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Abstract

Background: Cancer indeed represents a significant public health challenge, and unplanned extubation of peripherally inserted
central catheter (PICC-UE) is a critical concern in patient safety. Identifying independent risk factors and implementing high-quality
assessment tools for early detection in high-risk populations can play a crucial role in reducing the incidence of PICC-UE among
patients with cancer. Precise prevention and treatment strategies are essential to improve patient outcomes and safety in clinical
settings.

Objective: This study aims to identify the independent risk factors associated with PICC-UE in patients with cancer and to
construct a predictive model tailored to this group, offering a theoretical framework for anticipating and preventing PICC-UE in
these patients.

Methods: Prospective data were gathered from January to December 2022, encompassing patients with cancer with PICC at
Xiangya Hospital, Central South University. Each patient underwent continuous monitoring until the catheter’s removal. The
patients were categorized into 2 groups: the UE group (n=3107) and the non-UE group (n=284). Independent risk factors were
identified through univariate analysis, the least absolute shrinkage and selection operator (LASSO) algorithm, and multivariate
analysis. Subsequently, the 3391 patients were classified into a train set and a test set in a 7:3 ratio. Utilizing the identified
predictors, 3 predictive models were constructed using the logistic regression, support vector machine, and random forest
algorithms. The ultimate model was selected based on the receiver operating characteristic (ROC) curve and TOPSIS (Technique
for Order Preference by Similarity to Ideal Solution) synthesis analysis. To further validate the model, we gathered prospective
data from 600 patients with cancer at the Affiliated Hospital of Qinghai University and Hainan Provincial People’s Hospital from
June to December 2022. We assessed the model’s performance using the area under the curve of the ROC to evaluate differentiation,
the calibration curve for calibration capability, and decision curve analysis (DCA) to gauge the model’s clinical applicability.

Results: Independent risk factors for PICC-UE in patients with cancer were identified, including impaired physical mobility
(odds ratio [OR] 2.775, 95% CI 1.951-3.946), diabetes (OR 1.754, 95% CI 1.134-2.712), surgical history (OR 1.734, 95% CI
1.313-2.290), elevated D-dimer concentration (OR 2.376, 95% CI 1.778-3.176), targeted therapy (OR 1.441, 95% CI 1.104-1.881),
surgical treatment (OR 1.543, 95% CI 1.152-2.066), and more than 1 catheter puncture (OR 1.715, 95% CI 1.121-2.624). Protective
factors were normal BMI (OR 0.449, 95% CI 0.342-0.590), polyurethane catheter material (OR 0.305, 95% CI 0.228-0.408), and
valved catheter (OR 0.639, 95% CI 0.480-0.851). The TOPSIS synthesis analysis results showed that in the train set, the composite
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index (Ci) values were 0.00 for the logistic model, 0.82 for the support vector machine model, and 0.85 for the random forest
model. In the test set, the Ci values were 0.00 for the logistic model, 1.00 for the support vector machine model, and 0.81 for the
random forest model. The optimal model, constructed based on the support vector machine, was obtained and validated externally.
The ROC curve, calibration curve, and DCA curve demonstrated that the model exhibited excellent accuracy, stability,
generalizability, and clinical applicability.

Conclusions: In summary, this study identified 10 independent risk factors for PICC-UE in patients with cancer. The predictive
model developed using the support vector machine algorithm demonstrated excellent clinical applicability and was validated
externally, providing valuable support for the early prediction of PICC-UE in patients with cancer.

(J Med Internet Res 2023;25:e49016) doi: 10.2196/49016
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Introduction

Peripherally inserted central catheters (PICCs) are commonly
used in patients with cancer who need long-term chemotherapy
and supportive care therapy [1]. PICCs can effectively minimize
vascular irritation caused by chemotherapy drugs, thereby
preventing extravasation and the necessity for repeated punctures
[2,3]. However, PICCs also have their share of disadvantages.
One significant issue is the occurrence of unplanned extubation
(UE) during PICC placement, which can be both frequent and
severe [4]. PICC-UE occurs when the catheter needs to be
withdrawn prematurely due to severe complications or accidental
dislodgment resulting from patient or operator factors [4,5].
The incidence rates for PICC-UE range from 2.5% to 40.7%
[6]. The occurrence of PICC-UE poses a significant risk to
patients with cancer. It not only delays chemotherapy, prolongs
hospitalization, and increases the financial burden on their
families but also impacts the patients’ quality of life and, in
some cases, even threatens their lives [7].

