromes.
[PNG File , 234 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Linear regression of DeepGestalt’s (x-axis) and GestaltMatcher’s (y-axis) false positive rates (FPRs) in matched control (A) and
patient (B) images of the “literature image” set.
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[PNG File , 200 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Linear regressions of false positive rates (FPRs) of DeepGestalt’s (purple) and GestaltMatcher’s (grey) in patient (x-axis) matched
control (y-axis) images of the literature data set. (A,B) Calculated from top-10 results; (C,D) Calculated from top-5 results; (E,F)
Calculated from top-1 suggestions only.
[PNG File , 434 KB-Multimedia Appendix 5]

Multimedia Appendix 6
Accuracy of DeepGestalt, GestaltMatcher and D-Score (high resolution).
[PNG File , 438 KB-Multimedia Appendix 6]

Multimedia Appendix 7
Distributions of the scores yielded by D-Score (turquoise), GestaltMatcher (grey), and DeepGestalt (purple) in the different test
sets, separated by age groups. h: healthy control, s: patient with syndrome, P: Pantel image set, G: GestaltMatcher Database.
[PNG File , 223 KB-Multimedia Appendix 7]

Multimedia Appendix 8
Distributions of the scores yielded by D-Score (turquoise), GestaltMatcher (grey), and DeepGestalt (purple) in the Pantel patient
set separated by diagnosis. The P values refer to differences to matched healthy controls.
[PNG File , 231 KB-Multimedia Appendix 8]

Multimedia Appendix 9
Distributions of the scores yielded by D-Score (turquoise), GestaltMatcher (grey), and DeepGestalt (purple) separated by sex.
Heal: healthy control, synd: patients with a syndrome, f: female, m: male, GMDB: GestaltMatcher Database.
[PNG File , 165 KB-Multimedia Appendix 9]

Multimedia Appendix 10
Distributions of the scores yielded by D-Score (turquoise), GestaltMatcher (grey), and DeepGestalt (purple) separated by ethnicity.
Heal: healthy control, synd: patients with a syndrome, Wh: White, Oth.: Other, GMDB: GestaltMatcher Database.
[PNG File , 162 KB-Multimedia Appendix 10]
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