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Abstract

Background: Our research group previously established a deep-learning–based clinical decision support system (CDSS) for
real-time endoscopy-based detection and classification of gastric neoplasms. However, preneoplastic conditions, such as atrophy
and intestinal metaplasia (IM) were not taken into account, and there is no established model that classifies all stages of gastric
carcinogenesis.

Objective: This study aims to build and validate a CDSS for real-time endoscopy for all stages of gastric carcinogenesis,
including atrophy and IM.

Methods: A total of 11,868 endoscopic images were used for training and internal testing. The primary outcomes were lesion
classification accuracy (6 classes: advanced gastric cancer, early gastric cancer, dysplasia, atrophy, IM, and normal) and atrophy
and IM lesion segmentation rates for the segmentation model. The following tests were carried out to validate the performance
of lesion classification accuracy: (1) external testing using 1282 images from another institution and (2) evaluation of the
classification accuracy of atrophy and IM in real-world procedures in a prospective manner. To estimate the clinical utility, 2
experienced endoscopists were invited to perform a blind test with the same data set. A CDSS was constructed by combining the
established 6-class lesion classification model and the preneoplastic lesion segmentation model with the previously established
lesion detection model.

Results: The overall lesion classification accuracy (95% CI) was 90.3% (89%-91.6%) in the internal test. For the performance
validation, the CDSS achieved 85.3% (83.4%-97.2%) overall accuracy. The per-class external test accuracies for atrophy and IM
were 95.3% (92.6%-98%) and 89.3% (85.4%-93.2%), respectively. CDSS-assisted endoscopy showed an accuracy of 92.1%
(88.8%-95.4%) for atrophy and 95.5% (92%-99%) for IM in the real-world application of 522 consecutive screening endoscopies.
There was no significant difference in the overall accuracy between the invited endoscopists and established CDSS in the
prospective real-clinic evaluation (P=.23). The CDSS demonstrated a segmentation rate of 93.4% (95% CI 92.4%-94.4%) for
atrophy or IM lesion segmentation in the internal testing.

Conclusions: The CDSS achieved high performance in terms of computer-aided diagnosis of all stages of gastric carcinogenesis
and demonstrated real-world application potential.
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Introduction

Helicobacter pylori is involved in and induces the early stages
of gastric carcinogenesis, which begin with chronic gastritis
and progress to atrophy, intestinal metaplasia (IM), and the
development of gastric neoplasms [1,2]. Although H. pylori
eradication reduces the risk of developing gastric cancer, the
risk persists even after eradication, particularly in patients with
advanced atrophy or IM in the stomach [3,4]. The primary goal
of screening endoscopy is to detect neoplastic lesions in the
stomach. However, preneoplastic conditions, such as atrophy
and IM, require regular monitoring to detect developing
neoplastic lesions [5,6]. Evidence for the recommended
screening endoscopy time interval is lacking; however, a shorter
interval is generally recommended for patients with atrophy or
IM compared to those without [5-7]. Despite the importance of
preneoplastic lesions in the stomach, general gastric cancer
screening rather than individualized risk stratification has been
used in Korea, where the prevalence of gastric cancer is highest
[7].

Previously, our research group developed deep-learning–based
automatic lesion detection and classification models for gastric
neoplasms [8,9]. We improved the performance of these models
by combining detection and classification models into a single
clinical decision support system (CDSS) [10,11]. This CDSS
was evaluated to see if it could add clinical benefit and show
potential for real-world application. However, all of our previous
research concentrated on gastric neoplasms, such as dysplasia,
early gastric cancer (EGC), and advanced gastric cancer (AGC)
[8-11]. Given that preneoplastic conditions are a risk factor for
the development of gastric neoplasms, these lesions require
attention as well, and more specific examinations for atrophy
or IM are required.

