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Abstract

Background: Within the trauma system, the emergency department (ED) is the hospital’s first contact and is vital for allocating
medical resources. However, there is generally limited information about patients that die in the ED.

Objective: The aim of this study was to develop an artificial intelligence (AI) model to predict trauma mortality and analyze
pertinent mortality factors for all patients visiting the ED.

Methods: We used the Korean National Emergency Department Information System (NEDIS) data set (N=6,536,306),
incorporating over 400 hospitals between 2016 and 2019. We included the International Classification of Disease 10th Revision
(ICD-10) codes and chose the following input features to predict ED patient mortality: age, sex, intentionality, injury, emergent
symptom, Alert/Verbal/Painful/Unresponsive (AVPU) scale, Korean Triage and Acuity Scale (KTAS), and vital signs. We
compared three different feature set performances for AI input: all features (n=921), ICD-10 features (n=878), and features
excluding ICD-10 codes (n=43). We devised various machine learning models with an ensemble approach via 5-fold cross-validation
and compared the performance of each model with that of traditional prediction models. Lastly, we investigated explainable AI
feature effects and deployed our final AI model on a public website, providing access to our mortality prediction results among
patients visiting the ED.

Results: Our proposed AI model with the all-feature set achieved the highest area under the receiver operating characteristic
curve (AUROC) of 0.9974 (adaptive boosting [AdaBoost], AdaBoost + light gradient boosting machine [LightGBM]: Ensemble),
outperforming other state-of-the-art machine learning and traditional prediction models, including extreme gradient boosting
(AUROC=0.9972), LightGBM (AUROC=0.9973), ICD-based injury severity scores (AUC=0.9328 for the inclusive model and
AUROC=0.9567 for the exclusive model), and KTAS (AUROC=0.9405). In addition, our proposed AI model outperformed a
cutting-edge AI model designed for in-hospital mortality prediction (AUROC=0.7675) for all ED visitors. From the AI model,
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we also discovered that age and unresponsiveness (coma) were the top two mortality predictors among patients visiting the ED,
followed by oxygen saturation, multiple rib fractures (ICD-10 code S224), painful response (stupor, semicoma), and lumbar
vertebra fracture (ICD-10 code S320).

Conclusions: Our proposed AI model exhibits remarkable accuracy in predicting ED mortality. Including the necessity for
external validation, a large nationwide data set would provide a more accurate model and minimize overfitting. We anticipate
that our AI-based risk calculator tool will substantially aid health care providers, particularly regarding triage and early diagnosis
for trauma patients.

(J Med Internet Res 2023;25:e49283) doi: 10.2196/49283
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Introduction

Trauma is the foremost cause of mortality worldwide, especially
for those aged under 45 years [1]. Despite recent advances,
trauma-related mortality remains a substantial challenge. In the
trauma system, the emergency department (ED) is the hospital’s
first contact and is vital for allocating medical resources [2].
Decision-making in the ED is crucial and determines further
treatment or diagnosis [2,3]; thus, decisions should be made
promptly and accurately to reduce the “golden hours” for
treatment of a patient with severe trauma. Predicting ED
mortality is critical for improving the trauma system and
reducing individual, medical staff, and societal burdens. Injury
severity, patient demographics, prehospital care, ED trauma
care quality, and other complex and multifactorial elements that
affect ED mortality pose challenges at gaining an in-depth
understanding of the key factors contributing to ED mortality
as a whole. Furthermore, ED mortality encompasses
considerably more severe injuries than in-hospital mortality,
and most patients that die in the ED may not receive additional
diagnostic workups or treatments such as computed tomography
(CT), angiography, or surgery. Due to hemodynamic instability,
a complete workup is nearly impossible for unstable ED trauma
patients. Therefore, ED mortality prediction depends on limited
information, which could be facilitated by recent advancements
in artificial intelligence (AI) technology.

Our research team previously developed two AI models for
predicting in-hospital trauma patient mortality [4,5]; one utilizes
Abbreviated Injury Scale (AIS) codes and the other incorporates
the International Classification of Diseases, 10th revision
(ICD-10) codes and other variables from the Korean National
Emergency Department Information System (NEDIS) data set.
Deceased ED patients were excluded from these models, as we
assumed they may have received an insufficient workup or
indicate an inaccurate diagnosis in previous studies. These AI
models exhibited high accuracy for predicting in-hospital
mortality but did not effectively learn from deceased ED patient
data.

We deemed that ED patients who died before admission
sustained severe injuries and that their information was
insufficient compared to that available for patients who died
after intensive care unit (ICU) or ward admission. We concluded
that ED mortality should be predicted using a different patient
data set than in-hospital mortality, and that the new model

should also have alternative weights and input variables.
Therefore, in this study, we developed AI models for predicting
ED mortality in trauma patients using the NEDIS data set that
was not incorporated into the previous AI models [4,5].

Methods

Patients and Data Set
The Korean National Emergency Medical Center has gathered
NEDIS data from over 400 hospitals in Korea since 2016. This
study employed the 2016 to 2019 NEDIS data set (data
acquisition number N20212920825) to develop an AI model
for predicting trauma mortality among all patients visiting the
ED according to the Transparent Reporting of a Multivariable
Model for Individual Prognosis or Diagnosis (TRIPOD)
statement [6]. Data used for the AI model included those related
to patients experiencing physical trauma (but not psychological)
with an “S” or “T” diagnostic code from the ICD-10
(N=7,664,443); the S code represents trauma in a single body
region, whereas T signifies trauma in multiple or unspecified
regions. All ED patient data with an S or T diagnosis code were
included, regardless of ward or ICU admittance or discharge.