Previous studies primarily focused on risk factors for
PICC-related complications. These complications can be
associated with a variety of factors, including (1) patient-related
factors, such as critically ill bedridden patients, age, and
immunity [8,9]; operator-related factors, such as puncture times,
professional skills, and the use of visualization technology
[10-12]; catheter-related factors, such as catheter material,
catheter lumen, and catheter diameter [13-15]; and treatment
process–related factors, such as chemotherapy, radiotherapy,
different drug types, and other aspects [16-18]. However, there
is limited research on the risk factors for PICC-UE. Existing
studies have primarily centered on accidental dislodgment of
ventilator tubes [4,19], with insufficient attention paid to
PICC-UE. Therefore, it is imperative to identify PICC-UE risk
factors and develop predictive models in patients with cancer
to enhance the safety of PICC usage.

To mitigate the adverse effects of PICC-UE, a promising
strategy is to identify high-risk patients and offer appropriate
advice for extended catheter usage. While risk prediction models
for UE have been developed for intensive care unit (ICU)
patients with ventilator tracheal intubation [20,21], there are no
studies or models that can identify high-risk patients for
PICC-UE. Lee et al [20] developed a risk assessment tool for
evaluating UE of the endotracheal tube, while Hur et al [21]
used 8 years of data to build a predictive model for UE using

various machine learning (ML) algorithms. While both models
exhibited high sensitivity and specificity, they were designed
for predicting UE in ventilator tube cases.

ML algorithms are adept at extracting key features from complex
data sets and are increasingly used in diagnosing and
prognosticating various diseases [22]. In the context of
PICC-related complications, previous studies have used ML
techniques to assess risk [23,24]. Badheka et al [23] identified
high-risk predictors of catheter-related thrombosis in infants
under 1 year using conventional and neural network methods.
Conversely, Liu et al [24] developed a predictive model for
PICC-related vein thrombosis in patients with cancer using the
least absolute shrinkage and selection operator (LASSO) and
random forest (RF) algorithms, which exhibited impressive
performance. However, as far as we know, no specific research
on ML for PICC-UE in patients with cancer has been conducted
yet.

This study aimed to identify PICC-UE risk factors in patients
with cancer, develop and validate ML-based predictive models
for PICC-UE, and promote early intervention to reduce its
incidence and enhance patients’ quality of life. This study
represents the first attempt to identify high-risk PICC-UE
patients and serves as a valuable reference for future research
and medical decision-making. We followed the Guidelines for
Developing and Reporting Machine Learning Predictive Models
in Biomedical Research [25] to report our study.

Methods

Study Design and Participants
This study used data from Xiangya Hospital of Central South
University to build a predictive model for PICC-UE. Prospective
data were collected from various hospital systems from January
1, 2022, to December 31, 2022, including the infusion system,
the in-hospital Hitech electronic case system, and the PICC
catheter integrated case management system. We utilized all
available data to identify independent risk factors. The entire
data set was divided into a train set and a test set using a 7:3
ratio through the random number table method. The train set
was used for model construction, while the test set was used
for internal validation. We collected data from the Affiliated
Hospital of Qinghai University and Hainan Provincial People’s
Hospital to perform additional validation of the model between
June 1, 2022, and December 31, 2022. The external validation
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data were sourced from different hospitals and were independent
of the data used for model construction.

Inclusion criteria were as follows: (1) pathological diagnosis
of oncology; (2) availability of PICC catheterization
information; and (3) voluntary participation with informed
consent. Exclusion criteria were as follows: (1) patients or
caregivers unable to cooperate with the investigation; (2)
patients who missed visits before catheter removal; (3)
incomplete data collection; and (4) abnormal values that affect
judgment.