Deep-learning–based computer-aided diagnosis models have
been used in clinical practice, primarily to detect polyps in
colonoscopies [12]. The most important advantages of these
models are that they not only improve clinical performance but
also reduce the burden on endoscopists from repetitive
procedures and allow for greater concentration of professional
activities [13]. These models also provide consistent and robust

answers to physicians regardless of user fatigue [14-16]. Our
previously established CDSS provided endoscopists with
automated lesion detection and automated lesion classification
functions [11]. The aim of these functions was to supplement
the imperfect visual diagnosis by endoscopists and reduce the
chances of missing important lesions. The primary advantage
of this CDSS was to present robust answers to endoscopists
regardless of the quantity of procedures, and the automated
lesion detection function reduces the likelihood that significant
lesions will be missed during endoscopic screening. All of these
functions, however, were primarily focused on neoplastic lesions
and neglected the preneoplastic condition.

Despite the importance of atrophy and IM, these stages were
not considered in our previous study. Furthermore, there is no
established model that categorizes all stages of gastric
carcinogenesis. Models that only identify or diagnose IM and
atrophy do not accurately represent real-world practice. As
proposed by the Correa hypothesis [1], it is not known which
patients with chronic gastritis, atrophy, IM, neoplasms, or gastric
cancer will be tested in real-world practice. This study aimed
to build and validate a CDSS in real-time endoscopy for all
stages of gastric carcinogenesis, including atrophy and IM.

Methods

Ethical Considerations
This study was approved by the institutional review board of
Hallym University Chuncheon Sacred Heart hospital (approval
number: 2022-03-002). This study adhered to the guidelines for
developing and reporting machine learning predictive models
in biomedical research [17].

General Concept
This study extends the previous research [8,9] on this topic by
constructing a 6-class lesion classification model (Figure 1) and
a preneoplastic lesion segmentation model (Figure 2). A CDSS
was constructed by combining the established 6-class lesion
classification model and the preneoplastic lesion segmentation
model with the previously established lesion detection model.
All images in the training, internal test, and external test data
sets were mutually exclusive.
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Figure 1. Schematic diagram of the establishment of the 6-class lesion classification model.
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Figure 2. Schematic diagram of the establishment of the lesion segmentation model. Upper panels: segmentation of gastric atrophy. Lower panels:
segmentation of intestinal metaplasia.

Construction of Data Sets
We extended the data collection process in order to develop the
automated lesion classification and lesion segmentation models.
The CDSS was constructed using input images that were
collected retrospectively. The detailed data collection procedure
was described previously [8,9]. In brief, between 2010 and 2017,
we enrolled consecutive patients with any type of gastric
neoplasm discovered during upper gastrointestinal endoscopy
and pathologically confirmed at the Chuncheon Sacred Heart
hospital.

We enrolled all patients diagnosed with atrophy or IM during
upper gastrointestinal endoscopy at Hallym University
Chuncheon Sacred Heart hospital between 2019 and 2021 to
add preneoplastic conditions to the baseline input data. These
images were classified as either atrophy or IM. To reduce

interobserver variability and ensure accurate categorization, all
enrolled images were cross-checked by 2 expert endoscopists
(CSB and EJG). Discordantly categorized images were resolved
through discussion. The “normal” category was created using
the same procedure as described above but without atrophy or
IM. Endoscopic images of patients found to be free of gastric
neoplasm, atrophy, or IM during upper gastrointestinal
endoscopy at Hallym University Chuncheon Sacred Heart
hospital between 2019 and 2021 were collected in JPEG format,
with a minimum resolution of 640 x 480 pixels, from the
in-hospital database [8,9].

Finally, 11,868 white-light images were enrolled and randomly
divided into training (n=9999) and internal test (n=1869) data
sets. Table 1 describes the detailed distribution of the input
images.
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Table 1. Data distribution for the establishment and testing of the clinical decision support system.