Patient data with the following conditions were excluded: (1)
patients who died before or upon hospital arrival (n=9506,
0.12%), who were regarded as dead-on-arrival and did not
undergo any treatment or cardiopulmonary resuscitation; (2)
ED patients who died due to severe conditions without further
treatment, such as cardiac arrest without receiving
cardiopulmonary resuscitation, despite being brought to the
hospital alive (n=2800, 0.04%); (3) nontrauma patients (n=156,
0.002%); (4) patients transferred to another hospital from the
ED (n=124,180, 1.62%); (5) patients with end-stage disease
such as cancer who wished to receive care at home (n=2050,
0.03%); (6) patients who had to leave the hospital because there
was no hope of recovery (n=270, 0.003%); (7) voluntarily
discharged patients (n=162,499, 2.12%); (8) patients for whom
it was difficult to record data due to being unidentifiably
detained for criminal activity (n=29,242, 0.38%); (9) patients
without S or T diagnostic codes, since all physical trauma
receives an S or T diagnostic code; and (10) patients with
frostbite (ICD-10 T33-T35.6), intoxication (ICD-10 T36-T65),
or unspecified injury or complication diagnostic codes (ICD-10
T66-T78, T80-T88) (n=797,434, 10.4%). Our AI model was
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trained and tested using data from 6,536,306 patients. Figure 1 presents the patient selection process.

Figure 1. Patient selection process. ED: emergency department; S: International Classification of Diseases (ICD) code to signify trauma in a single
body region; T: ICD code to signify trauma in multiple or unspecified regions.

AI Model Variables
This study followed Developing and Reporting Machine
Learning Predictive Models in Biomedical Research guidelines
[7]. We used the following 14 NEDIS data variables for AI
model input: age; gender; intentionality; injury mechanism;
emergent symptom; Alert, Verbal, Painful, Unresponsive
(AVPU) scale; initial Korean Triage and Acuity Scale (KTAS);
systolic blood pressure; diastolic blood pressure; pulse rate per
minute; respiratory rate per minute; body temperature; oxygen
saturation; and ICD-10 codes. Moreover, intentionality includes
six categories: accidental/unintentional, self-harm/suicide,
violence/assault, other specified, unspecified, and missing data.
The injury mechanism comprises 16 categories: car accident,
bike accident, motorcycle accident, other traffic accidents,
unspecified traffic accident, fall, slipped, struck,
firearm/cut/pierce, machine, fire/flames/heat, drowning,
poisoning, choking/hanging, others, and unknown. Emergency
and nonemergency are the two emergent symptom categories.
The AVPU scale is a simplified version of the Glasgow Coma
Scale (GCS) [8,9] and includes four categories: A, alert; V,

verbal responsive (drowsy); P, painful response (stupor,
semicoma); and U, unresponsive (coma).

The KTAS is a standardized triage tool that avoids complexity
and ambiguity by employing five categories: Level 1,
resuscitation; Level 2, emergent; Level 3, urgent; Level 4, less
urgent; and Level 5, nonurgent. The KTAS was initially
developed as an ED severity triage in 2012, based on the
Canadian Triage and Acuity Scale [10]. According to NEDIS
policy, a certified faculty member must conduct the initial KTAS
within 2 minutes of ED admission. ICD-10 codes starting with
S or T entail 865 categories. All AI model variables are
summarized in Table S1 of Multimedia Appendix 1. The
mortality of patients visiting the ED was defined as a patient
with a dead result code or an indication of discharge with
medical futility in NEDIS.

Data Split and Cross-Validation
Training and testing data used in this study are detailed in Table
S2 of Multimedia Appendix 1. Data from 6,536,306 patients
were divided into training (n=5,229,008) and testing
(n=1,307,252) data sets with an 8:2 ratio in a stratified fashion.
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Only the testing set was used to test our developed AI model.
We first performed 5-fold cross-validation in the training data
set to assess how the prediction results generalize to an
independent data set. The training data set was randomly
shuffled and stratified into five equal groups, of which four
were selected for training and the remaining group was used
for internal validation. This process was repeated five times by
shifting the internal validation group.

Handling Data Imbalance
The data were severely imbalanced as there were 6351 (0.1%)
deceased patients recorded (Table S2 in Multimedia Appendix
1). To minimize the model bias toward a majority (ie, the
survived patient group), we used the synthetic minority
oversampling technique (SMOTE) [11] to upsample the
deceased patient quantity and match the survived patient group.
Next, we identified each group’s optimized weight values for
the loss function during model training. We then iteratively
learned demographic parity-based coefficients for the weight
value search [12], providing a closed-form expression for the
data weights. These two methods prevented bias toward survived
patient data.

Machine Learning Models
We used three feature sets to develop our AI model: the first
set included all 921 NEDIS variables and 878 features from
ICD-10 codes, the second set only used the 878 features from
ICD-10 codes, and the third set utilized all features except those
from ICD-10 codes. We applied eight machine learning models
from each feature set: adaptive boosting (AdaBoost) [13],
extreme gradient boosting (XGBoost) [14], light gradient
boosting machine (LightGBM) [15], gradient boosting machine
(GBM) [16], extremely random trees (ERT) [17], logistic
regression (LR) [18], random forest (RF) [19], and deep neural
network (DNN). We chose the best three among the eight
models and applied an ensemble approach by considering all
possible combinations. Finally, we evaluated the feature
importance, listing features in the order they contributed to
mortality prediction.