Sample Size and Sampling
We used the sample size formula designed for cohort studies
to calculate the minimum number of PICC-UE cases needed.
Then, we determined the sample size required to prospectively
enroll patients with cancer with PICC insertions for this study
based on the PICC-UE incidence. We set α=.05 and β=.10 and
obtained μα/2=1.96 and μβ=1.28.

Previous studies [4,5] have identified multiple risk factors for
PICC-UE, and among these risk factors, thrombosis had the
largest minimum sample size requirement for the case group.
In the group without PICC-UE, the incidence of thrombosis
was 8.9% (22/247; P0=.09), whereas in the group with
PICC-UE, it was 27% (12/44; P1=.27). Hence, this study’s case
group (UE cases) requires a minimum sample size of 164. The
incidence of PICC-UE is reported as 9% (11/121) [6]. Based
on this value, the initial sample size needed for a prospective
study was 2448. After accounting for the possibility of missed
visits and increasing the sample size by 20%, the required
sample size is at least 2937.

Instruments
The follow-up data collection schedule and clinical data
collection form for this study were established through a
literature review [4-19,23,24], semistructured interviews, and
research group discussions.

The study investigators enrolled eligible participants who
provided informed consent into a cancer whole-course
management system. One-to-one follow-up through WeChat
(Tencent Holdings Ltd.) was established, with follow-ups
scheduled in advance. Patients were reminded to contact the
investigators immediately in case of any catheter-related
abnormalities. Collected data included observations of catheter
patency; signs of redness, swelling, and pain in the extremity
at the insertion site; blood and fluid leakage at the puncture site;
catheter prolapse and its length; and any other abnormalities.
Additionally, PICC-UE occurrences were monitored, and their
time and reasons were recorded. Follow-up visits were
conducted on the day of placement, as well as on days 1, 7, 14,
21, and every 21 days thereafter.

A total of 33 relevant factors were collected for data analysis,
categorized as follows: (1) general information (gender, age,
tumor type, education, BMI [calculated using height and
weight], alcohol history, mental status, cooperation, and physical
mobility); (2) medical history (history of deep vein thrombosis,
history of central venous placement, diabetes, hypertension,
cardiovascular disease, hyperlipidemia, and surgical history);

(3) laboratory indicators (D-dimer concentration and fibrinogen
concentration); (4) therapy schedule (radiotherapy treatment,
targeted therapy, surgical treatment, anticoagulation,
chemotherapy treatment, and hyperosmolar drugs); and (5)
placement information (limb on the side of placement, puncture
method, puncture times, catheter gauge, catheter lumen, catheter
material, presence of a valve, high-pressure–resistant catheter,
and catheter indwelling time). All variables were collected
through observation using patient IDs and case numbers as the
indexes. Data were obtained from the hospital’s Safe Infusion
System (SIS) database and the Hitech electronic case system.
Detailed explanations of the corresponding variables can be
found in Multimedia Appendix 1.

Criteria for PICC-UE, based on previous studies [4,5], were as
follows: (1) a patient who still requires a PICC catheter, but
experiences early extubation due to severe complications; and
(2) a patient who still requires a PICC catheter, but experiences
accidental catheter dislodgment due to patient or operator
factors. PICC-UE serves as the primary outcome of this study.

Risk Factors Identification and Model Development
We reviewed the prospective data collected and categorized
continuous variables, such as age, into 6 groups: “0-11,”
“12-18,” “19-35,” “36-59,” “60-75,” and “≥76.” The variables
height and weight were used to calculate BMI. D-dimer
concentration and fibrinogen concentration values were
converted into high or low categories. Missing values in the
vector data were removed.

We conducted a univariate analysis of the overall data to identify
variables with 2-sided statistical significance (P<.05). Following
a literature review and expert consultations, we used the LASSO
regression algorithm to include clinically significant variables.
The selected variables underwent multifactorial analysis to
identify independent risk factors for PICC-UE in patients with
cancer.