Prospective real-clinic
evaluation data set
(n=522), n (%)

External testing data set
(n=1282), n (%)

Internal testing data
set (n=1869), n (%)

Training data set
(n=9999), n (%)

Whole data set
(N=13,150), n (%)

3 (0.6)186 (14.5)130 (7)524 (5.2)840 (6.4)Advanced gastric can-
cer

4 (0.8)190 (14.8)225 (12)842 (8.4)1257 (9.6)Early gastric cancer

8 (1.5)183 (14.3)197 (10.5)735 (7.4)1115 (8.5)Dysplasia

252 (48.3)243 (19)375 (20.1)2228 (22.3)2846 (21.6)Atrophy

134 (25.7)235 (18.3)516 (27.6)3106 (31.1)3857 (29.3)Intestinal metaplasia

121 (23.2)245 (19.1)426 (22.8)2564 (25.6)3235 (24.6)Normal

Training Data Set Preparation
Endoscopic still-cut images contain “noise” information, such
as the date of the examination and the patient’s name, age,
gender, or identification number. The semantic segmentation
of the input images can remove this noise information from the
images and improve the training efficacy in the establishment
of deep-learning models. For the preprocessing of the included
images, we used a modified U-Net++ [18] convolutional neural
network model (an edge-smoothing algorithm was added in the
U-Net++, and the backbone convolutional neural network was
Densenet121), as previously described [11]. Data augmentation
methods were used, including rotation (–10° to +10°), horizontal
or vertical flipping of included images, and image normalization
with linear transformation in terms of the red, green, and blue
channels [11].

Deep-Learning Model Construction
All deep-learning models were built with Python (version 3.10;
Python Software Foundation) and the SQLite 3.41.2 database
management system (SQLite). The convolutional neural network
models were implemented using the TensorFlow framework

[19]. EfficientNet-B3 [20] was used to create the 6-class lesion
classification model, while UNet++ with EfficientNet-B3 was
used to create the lesion segmentation model. Additionally, 4
RTX 3090ti graphics processing units (MSI), AMD Ryzen
Threadripper PRO 5975WX 32-Core central processing units,
and 512 GB RAM (Samsung) were included in the training
system.

Development of the CDSS
In order to maintain a seamless evaluation of the gastric mucosa
without interfering with the endoscopic inspection, as previously
explained, the CDSS was designed to give endoscopists
additional information [11]. The primary deep-learning server
and local computer system were first built independently. We
linked the primary endoscopic system to a local computer with
an additional display. The endoscope monitor image was entered
into this local computer system, which then executed real-time
detection tasks, asked the deep-learning server to classify the
freeze images (called the motion freeze function), and displayed
the results. The segmentation results were shown on the monitor
after the atrophy or IM was identified and classified. The user
interface for the established CDSS is described in Figure 3.
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Figure 3. The established clinical decision support system's user interface. AG: atrophic gastritis; AGC: advanced gastric cancer; EGC(M):
mucosa-confined early gastric cancer; EGC(SM): submucosa-invaded early gastric cancer; HGD: high-grade dysplasia; IM: intestinal metaplasia; LGD:
low-grade dysplasia.

This study used a previously established lesion detection model
[11]. Briefly, YOLOv3 [21], which was modified with
EfficientNet-B0 structure, was implemented for the
establishment of the model, and 2653 white-light images were
enrolled for the training data set [11]. The detection model
immediately transfers the detected gastric lesions to the
classification model, where they are automatically classified
into 6 classes (histologic diagnosis). When the CDSS detects a
lesion, the frame containing the lesion is automatically examined
by the classification model, yielding findings for 6 classes. The

segmentation results are shown on the monitor after the atrophy
or IM has been identified and classified (the detected and
classified atrophy and IM are the input data of the segmentation
model; Figure 4) The CDSS analyzes the dependency of
successive frames (calculating the difference of brightness and
contrast in successive frames) in order to detect the doctor’s
intention (motion freeze function). The mean response time was
0.3 seconds between the classification request and the display
of the findings on the monitor.
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Figure 4. Schematic diagram of the establishment of clinical decision support system.