In decision tree approaches such as AdaBoost, XGBoost, and
LightGBM, calculating feature importance values hinges on
assessing the decrease in node impurity while factoring in the
probability of reaching each node. Node impurity is determined
using a well-established metric called the Gini index, which
quantifies the impurity degree at a given node by measuring the
extent to which a specific variable would be incorrectly
classified if selected randomly. The impurity is evaluated by
considering the weighted sum of each class’s squared
probabilities within the node. This comprehensive methodology
incorporates node probabilities, impurity measures, and feature
importance calculations, allowing for a nuanced understanding
of how different variables impact prediction outcomes and can
offer valuable insights for decision-making and analysis.

Performance evaluations were based on 5-fold cross-validation
using the following metrics: sensitivity, specificity, accuracy,
balanced accuracy, and area under the receiver operating
characteristic (ROC) curve (AUROC). Due to the significant
data imbalance, we used balanced accuracy as the primary model
evaluation metric.

The models used Python (version 3.7.13), NumPy (version
1.21.6), Pandas (version 1.3.5), Matplotlib (version 3.5.1), and
Scikit-learn (version 1.0.2). All statistical analyses were
performed with R software version 4.1.2 (R Foundation for
Statistical Computing). Continuous variables are presented using
the mean and standard deviation, while categorical data are
presented using proportions. Statistical continuous data
comparisons were performed using the Student t-test or the
Mann-Whitney U test as appropriate. Similarly, proportions

were compared through χ2 or Fisher exact tests as appropriate.
A two-sided P value <.05 was considered statistically
significant.

Conventional Metrics
To further evaluate the performance of our AI model, we
implemented ICD-10–based conventional metrics for
comparison: inclusive survival risk ratio (SRR), exclusive SRR,
and KTAS. The ICD-based Injury Severity Score (ICISS)
utilizes the SRR to calculate survival probability [20]. SRRs
can be quantified as the number of survived patients with a
specific injury code divided by all patients with the same code.
Patient survival probability was determined by multiplying all
patient injury code SRRs [20]. The traditional ICISS was
calculated as the survival probability product for up to 10
injuries [21]. There are two different SRR calculation
approaches: inclusive and exclusive SRR. Inclusive SRR can
be calculated for each injury without considering the associated
injury. In contrast, exclusive SRR divides the number of
survivors with an isolated specific injury by the total number
of patients with only that injury. Thus, patients with multiple
injuries were excluded from exclusive SRR calculations [20].
We used the survival probability determined from our previous
study [5] because other studies [20,21] did not use ED mortality.

Ethical Approval
The Institutional Review Board of Wonkwang University
Hospital approved this study (WKUH 2019-11-004-001). The
requirement for informed consent was waived due to the study’s
observational nature and the deidentification of each patient.

Results

Patients
Table 1 shows a comparison of the main variables between the
deceased and survived patients among all patients visiting the
ED, whereas Table S3 of Multimedia Appendix 1 compares
ICD-10 codes between deceased and survived patients (878
features).
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Table 1. National Emergency Department Information System variable comparison between deceased and survived patients among all patients visiting
the emergency department.

P valueSurvived (n=6,529,909)Deceased (n=6351)Variables

<.001Age (years), n (%)

91,585 (1.4)7 (0.1)<1

711,018 (10.9)36 (0.6)1-4

425,503 (6.5)41 (0.6)5-9

289,072 (4.4)53 (0.8)10-14

329,548 (5.0)190 (3.0)15-19

412,019 (6.3)271 (4.3)20-24

433,147 (6.6)272 (4.3)25-29

386,563 (5.9)275 (4.3)30-34

414,559 (6.3)277 (4.3)35-39

386,061 (5.9)323 (5.1)40-44

442,058 (6.8)488 (7.7)45-49

456,820 (7.0)573 (9.0)50-54

480,396 (7.4)692 (10.9)55-59

362,980 (5.6)576 (9.1)60-64

244,581 (3.7)505 (8.0)65-69

199,392 (3.1)488 (7.7)70-74

196,499 (3.0)587 (9.2)75-79

149,770 (2.3)420 (6.6)80-84

81,181 (1.2)196 (3.1)85-89

29,114 (0.4)52 (0.8)90-94

7025 (0.1)16 (0.3)95-99

840 (0)12 (0.2)100-104

111 (0)0 (0)105-109

42 (0)0 (0)110-114

24 (0)1 (0)115-119

1 (0)0 (0)≥120

Initial KTASa, n (%)

<.00110,941 (0.2)5214 (82.1)Level 1

<.001134,003 (2.1)795 (12.5)Level 2

<.0011,044,687 (16.0)219 (3.4)Level 3

<.0014,211,165 (64.5)49 (0.8)Level 4

<.001858,996 (13.2)1 (0)Level 5

.99227 (0)0 (0)Not classified

<.001269,890 (4.1)73 (1.1)Missing data

Intentionality, n (%)

<.0015,151,631 (78.9)4734 (74.5)Accidental, unintentional

<.00128,347 (0.4)399 (6.3)Suicide, intentional self-harm

<.001191,857 (2.9)74 (1.2)Assault, violence

<.00121,874 (0.3)217 (3.4)Other specified

<.00182,701 (1.3)707 (11.1)Unspecified
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P valueSurvived (n=6,529,909)Deceased (n=6351)Variables