The model was constructed using prospective data from Xiangya
Hospital of Central South University. Data order was
randomized using a shuffling algorithm for even distribution.
The data were then split into a train set and a test set at a ratio
of 7:3 using the random number table method. The overall data
were used for independent risk factor screening, the train set
for model construction, and the test set for internal model
validation. The risk prediction models were constructed using
the train set, incorporating prescreened independent risk factors.
In this study, 3 ML algorithms, namely, logistic regression (LR),
support vector machine (SVM), and RF, were selected to build
risk prediction models for PICC-UE in patients with cancer.

We compared these models using the area under the receiver
operating characteristic (ROC) curve (AUC) and the TOPSIS
(Technique for Order Preference by Similarity to Ideal Solution)
method [26]. AUC assesses the predictive power of the
PICC-UE model, while the model’s superiority was evaluated
based on the Composite Index (Ci) value in the TOPSIS method.
The model with the highest AUC and Ci values was considered
optimal for predicting PICC-UE and selected as the best model.
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Validation and Model Performance Evaluation
Data from June 2022 to December 2022 from Qinghai
University Hospital and Hainan Provincial People’s Hospital
were used for external validation. The collected data were
randomized using a shuffling algorithm for even distribution.
The optimal model was assessed for discrimination, calibration,
and clinical applicability.

Discrimination assesses the model’s ability to distinguish
between high and low PICC-UE risk in the cancer population,
which we evaluated using the AUC. Calibration indicates the
degree of agreement between the predicted and actual results.
The calibration of the model was assessed using the
Hosmer-Lemeshow test with a calibration curve [27]. Clinical
applicability, which gauges the diagnostic accuracy of the model
in clinical use, was evaluated using decision curve analysis
(DCA) [21]. Additionally, model performance was measured
using sensitivity, specificity, positive predictive value, negative
predictive value [24], and AUC.

Ethical Considerations
The study was approved by the Hospital Ethics Review
Committee (approval number 202204210). We adhered to the
principles of informed consent, data confidentiality, anonymity,
and nonharmfulness. Written informed consent was collected,
and any papers or publications based on the study data will not
reveal personal information about the patients. For younger or
unconscious patients who were unable to participate, data
collection was facilitated by their caregivers.

Statistical Analysis
We excluded data with missing or unusual variables from the
prospective data set. Continuous variables were compared using
independent-sample unpaired (2-sided) t tests or one-way
analysis of variance (ANOVA). Categorical variables were

presented as numbers and proportions and compared using the
chi-square test or Fisher exact test. We collected variables with
bilateral P<.05 statistical significance and then included
variables with potential clinical significance for the LASSO
algorithm based on literature analysis and expert consultation.
We identified independent risk factors for PICC-UE in patients
with cancer through multifactorial analysis. After consulting
with experts in ML algorithms and discussions within the
research group, we chose 3 ML methods to construct the study’s
model: RF, SVM, and LR.

All hypothesis tests with 2-sided P<.05 indicated statistical
significance. The “na.omit” function was used to remove
missing values from the vector data. LASSO primarily used the
“glmnet” package with a 10-fold orthogonal method to define
the penalty function. LR, RF, and SVM were mainly
implemented using “caret,” “randomForest,” “pROC,”
“varImpPlot,” and “e1071,” respectively. The ROC curves were
plotted using the “pROC” packet, and the Hosmer-Lemeshow
test using the “hoslem.test,” “data.table,” and “plyr” data
packages was used for the TOPSIS integrated analysis. The
DCA decision curves were constructed using the “rms” and
“rmda” packets. All the analyses were performed using R
Statistical Software, version 4.1.3 (R Foundation).

Results

Participants Characteristics
A total of 3391 patients were included, with a sample loss rate
of 7.34% (269/3660). This included 2374 in the train set and
1017 in the test set, with 284 PICC-UE cases. The study flow
diagram is presented in Figure 1. Baseline participant
characteristics are presented in Table 1. Importantly, there was
no multicollinearity among the variables, as all variance inflation
factor values were less than 5.0.
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Figure 1. Patient recruitment flowchart.
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Table 1. Comparison of general information between the control and case groupsa.