The video frame is encrypted and transferred with Academy
Research Institute Agency encryption, which is a common
cryptographic method by the Korean Agency for Technology
and Standards used when a local computer requests a
classification task from the main server to ensure anonymization.
In order to prevent leakage and forgery or modification, medical
information is also communicated between the deep-learning
server and the local computer using the HTTP secure
communication protocol and the secure sockets layer security
protocol.

Primary Study Outcomes
The primary outcomes included the classification model’s lesion
classification accuracy (6 classes: AGC, EGC, dysplasia,
atrophy, IM, and normal) and atrophy and IM lesion
segmentation rates for the segmentation model. Diagnostic
accuracy was defined as true positive + true negative / (true

positive + false positive + true negative + false negative). Mean
intersection over union (IoU) was defined as (A∩B) / (A∪B),
and mean dice coefficient (F1 score) was defined as (2 × |A∩B|)
/ (|A|+|B|), where A signifies the predicted set of pixels (predicted
segmentation map) and B is the ground truth of the object to be
found in the image. Segmentation rate was defined as true
positive / (true positive + false negative). For a positive image,
true positive was defined as an IoU of the artificial intelligence
(AI) prediction result mask greater than the threshold (0.5) and
false negative was defined as an IoU of the AI prediction result
mask less than the threshold (0.5).

Performance Validation of the Established CDSS
To validate the performance of lesion classification accuracy,
the following tests were performed (Table 1):

1. An external test using 1282 images from another institution:
External test set images were collected from consecutive
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patients who underwent upper gastrointestinal endoscopy
at the Gangneung Asan Hospital from 2018 to 2020.

2. Prospective evaluation of the classification accuracy of
atrophy and IM in real-world procedures: Between January
2023 and March 2023, 522 consecutive screening
endoscopy examinations were evaluated to measure the
diagnostic accuracy of CDSS-assisted screening endoscopy
for the diagnosis of gastric atrophy and IM in real-world
applications. The expert endoscopist (CSB) performed all
endoscopic examinations, and the diagnostic accuracy rate
for gastric atrophy and IM was measured.

To estimate the clinical utility of the CDSS, 2 additional
experienced endoscopists were invited to perform a blind test
with the same data set. To compare the diagnostic performances
of the CDSS and endoscopists, we performed Fisher exact tests.
In this study, a P value <.05 (2-tailed) was adopted as the
threshold of statistical significance. The analyses were
performed using SPSS version 24.0 (SPSS).

Results

Characteristics of the Data Set
A total of 13,150 endoscopic still-cut images were included in
the study, comprising the training data set (n=9999), the internal
test data set (n=1869), and the external test data set (n=1282).
Of the images included in the training and internal test data sets
(n=11,868), those with IM made up the largest proportion
(n=3622; 30.5%), followed by normal (n=2990; 25.2%), atrophy
(n=2603; 21.9%), EGC (n=1067; 9%), dysplasia (n=932; 7.9%),
and AGC (n=654; 5.5%) images.

For the external data set, which comprised 1282 images
collected from another institution, the proportion of normal
images was the largest at 19.1% (n=245), followed by atrophy

images (n=243; 19%), IM images (n=235; 18.3%), EGC images
(n=190; 14.8%), AGC images (n=186; 14.5%), and dysplasia
images (n=183; 14.3%). These proportions reflect the distinctive
characteristics of the institution from which the images were
collected.

A total of 522 consecutive screening endoscopy images were
enrolled for prospective real-clinic evaluation of the established
CDSS. The proportion of images with atrophy was the largest
(n=252; 48.3%), followed by those with IM (n=134; 25.7%),
dysplasia (n=8; 1.5%), EGC (n=4; 0.8%), and AGC (n=3; 0.6%).
Details of the quantity of images and the distribution of
categories are presented in Table 1.