<.0011,053,499 (16.1)220 (3.5)Missing data

Injury mechanism, n (%)

<.001575,270 (8.8)1073 (16.9)Car accident

.01130,385 (2.0)155 (2.4)Bike accident

<.001128,419 (2.0)579 (9.1)Motorcycle accident

<.001173,313 (2.7)1521 (23.9)Traffic accident-pedestrian, train,
airplane, ship, etc

<.001769 (0.0)32 (0.5)Traffic accident-unknown

<.001379,735 (5.8)1790 (28.2)Fall

<.0011,087,804 (16.7)80 (1.3)Slipped

<.0011,173,585 (18.0)233 (3.7)Struck by person or object

<.001787,042 (12.1)149 (2.3)Firearm, cut, or pierced

<.00162,910 (1.0)46 (0.7)Machine

<.001175,797 (2.7)29 (0.5)Fire, flames, or heat

<.001546 (0.0)16 (0.3)Drowning or nearly drowning

.737,639 (0.1)6 (0.1)Poisoning

<.0013,817 (0.1)105 (1.7)Choking, hanging

<.001684,468 (10.5)62 (1.0)Others-rape, electric

<.001104,911 (1.6)255 (4.0)Unknown

<.0011,053,499 (16.1)220 (3.5)Missing data

Emergent symptom, n (%)

<.0015,245,303 (80.3)6262 (98.6)Yes

<.0011,284,606 (19.7)89 (1.4)No

0 (0.0)0 (0.0)Unspecified

AVPUb scale, n (%)

<.0015,340,780 (81.8)364 (5.7)Alert

<.00141,488 (0.6)238 (3.7)Verbal response (drowsy)

<.00120,004 (0.3)532 (8.3)Painful response (stupor, semicoma)

<.0015,695 (0.1)4973 (78.3)Unresponsive (coma)

<.0011,121,942 (17.2)244 (3.8)Unspecified response

<.0013,839,715 (58.8)4446 (70.0)Male sex, n (%)

<.001132.39 (18.24)125.98 (22.76)Systolic blood pressure, mean (SD)

<.00179.83 (11.29)76.71 (13.57)Diastolic blood pressure, mean (SD)

<.00187.59 (15.92)89.71 (15.50)Pulse rate per minute, mean (SD)

.00119.94 (2.84)20.07 (3.00)Respiratory rate per minute, mean (SD)

<.00136.62 (0.40)36.15 (0.93)Body temperature, mean (SD)

<.00198.08 (1.56)94.86 (9.72)Oxygen saturation, mean (SD)

aKTAS: Korean Triage and Acuity Scale.
cAVPU: Alert/Verbal/Painful/Unresponsive.

K-Fold Cross-Validation
Table 2 summarizes the 5-fold cross-validation results. The
AdaBoost model with all 921 features achieved the highest
balanced accuracy (0.9801) and AUROC (0.9973) values among

the seven models: XGBoost, LightGBM, AdaBoost with
XGBoost, AdaBoost with Light GBM, XGBoost with
LightGBM, and the three models combined. In addition, the
921-feature model provided higher accuracy metrics than the
878-feature model with the ICD-10 codes and the 43-feature
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model excluding the ICD-10 codes. Interestingly, the model
with all features except for the ICD-10 codes reached higher
accuracy metrics than the 878-feature model with the ICD-10
codes.

These results substantiate that patient information, symptoms,
and trauma causes predict mortality better than ICD-10 codes.
We also compared the performance of traditional methods.
Inclusive SRR, exclusive SRR, and KTAS exhibited lower
balanced accuracies (0.9069, 0.9175, and 0.9619, respectively)
and AUROCs (0.9345, 0.9554, and 0.9372, respectively).
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Table 2. Five-fold cross-validation result comparison.

AUROCa, mean (SD)Balanced accuracy,
mean (SD)

Accuracy, mean
(SD)

Specificity, mean
(SD)

Sensitivity, mean
(SD)

Model

921 features (including ICD-10b)

0.9973 (0.0005)0.9801 (0.0035)0.9801 (0.0035)0.9890 (0.0040)0.9713 (0.0060)AdaBoostc

0.9968 (0.0004)0.9786 (0.0016)0.9786 (0.0016)0.9897 (0.0034)0.9674 (0.0035)XGBoostd

0.9968 (0.0005)0.9788 (0.0015)0.9788 (0.0015)0.9898 (0.0034)0.9678 (0.0034)LightGBMe

0.9319 (0.0054)0.8713 (0.0059)0.8713 (0.0059)0.9475 (0.0074)0.7952 (0.0088)GBMf

0.9542 (0.0051)0.9095 (0.0063)0.9095 (0.0063)0.9248 (0.0110)0.8944 (0.0106)ERTg

0.9717 (0.0027)0.9723 (0.0026)0.9723 (0.0026)0.9933 (0.0030)0.9514 (0.0052)LRh

0.9872 (0.0034)0.9488 (0.0116)0.9488 (0.0206)0.9667 (0.0086)0.9310 (0.0116)RFi

0.9944 (0.0012)0.9778 (0.0038)0.9778 (0.0038)0.9847 (0.0048)0.9708 (0.0058)DNNj

0.9970 (0.0005)0.9787 (0.0016)0.9787 (0.0016)0.9899 (0.0034)0.9675 (0.0036)AdaBoost+XGBoost