P valueChi-square/F test (df)PICC-UE (n=284)Non–PICC-UEb (n=3107)Variables

.01d6.349c (1)Gender, n (%)

158 (55.63)1486 (47.83)Male

126 (44.37)1621 (52.17)Female

.01d14.431c (5)Age (years), n (%)

3 (1.06)57 (1.83)0-11

5 (1.76)73 (2.35)12-18

15 (5.28)208 (6.69)19-35

140 (49.30)1695 (54.55)36-59

100 (35.21)962 (30.96)60-75

21 (7.39)112 (3.60)≥76

.0515.289c (8)Tumor type , n (%)

89 (31.34)794 (25.56)Lung cancer

83 (29.23)745 (23.98)Thymic cancer breast cancer

27 (9.51)464 (14.93)Gastro-colorectal cancer

30 (10.56)407 (13.10)Hematologic tumors

16 (5.63)187 (6.02)Cervical cancer

8 (2.82)146 (4.70)Head-neck tumors

9 (3.17)93 (2.99)Hepatobiliary-pancreatic tumors

8 (2.82)95 (3.06)Intracranial tumors

14 (4.93)176 (5.66)Others

.04d8.088c (3)Educational level, n (%)

152 (53.52)1399 (45.03)Illiterate primary and junior high schools

69 (24.30)861 (27.71)Secondary and high school

60 (21.13)788 (25.36)College bachelor’s degree

3 (1.06)59 (1.90)Master’s degree doctorate

<.001d33.741c (2)BMI (kg/m2), n (%)

18 (6.34)201 (6.47)<18.5

131 (46.13)1945 (62.60)18.5-24.0

135 (47.54)961 (30.93)>24.0

.152.123c (1)Alcohol history, n (%)

242 (85.21)2739 (88.16)None

42 (14.79)368 (11.84)Yes

.02d5.529c (1)Mental status, n (%)

258 (90.85)2930 (94.30)Sobriety

26 (9.15)177 (5.70)Blurred consciousness

.004d8.528c (1)Cooperation, n (%)

253 (89.08)2909 (93.63)Cooperative

31 (10.92)198 (6.37)Noncooperative

<.001d43.276c (1)Physical mobility, n (%)
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P valueChi-square/F test (df)PICC-UE (n=284)Non–PICC-UEb (n=3107)Variables

232 (81.69)2884 (92.82)Normal

52 (18.31)223 (7.18)Abnormal

<.001d12.799c (1)History of deep vein thrombosis, n (%)

250 (88.03)2909 (93.63)None

34 (11.97)198 (6.37)Yes

.057.724e (3)History of central venous placement, n (%)

233 (82.04)2720 (87.54)None

29 (10.21)235 (7.56)1

15 (5.28)107 (3.44)2

7 (2.46)45 (1.45)≥3

<.001d13.381c (1)Diabetes, n (%)

253 (89.08)2935 (94.46)None

31 (10.92)172 (5.54)Yes

.700.149c (1)Hypertension, n (%)

261 (91.90)2875 (92.53)None

23 (8.10)232 (7.47)Yes

.083.023c (1)Cardiovascular disease, n (%)

257 (90.49)2897 (93.24)None

27 (9.51)210 (6.76)Yes

<.001d14.841c (1)Hyperlipidemia, n (%)

243 (85.56)2864 (92.18)None

41 (14.44)243 (7.82)Yes

<.001d21.580c (1)Surgical history, n (%)

137 (48.24)1935 (62.28)None

147 (51.76)1172 (37.72)Yes

<.001d66.054c (1)D-dimer concentration, n (%) (mg/dl)

187 (65.85)2632 (84.71)≤0.5

97 (34.15)475 (15.29)>0.5

.005d10.658c (2)Fibrinogen concentration, n (%) (mg/dl)

7 (2.46)94 (3.03)Lower

189 (66.55)2315 (74.51)Normal

88 (30.99)698 (22.47)Higher

.063.464c (1)Radiotherapy treatment, n (%)

249 (87.68)2828 (91.02)None

35 (12.32)279 (8.98)Yes

.001d12.042c (1)Targeted therapy, n (%)