Internal Test Performance of CDSS Classification
Accuracy
Multimedia Appendices 1 and 2 describe the schematic
framework of the established lesion classification and lesion
segmentation models. The overall 6-class lesion classification
accuracy (95% CI) in the internal test data set of the
classification models was 90.3% (89%-91.6%). The accuracy
for each category was as follows: atrophy was 96.5%
(94.9%-98.1%), IM was 90.4% (87.4%-93.4%), EGC was 78.2%
(72.8%-83.6%), AGC was 86.2% (80.3%-92.1%), dysplasia
was 75.6% (69.6%-81.6%), and normal was 97%
(95.4%-98.6%). The detailed classification performance of the
established CDSS is described in Tables 2 and 3, and a
confusion matrix for the internal test classification performance
is presented in Multimedia Appendix 3. The detailed
hyperparameter information for the established lesion
classification model was as follows: weight initialization with
ImageNet; augmentation, horizontal/vertical flip, rotate (−10°
to +10°); input size, 300 x 300; batch size, 32; learning rate, 1

× 10-04; epoch, 100; dropout, 0.2; optimizer, SGD; loss function,
cross-entropy loss; and learning rate scheduler, cosine decay.

Table 2. Summary of the accuracy of internal and external test classifications by the established clinical decision support system.

Prospective real-clinic evalua-
tion data set (n=522), % (95%
CI)

External test data set (n=1282), %
(95% CI)

Internal test data set (n=1869), %
(95% CI)

Class

89.3 (86.6-92)85.3 (83.4-97.2)90.3 (89-91.6)Overall

100 (100-100)82.8 (77.4-88.2)86.2 (80.3-92.1)Advanced gastric cancer

50 (1-99)76.3 (70.3-82.3)78.2 (72.8-83.6)Early gastric cancer

75 (45-100)74.9 (68.6-81.2)75.6 (69.6-81.6)Dysplasia

92.1 (88.8-95.4)95.3 (92.6-98)96.5 (94.9-98.1)Atrophy

95.5 (92-99)89.3 (85.4-93.2)90.4 (87.4-93.4)Intestinal metaplasia

78.5 (71.2-85.8)88.2 (84.2-92.2)97 (95.4-98.6)Normal
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Table 3. Summary of the per-class classification performance of the established clinical decision support system for the internal and external test data
sets.

F1 scoreRecallPrecisionAccuracy

Internal test data set, % (95% CI)

87.5 (81.8-93.2)86.2 (80.3-92.1)88.9 (83.5-94.3)86.2 (80.3-92.1)Advanced gastric cancer

79.6 (74.3-84.9)78.2 (72.8-83.6)81.1 (76-86.2)78.2 (72.8-83.6)Early gastric cancer

73.0 (66.8-79.2)75.6 (69.6-81.6)70.6 (64.2-77)75.6 (69.6-81.6)Dysplasia

95.3 (93.2-97.4)96.5 (94.6-98.4)94.1 (91.7-96.5)96.5 (94.9-98.1)Atrophy

90.9 (88.4-93.4)90.4 (87.4-93.4)91.4 (89-93.8)90.4 (87.4-93.4)Intestinal metaplasia

98.2 (96.9-99.5)97 (95.4-98.6)99.5 (98.8-99.9)97 (95.4-98.6)Normal

External test data set, % (95% CI)

88.8 (84.3-93.3)82.8 (77.4-88.2)95.7 (92.8-98.6)82.8 (77.4-88.2)Advanced gastric cancer

79 (73.2-84.8)76.3 (70.3-82.3)81.9 (76.4-87.4)76.3 (70.3-82.3)Early gastric cancer

75.7 (69.5-81.9)74.9 (68.6-81.2)76.5 (70.4-82.6)74.9 (68.6-81.2)Dysplasia

87.5 (83.3-91.7)95.3 (92.6-98)80.9 (76-85.8)95.3 (92.6-98.0)Atrophy

87.5 (83.3-91.7)89.3 (85.3-93.3)85.8 (81.3-90.3)89.3 (85.4-93.2)Intestinal metaplasia