0.9970 (0.0005)0.9790 (0.0014)0.9790 (0.0014)0.9900 (0.0033)0.9681 (0.0034)AdaBoost+LightGBM

0.9968 (0.0004)0.9787 (0.0016)0.9787 (0.0016)0.9899 (0.0034)0.9675 (0.0036)XGBoost+LigtGBM

0.9970 (0.0005)0.9787 (0.0016)0.9787 (0.0016)0.9899 (0.0034)0.9675 (0.0036)AdaBoost+XGBoost+Light-
GBM

878 features (ICD-10 only)

0.9448 (0.0056)0.8845 (0.0053)0.8845 (0.0053)0.9429 (0.0070)0.8261 (0.0073)AdaBoost

0.8929 (0.0051)0.8261 (0.0095)0.8261 (0.0095)0.9722 (0.0065)0.6801 (0.0172)XGBoost

0.8939 (0.0056)0.8297 (0.0072)0.8297 (0.0072)0.9717 (0.0071)0.6877 (0.0140)LightGBM

0.9319 (0.0054)0.8713 (0.0059)0.8713 (0.0059)0.9475 (0.0074)0.7952 (0.0088)GBM

0.9542 (0.0051)0.9096 (0.0063)0.9096 (0.0063)0.9248 (0.0110)0.8944 (0.0106)ERT

0.9401 (0.0066)0.8537 (0.0054)0.8537 (0.0055)0.9540 (0.0060)0.7535 (0.0110)LR

0.9265 (0.0070)0.8169 (0.0185)0.8169 (0.0185)0.9724 (0.0125)0.6615 (0.0424)RF

0.9867 (0.0023)0.9559 (0.0059)0.9559 (0.0059)0.9788 (0.0126)0.9329 (0.0158)DNN

0.9408 (0.0047)0.8325 (0.0059)0.8325 (0.0060)0.9719 (0.0068)0.6931 (0.0101)AdaBoost+XGBoost

0.9408 (0.0048)0.8337 (0.0068)0.8337 (0.0068)0.9715 (0.0070)0.6960 (0.0124)AdaBoost+LightGBM

0.8939 (0.0055)0.8271 (0.0089)0.8271 (0.0089)0.9719 (0.0068)0.6824 (0.0150)XGBoost+LigtGBM

0.9405 (0.0048)0.8313 (0.0063)0.8312 (0.0063)0.9718 (0.0070)0.6908 (0.0104)AdaBoost+XGBoost+Light-
GBM

43 features (excluding ICD-10)

0.9965 (0.0007)0.9781 (0.0020)0.9781 (0.0020)0.9854 (0.0062)0.9707 (0.0050)AdaBoost

0.9960 (0.0005)0.9773 (0.0014)0.9773 (0.0014)0.9889 (0.0039)0.9658 (0.0040)XGBoost

0.9961 (0.0004)0.9774 (0.0013)0.9774 (0.0013)0.9887 (0.0041)0.9661 (0.0040)LightGBM

0.9965 (0.0006)0.9793 (0.0021)0.9793 (0.0021)0.9858 (0.0054)0.9729 (0.0036)GBM

0.9937 (0.0011)0.9770 (0.0024)0.9770 (0.0024)0.9828 (0.0052)0.9712 (0.0041)ERT

0.9941 (0.0009)0.9685 (0.0023)0.9685 (0.0023)0.9921 (0.0029)0.9448 (0.0053)LR

0.9818 (0.0018)0.9291 (0.0062)0.9291 (0.0061)0.9503 (0.0107)0.9079 (0.0089)RF

0.9424 (0.0050)0.8854 (0.0104)0.8854 (0.0104)0.8903 (0.0465)0.8805 (0.0482)DNN

0.9962 (0.0005)0.9774 (0.0013)0.9774 (0.0013)0.9888 (0.0040)0.9660 (0.0039)AdaBoost+XGBoost

0.9962 (0.0005)0.9775 (0.0012)0.9775 (0.0012)0.9890 (0.0041)0.9661 (0.0039)AdaBoost+LightGBM

0.9960 (0.0005)0.9774 (0.0012)0.9774 (0.0012)0.9889 (0.0040)0.9659 (0.0039)XGBoost+LigtGBM
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AUROCa, mean (SD)Balanced accuracy,
mean (SD)

Accuracy, mean
(SD)

Specificity, mean
(SD)

Sensitivity, mean
(SD)

Model

0.9961 (0.0005)0.9776 (0.0013)0.9776 (0.0013)0.9891 (0.0041)0.9661 (0.0039)AdaBoost+XGBoost+Light-
GBM

Traditional methods

0.93450.90690.88670.88670.9271Inclusive SRRk

0.95540.91750.91000.91000.9250Exclusive SRR

0.93720.96190.97780.97780.9461KTASl

aAUROC: area under the receiver operating characteristic curve.
bICD-10: International Classification of Disease 10th Revision.
cAdaBoost: adaptive boosting.
dXGBoost: extreme gradient boosting.
eLightGBM: light gradient boosting machine.
fGBM: gradient boosting machine.
gERT: extremely random trees.
hLR: logistic regression.
iRF: random forest.
jDNN: deep neural network.
kSRR: survival risk ratio.
lKTAS: Korean Triage and Acuity Scale.

Ranked Feature Importance: Explainable AI
Next, we conducted a feature importance analysis to confirm
each feature’s contribution. Figure 2 ranks the normalized
feature importance from the AdaBoost model, which showed
the best performance. Age and systolic blood pressure were the
top two mortality predictors among visiting ED patients,
followed by unresponsiveness (coma), pulse rate per minute,

oxygen saturation, KTAS Level 5, S224 (multiple rib fractures),
respiratory rate per minute and painful response (stupor and
semicoma). Interestingly, only 49 among the 921 features had
nonzero importance values, indicating that the other 872 features
did not contribute to mortality prediction. Table S4 in
Multimedia Appendix 1 summarizes the total ranked normalized
feature importance values.
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Figure 2. Ranked normalized feature importance from the selected AdaBoost model. KTAS: Korean Triage and Acuity Scale. See Table S5 in Multimedia
Appendix 1 for the definition of "S" and "T" International Classification of Diseases 10th revision codes.

Testing Data
Table 3 summarizes the results from the isolated testing data
set results (n=1,307,252). The testing data results corroborate
that the 921-feature AdaBoost model achieved the highest
balanced accuracy (0.9813) and AUROC (0.9974) values among
the seven models: XGBoost, LightGBM, AdaBoost with
XGBoost, AdaBoost with Light GBM, XGBoost with
LightGBM, and the three-model combination. Similar to the
cross-validation results, the 921-feature model provided higher
accuracy metrics than the 878-feature model with ICD-10 codes
and the 43-feature model excluding ICD-10 codes. Furthermore,
our selected model also performed better than traditional
inclusive SRR, exclusive SRR, and KTAS methods (see Table
S5 in Multimedia Appendix 1). The similarity between the
cross-validation and testing data results denotes minimal
overfitting or underfitting. Figure 3 depicts the ROC curve

comparison, including comparison of the selected AdaBoost
model and the three traditional models (left) and the selected
AdaBoost model relative to the 921-, 878-, and 43-feature
models (right).

Finally, we compared the performance of the cutting-edge AI
model, as it was designed for in-hospital mortality predictions
based on the NEDIS data set [5]. The in-hospital mortality
model’s balanced accuracy and AUROC values were lower,
regardless of the feature set. Notably, the in-hospital mortality
model with all 921 features obtained 0.9614 balanced accuracy
and 0.9929 AUROC values, and the model with 43 features
excluding ICD-10 yielded a 0.9648 balanced accuracy and
0.9923 AUROC. Interestingly, when using the in-hospital
mortality model with only 878 features and the ICD-10 codes,
the values significantly dropped to a 0.6298 balanced accuracy
and 0.7675 AUROC.
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Table 3. Model prediction comparisons with the test data set.

AUROCaBalanced accuracyAccuracySpecificitySensitivityModel

921 features (including ICD-10b)

0.99740.98130.98870.98880.9739AdaBoostc

0.99720.97890.98880.98880.9689XGBoostd

0.99730.97940.98870.98870.9701LightGBMe

0.93500.87300.95040.95060.7954GBMf

0.95800.91400.92700.92700.9010ERTg

0.99520.97530.99220.99220.9584LRh

0.98480.94760.95380.95370.9433RFi

0.99310.97700.98450.98450.9694DNNj

0.99730.97940.98890.98890.9700AdaBoost+XGBoost

0.99740.97950.98880.98880.9702AdaBoost+LightGBM

0.99730.97910.98880.98880.9694XGBoost+LigtGBM

0.99730.97930.98880.98880.9698AdaBoost+XGBoost+Light-
GBM

0.99290.96140.97600.97610.9468In-hospital mortality AIk [5]

878 features (ICD-10 only)

0.94850.88950.94750.94760.8313AdaBoost

0.89430.83420.97480.97510.6933XGBoost

0.89530.83700.97420.97450.6995LightGBM

0.99580.97520.97740.97740.9730GBM

0.99380.97750.98100.98100.9739ERT

0.94370.85910.95570.95580.7623LR

0.93130.81610.97370.97400.6583RF

0.94380.88840.89590.89590.8809DNN

0.94520.83970.97440.97470.7046AdaBoost+XGBoost

0.94520.84000.97410.97440.7057AdaBoost+LightGBM

0.89540.83490.97450.97480.6950XGBoost+LigtGBM

0.94500.83850.97430.97460.7024AdaBoost+XGBoost+Light-
GBM

0.76750.62980.97510.97510.2838In-hospital mortality AI [5]

43 features (excluding ICD-10)

0.99650.98020.98620.98620.9743AdaBoost

0.99650.97850.98860.98860.9684XGBoost

0.99660.97880.98840.98840.9691LightGBM

0.93500.87300.95040.95060.7954GBM

0.95800.91400.92700.92700.9010ERT

0.99350.97130.99060.99060.9519LR

0.98060.92660.94920.94920.9040RF

0.98600.95650.97830.97840.9345DNN

0.99660.97870.98870.98870.9687AdaBoost+XGBoost

0.99660.97890.98850.98860.9693AdaBoost+LightGBM
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AUROCaBalanced accuracyAccuracySpecificitySensitivityModel

0.99650.97880.98850.98850.9690XGBoost+LigtGBM

0.99660.97880.98850.98860.96914AdaBoost+XGBoost+Light-
GBM

0.99230.96480.98550.98550.9441In-hospital mortality AI [5]

Traditional methods

0.93280.90520.93880.93890.8716Inclusive SRRl

0.95670.91490.92270.92270.9070Exclusive SRR

0.94050.96210.97770.97770.9465KTASm

aAUROC: area under the receiver operating characteristic curve.
bICD-10: International Classification of Disease 10th revision.
cAdaBoost: adaptive boosting.
dXGBoost: extreme gradient boosting.
eLightGBM: light gradient boosting machine.
fGBM: gradient boosting machine.
gERT: extremely random trees.
hLR: logistic regression.
iRF: random forest.
jDNN: deep neural network.
kAI: artificial intelligence.
lSRR: survival risk ratio.
mKTAS: Korean Triage and Acuity Scale.