90 (86.2-93.8)88.2 (84.2-92.2)91.9 (88.5-95.4)88.2 (84.2-92.2)Normal

In terms of the lesion segmentation rate, the CDSS demonstrated
a segmentation rate of 93.4% (95% CI 92.4%-94.4%) for
atrophy or IM lesion segmentation in the internal test data set
(Table 4). Multimedia Appendix 4 shows the representative
segmentation results of atrophy and IM locations that correspond
to the ground truth area. The detailed hyperparameter

information for the established lesion segmentation model was
as follows: weight initialization with ImageNet; augmentation,
horizontal/vertical flip, rotate (−10° to +10°); input size, 352 x

352; batch size, 16; learning rate, 1 × 10-04; epoch, 100; dropout,
0.2; optimizer, Adam; loss function, binary cross-entropy +

IoU; and weight decay, 1 × 10-04.

Table 4. Summary of the segmentation performance of the established clinical decision support system.

Segmentation rate, % (95% CI)Dice (%), mean (SD)IoUa (%), mean (SD)

TotalIMAtrophyTotalIMbAtrophy

93.4 (92.4-94.4)84.7 (1.4)77.7 (1.8)87.6 (1.1)75 (1.7)66.6 (1.9)79.2 (1.6)Validation

93.4 (92.4-94.4)84.9 (1.3)78.7 (1.7)87.8 (1.0)75.3 (1.7)67.6 (1.9)79.4 (1.5)Internal test

aIoU: intersection over union.
bIM: intestinal metaplasia.

Performance Validation for the 6-Class Lesion
Classification Model
For performance validation with the external test data set, the
CDSS achieved an overall accuracy (95% CI) of 85.3%
(83.4%-97.2%). The accuracy for each category was as follows:
atrophy was 95.3% (92.6%-98%), IM was 89.3%
(85.4%-93.2%), EGC was 76.3% (70.3%-82.3%), AGC was
82.8% (77.4%-88.2%), dysplasia was 74.9% (68.6%-81.2%),
and normal was 88.2% (84.2%-92.2%). The detailed
performance of the established CDSS is described in Table 2,
and a confusion matrix for the external test performance is
presented in Multimedia Appendix 5.

For performance validation with the prospective real-clinic
evaluation data set, the CDSS achieved an overall accuracy of
89.3% (86.6%-92%). The accuracy for each category was as
follows: atrophy was 92.1% (88.8%-95.4%), IM was 95.5%
(92%-99%), EGC was 50% (1%-99%), AGC was 100%

(100%-100%), dysplasia was 75% (45%-100%), and normal
was 78.5% (71.2%-85.8%). The detailed performance of the
established CDSS is described in Table 2, and a confusion
matrix for the prospective real-clinic evaluation performance
is presented in Multimedia Appendix 6.

To estimate the clinical utility of the CDSS, 2 experienced
endoscopists (HMJ and GHB) were invited to perform a blind
test with the same data set. For the first endoscopist, the overall
accuracy was 87.5% (84.7%-90.3%), and the accuracy for each
category was as follows: atrophy was 86.1% (81.8%-90.4%),
IM was 80.6% (73.9%-87.3%), EGC was 75% (32.6%-99%),
AGC was 100% (100%-100%), dysplasia was 62.5%
(29%-96%), and normal was 100% (100%-100%). For the
second endoscopist, the overall accuracy was 90.8%
(88.3%-93.3%), and the accuracy for each category was as
follows: atrophy was 91.3% (87.8%-94.9%), IM was 84.4%
(73.9%-94.8%), EGC was 100% (100%-100%), AGC was 100%
(100%-100%), dysplasia was 87.5% (64.6%-100%), and normal
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was 90.9% (85.8%-96%). The Cohen κ for the interrater
reliability between the 2 endoscopists was 0.83. There was no
significant difference in the overall accuracy between the invited
endoscopists and the established CDSS in the prospective
real-clinic evaluation data set (P=.23).