Figure 3. Receiver operating characteristic curves for the (left) selected adaptive boosting (AdaBoost) and three traditional models and (right) relative
AdaBoost features. AUROC: area under the receiver operating characteristic curve; ICD-10: International Classification of Diseases 10th revision;
KTAS: Korean Triage and Acuity Scale; SRR: survival risk ratio.

AI-Driven Public Website Deployment
We launched our final AI model on a public website [22] to
allow access to the mortality prediction results among visiting
ED patients. Figure S1A in Multimedia Appendix 1 displays
the web interface for entering information. A user inputs age,
gender, intentionality, injury mechanism, emergent symptoms,
AVPU scale, initial KTAS, systolic blood pressure, diastolic
blood pressure, pulse rate per minute, respiratory rate per
minute, body temperature, oxygen saturation, and ICD-10 codes.
For ICD-10 codes, a user can input multiple codes with commas

(eg, S072, S224, T083). After entering information into the web
app, the user can obtain the mortality prediction results (see
Figure S1B in Multimedia Appendix 1 for an example). The
prediction results also include the mortality probability.

Towards Comprehensive Model
Our previous study [5] revealed that blood pressure, heart rate,
body temperature, and other vital signs weakened the previous
AI model’s performance, whereas incorporating vital signs
strengthened our present AI model. This observation implies
that ED and in-hospital mortality patients exhibit differing data
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distributions. Patients who died after ICU or ward admission
and not in the ED were labeled survivors in the present AI
model; therefore, the present AI model predicts a more severe
mortality type. In future studies, we plan to design a more

comprehensive model incorporating both in-hospital and ED
mortality. We propose a new pipeline for predicting ED and
in-hospital mortality based on our present AI model and the
previous two models [4,5] (Figure 4).

Figure 4. A new pipeline for predicting emergency department (ED) and in-hospital mortality [4,5]. AI: artificial intelligence; AIS: Abbreviated Injury
Scale; ICD-10: International Classification for Diseases 10th revision; ICU: intensive care unit; OR: operating room.

Discussion

Principal Findings
This study developed an AI model that accurately predicts
mortality among visiting ED patients. Our final AI model
achieved substantially high metrics of 0.9738 sensitivity, 0.9888
specificity, 0.9887 accuracy, 0.9813 balanced accuracy, and
0.9974 AUROC. In addition, the proposed AI model
outperformed traditional inclusive SRR, exclusive SRR, and
KTAS models and the previously developed in-hospital
mortality prediction AI model [5]. We identified several
significant mortality predictors through the feature importance
analysis, including age, AVPU scale, multiple rib fractures,
lumbar vertebra fractures, and KTAS Level 2. Furthermore, we
devised a risk calculator leveraging our AI model, demonstrating
its substantial clinical potential for triage and diagnosis.

We compared AdaBoost, XGBoost, LightGBM, GBM, ERT,
LR, RF, and DNN models. After determining that AdaBoost,
XGBoost, and LightGBM models were the top three, these
models were combined as an ensemble approach. During the
evaluation, we considered balanced accuracy as the primary
metric due to the data imbalance. Using the best three single
models included the boosting algorithm principle, another
ensemble approach. Boosting incorporates the stagewise addition
method, where multiple weak models are trained and combined
into one stronger model. Specifically, the AdaBoost grows
decision trees as weak models and adds penalties or weights to
the incorrectly predicted samples. After each prediction stage,
this process assigns higher weight values to the misclassified
samples.

Although XGBoost and LightGBM also utilize boosting
algorithms, they differ slightly from AdaBoost regarding the
gradient boosting algorithm. The gradient boosting algorithm
adjusts the new prediction model using the previous model’s
residual errors. Thus, XGBoost computes the residuals and
builds decision trees by selecting features, finding optimal splits,

estimating leaf node values, and applying regularization. The
predictions are updated and the residuals are recalculated at
each iteration. LightGBM resembles XGBoost in many aspects,
but it has a faster execution rate and maintains high accuracy
levels with gradient-based one-side sampling (GOSS) and
exclusive feature bundling. In contrast, XGBoost uses a
presorted and histogram-based algorithm for computing the best
split with GOSS in LightGBM.

We also assessed GBM during the initial single-model
evaluation. Both LightGBM and GBM models are founded on
gradient boosting frameworks but differ in tree construction,
feature discretization, gradient computation, and memory usage.
Notably, each machine learning model performed better under
different data characteristics. For instance, LR may work well
with a linear association between features and a target, whereas
a decision tree is more effective for nonlinear relationships.
Other models with similar GBM and LightGBM operations can
also produce different prediction outcomes due to slightly
different tree constructions and data characteristics. Therefore,
we evaluated various machine learning models to identify the
best-fit solution for a particular problem type: predicting trauma
mortality for all patients visiting the ED.

Finally, we enhanced prediction performance by considering
all possible combinations based on the three best models. In
our final ensemble model, we found the optimal hyperparameters
with a maximum depth of 6, 0.01 learning rate, and 400 tree
estimators. AdaBoost’s optimal hyperparameters were 400 tree
estimators, 0.1 learning rate, a maximum depth of 1, and
balanced class weights. Comparatively, LightGBM’s optimal
hyperparameters were a maximum depth of 3, 0.01 learning
rate, and 400 tree estimators.

Our AI model has several clinical practice advantages. First,
our proposed model best predicts severe trauma patients with
wounds that may not survive admission or surgery, with most
unable to undergo CT or magnetic resonance imaging.
Moreover, our feature importance analysis indicates different
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prominent diagnostic codes than the previous AI model for
predicting in-hospital mortality. This finding implies that ED
mortality patients have distinct clinical data distributions from
those with in-hospital mortality. We also used the present test
data set to assess the previous in-hospital mortality AI model
[5]. We discovered that the current model was superior, likely
due to our current training data set’s ED mortality specificity.
Second, we did not use AIS codes requiring an expert or exact
diagnoses such as CT or surgery; thus, it is not a time-consuming
process. All variables in our AI model are available promptly
after a portable X-ray or point-of-care ultrasound. Finally, our
AI model’s excellent performance would efficiently allocate
medical resources. As our risk calculator tool is accessible
through a mobile web app, clinicians can utilize it without time
or location limitations.

We used 5,229,008 patient data sets for model training and
cross-validation and 1,307,252 data sets for evaluation. To our
knowledge, this is the most extensive study on developing an
AI model for predicting mortality in trauma patients visiting
the ED by incorporating ICD-10 codes and other clinical
variables; such a large data set contributes to establishing
generalization. In addition, we used SMOTE and optimized
class weight search techniques to minimize an imbalanced data
distribution. These techniques resolved the overfitting issue by
reducing the cross-validation and testing data result difference.

Our team previously developed two AI models for predicting
in-hospital mortality from various input features [4,5]. In our
first study [4], we rearranged AIS codes relative to 46
anatomical regions, which was considerably more differentiated
than the Injury Severity Score (ISS) system’s conventional six
regions. We anticipated that the AI model would provide more
appropriate weights for each anatomical organ such as the
pancreas, rib, or liver. Our second study [5] used the NEDIS
data set without any AIS information. Therefore, we used
ICD-10 codes, procedure codes, KTAS, and other clinical
variables.

We excluded ED mortality patients in both studies as they may
have received insufficient diagnostic workup. Postmortem CT
or autopsy is not popular in South Korea. Patients discharged
from the ED and returning home may also undergo insufficient
diagnosis compared to admitted patients. Additionally, some
patients may die after ICU or ward admission. We defined these
patients as not indicative of ED mortality. ED mortality patients
may have more severe injuries that prohibit admittance. Thus,
we postulated that ED mortality patients must be predicted using
alternative features.

Two recent systematic reviews compared machine learning
models for predicting mortality and decision support [23,24].
Zhang et al [24] discussed six studies using machine learning
models based on the national database. However, their training

sets ranged from 12,640 to 799,233 patients [25-30]. Our model
incorporated data from over 6.5 million patients, establishing
this as the largest cohort study. Moreover, our model achieved
the highest performance (AUROC of 0.99) compared to previous
studies with less accurate performance (AUROC of 0.89 to
0.95) [25-30]. Kim et al [26] introduced a neural network model
using 408,316 patients from the National Trauma Database with
a primarily ED mortality outcome. They reported an AUROC
of 0.86 for the neural network using age, systolic blood pressure,
respiration rate, heart rate, and GCS or simplified consciousness
scores [26] and an AUROC of 0.93 when incorporating ISS.
Our present outcome (AUROC of 0.99) dramatically
outperforms that of the previous study. Furthermore, the ICD-10
code is more practical than the ISS regarding ED because ISS
requires an expert such as a trauma coordinator, whereas any
clinician can determine an ICD-10 code. In a validation study
including 934,053 patients from the American College of
Surgeons Trauma Quality Improvement Program database,
Maure et al [29] reported an AUROC of 0.93 in penetrating
injury and 0.88 in blunt injury for predicting mortality. However,
they also excluded ED mortality, similar to our previous AI
models [4,5].

Limitations and Future Work
Several limitations of this study are acknowledged. First, this
is a retrospective study despite the substantial quantity of patient
data. Therefore, a further prospective study is needed to avoid
potential selection and survival bias. Second, we did not perform
external validation. Our study only used training data derived
from patients in South Korea; thus, it is unclear whether our
model could be adapted to other countries. In future work, we
plan to conduct an external validation study using data from
another country to develop a global version of the model. Third,
our primary outcome was ED mortality, not in-hospital or
overall mortality. Since our previous AI model [5] excluded
patients with ED mortality, our two AI models would help
clinicians predict various mortality types. Fourth, some data
were provided as categorical variables in NEDIS, such as age.
However, a sufficiently large data set may enable us to overcome
this issue. Fifth, NEDIS did not include AIS or ISS, as we could
not locate this information. In future work, we plan to develop
an ensemble model incorporating our previously developed AIS
code–based AI model [4].

Conclusions
Our proposed AI model for predicting ED mortality achieved
exceptionally high accuracy. This model is derived from a
population-based data set in South Korea and provides better
insight into trauma care and systems, complementing our
previous AI models [4,5]. In future studies, we must consider
data from various ethnic groups and integrate our previous AI
models.
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