Representative Examples of the CDSS for Real-Clinic
Application
Multimedia Appendix 7 shows representative examples of the
CDSS for the classification and segmentation of gastric atrophy
and IM. The established CDSS detected, classified, and
segmented gastric atrophy and IM on the angle and lesser
curvature sides of the body. A small subepithelial tumor was
detected and correctly classified as normal.

Discussion

Principal Findings
This study established a CDSS that accurately classifies all
stages of gastric carcinogenesis and confirmed that the
diagnostic accuracy of 6 classes is potentially accurate for
real-world clinical applications. Our research group previously
established a classification model with 4 or 5 classes for the
diagnosis of detected lesions during upper gastrointestinal
endoscopy [8,11]. Normal, dysplasia (low-grade or high-grade),
EGC, and AGC were the diagnostic categories. However,
preneoplastic conditions, such as gastric atrophy and IM, are
important categories in which hidden neoplastic lesions or
potential lesions for the development of neoplastic lesions are
implicated. Our previously established CDSS did not include
these categories and considered them to be normal [8,11]. In
general, as the number of target classification categories
increases, classification accuracy decreases. However, when
compared to our other models, our established CDSS performed
similarly or even better in terms of diagnostic performance.
This is most likely due to an increase in the number of training
data images.

Comparison to Prior Work
The presence of external validation is one of the strengths of
this study. Even the majority of US Food and Drug
Administration–approved medical AI models lack external
validation, which ensures the established model’s
generalizability [22]. The majority of currently established
models are trained on data from their own institution. As a result,
internal test performance is good; however, external test
performance suffers due to the “data set shift” phenomenon
(differences in data settings, patient characteristics, and so on)
[14-17,22]. Our established model also demonstrated lower
external test performance when compared to internal test
performance; however, the magnitude of the performance
decrease was minor, and external test accuracy was still high
enough to potentially be used in real-clinic applications.

We also performed prospective real-clinic application
performance validation to decrease the gap between theory and
practice. When compared to the training data set, real-world
clinical practice has distinct characteristics. For the training
data set, we included an even number of images in each
category; this was because class distribution influences the

overall performance of the established model [16]. The inclusion
of a class with an insufficient number of images negatively
impacts the performance for that class and the established model
as a whole; this is known as spectrum bias [14-16]. However,
clinical practice differs. The majority of screening endoscopies
are classified as “normal,” with only a small number of patients
being diagnosed with neoplastic conditions. As a result,
neoplastic lesion–focused AI diagnosis models may be clinically
ineffective. The current CDSS was developed using the
previously established 4-class diagnosis model of gastric
neoplasms [11]. We added the ability to make more precise
diagnoses of preneoplastic or nonneoplastic conditions. As a
result, the current CDSS may be useful in real-world
applications. Prospective real-clinic application performance
revealed potentially high accuracy not only for gastric atrophy
and IM lesions, but also overall accuracy. There was also no
significant difference in the overall accuracy between the
experienced endoscopists and the established CDSS.

Target conditions and training data sets distinguish our
established CDSS from previously reported models. Guimarães
et al [23] created an atrophy detection model that outperformed
expert endoscopists with 93% accuracy in an independent data
set. Zhang et al [24] also developed a lesion detection model
for gastric atrophy that was 94% accurate. Zhao and Chi [25]
also developed a gastric atrophy lesion detection model and
demonstrated that using this model improved gastric atrophy
diagnosis rates when compared to not using the model. Luo et
al [26] created a lesion detection model for gastric atrophy that
outperformed endoscopists in detection performance. However,
the utility of this type of data set in real-world clinical practice
is limited. These studies generated a training data set that
included only atrophy and no atrophy categories. The categories
of gastric cancer, normal, and IM were not considered in these
studies. Because they only allow for discrimination between
atrophy versus no atrophy, the clinical utility of these models
is limited. Siripoppohn et al [27] developed a real-time semantic
segmentation model for IM; despite its excellent diagnostic
performance, only IM could be segmented in real time.

Strengths
Various conditions are included in the “normal” category of
upper gastrointestinal endoscopy, which excludes neoplastic
lesions. It is common to have gastritis without atrophy or IM.
These include mucosal edema or exudates, hemorrhagic spots,
erosions, hyperemic mucosa, and other conditions. On the other
hand, there are also more complicated benign conditions, such
as benign ulcers or ulcer scars, subepithelial tumors, xanthomas,
nonneoplastic polyps (eg, fundic gland or hyperplastic polyps),
or angiodysplasias. To complement the endoscopic inspection
without interfering with the operator’s examination, our CDSS
was established. This CDSS detects stomach lesions
automatically and provides additional information (histologic
prediction) via an alarm sound and a lesion detection box. The
effect of this system varies depending on the level of expertise
of the endoscopist, and previous research has shown that
endoscopists with a certain level of expertise benefit the most
from this CDSS [10].
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Future Directions
Multimodal AI foundation models, including large language
models, are becoming more popular. This type of model may
perform a more sophisticated practice involving decision
making. Using these models, it would be possible to create a
multimodal CDSS capable of not only supplementing
endoscopic examinations but also writing endoscopic reports
and providing personalized explanations or recommendations
[22]. CDSS detection and classification of all gastric lesions,
including benign conditions, may not be required for expert
endoscopists; however, trainee or novice endoscopists may
require the assistance of this CDSS to ensure a consistent level
of performance for the detection or classification of lesions
during endoscopic examination. Creating such complex models
would be possible with the help of multimodal foundation AI
models.

Limitations
Despite the benefits of our established CDSS, an inherent flaw
arising from the study design and retrospectively collected data
was discovered in this study. The training data set was obtained
from a single institution, which may indicate a bias in selection
or spectrum. Because of the unique characteristics of each
institution’s patients, medical AI models developed from a
single institution typically have limitations for widespread
implementation, highlighting the importance of external testing.
To compensate for this flaw, we used rigorous prospective
validations using images from another institution. In addition,
we validated the clinical utility through prospective real-clinic
application validation.

In conclusion, the CDSS demonstrated high performance in
terms of computer-aided diagnosis of all stages of gastric
carcinogenesis and demonstrated real-world application
potential.
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Structure of the established lesion classification model (1). FC: fully connected layer; MBConv: mobile inverted bottleneck
convolution.
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Multimedia Appendix 2
Structure of the established lesion classification model (2). FC: fully connected layer; MBConv: mobile inverted bottleneck
convolution; SE: squared exponential.
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Multimedia Appendix 3
Confusion matrix for the internal test classification performance. AGC: advanced gastric cancer; EGC: early gastric cancer; IM,
intestinal metaplasia.
[PNG File , 66 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Representative segmentation results of atrophy and IM locations that correspond to the ground truth area (original image vs model
prediction vs ground truth).
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Multimedia Appendix 5
Confusion matrix for the external test classification performance. AGC: advanced gastric cancer; EGC: early gastric cancer; IM:
intestinal metaplasia.
[PNG File , 66 KB-Multimedia Appendix 5]

Multimedia Appendix 6
Confusion matrix for the prospective real-clinic evaluation performance. AGC: advanced gastric cancer; EGC: early gastric
cancer; IM: intestinal metaplasia.
[PNG File , 57 KB-Multimedia Appendix 6]

Multimedia Appendix 7
Representative examples of the use of the clinical decision support system for the classification and segmentation of gastric
atrophy and intestinal metaplasia.
[MP4 File (MP4 Video), 21042 KB-Multimedia Appendix 7]
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