103 (36.27)1460 (46.99)None

181 (63.73)1647 (53.01)Yes

<.001d26.409c (1)Surgical treatment, n (%)
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P valueChi-square/F test (df)PICC-UE (n=284)Non–PICC-UEb (n=3107)Variables

190 (66.90)2483 (79.92)None

94 (33.10)624 (20.08)Yes

.092.759c (1)Anticoagulation, n (%)

258 (90.85)2903 (93.43)None

26 (9.15)204 (6.57)Yes

.162.016c (1)Chemotherapy treatment, n (%)

31 (10.92)433 (13.94)None

253 (89.08)2674 (86.06)Yes

.002d9.783c (1)Hyperosmolar drugs, n (%)

106 (37.32)1460 (46.99)None

178 (62.68)1647 (53.01)Yes

.135.718e (3)Limb on side of placement, n (%)

131 (46.13)1570 (50.53)Left upper extremity

141 (49.65)1467 (47.22)Right upper extremity

7 (2.46)37 (1.19)Left lower extremity

5 (1.76)33 (1.06)Right lower extremity

.920.170c (2)Puncture method, n (%)

10 (3.52)98 (3.15)Blind

14 (4.93)164 (5.28)Blind-MSTf

260 (91.55)2845 (91.57)Bright scan ultrasound-MST

.001d11.900c (1)Puncture times, n (%)

253 (89.08)2928 (94.24)1

31 (10.92)179 (5.76)Many times

.263.678e (3)Catheter gauge (Fr), n (%)

2 (0.70)6 (0.19)1.9

5 (1.76)82 (2.64)3

260 (91.55)2847 (91.63)4

17 (5.99)172 (5.54)5

.320.984c (1)Catheter lumen, n (%)

258 (90.85)2763 (88.93)Single chamber

26 (9.15)344 (11.07)Double chamber

<.001d13.010c (1)Catheter material, n (%)

151 (53.17)1308 (42.10)Silicone

133 (46.83)1799 (57.90)Polyurethane

.003d8.821c (1)Presence of valve, n (%)

146 (51.41)1314 (42.29)None

138 (48.59)1793 (57.71)Yes

.370.791c (1)Whether high-pressure–resistant catheter, n (%)
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P valueChi-square/F test (df)PICC-UE (n=284)Non–PICC-UEb (n=3107)Variables

229 (80.63)2435 (78.37)None

55 (19.37)672 (21.63)Yes

aThe mean catheter indwelling time for all participants is 91.22 (SD 78.88) days, for the non–PICC-UE group is 91.26 (SD 80.15) days, and for the
PICC-UE group is 90.79 (SD 78.95) days (unpaired 2-tailed t test =.009; P=.92).
bPICC-UE: unplanned extubation of the peripherally inserted central catheter.
cChi-square test
d2-tailed P<.05.
eFisher exact test.
fMST: modified Seldinger technique.

Independent Risk Factor Determination
A total of 19 potential risk factors, including gender, age, and
education level, were initially screened using univariate analysis.
Following consultations with specialists in vascular surgery,
pathology, and venous therapy, catheter lumen and central
venous placement history were added. Thus, there were a total
of 21 independent variables for the LASSO analysis.

In Figure 2, each colored line represents a variable trend that
decreases as the penalty factor λ changes, resulting in the model
incorporating fewer variables. In Figure 3, the dashed line on
the left indicates the λ value associated with the maximum AUC
and the number of features included in the model. On the right,
the dashed line represents a reduction in the number of features
in the model as the standard error increases by 1 to achieve the
maximum AUC. The minimum error is reached at 1SE=0.013,
resulting in the screening of 11 predictor variables.

Figure 2. Cross-validation plot of the LASSO penalty term. LASSO: least absolute shrinkage and selection operator.

Figure 3. LASSO regression coefficients on the different penalty parameters. LASSO: least absolute shrinkage and selection operator.

The 11 predictors identified by LASSO were analyzed using
conditional LR with a fixed αin of 0.05 and αout of 0.10, using
the backward LR method. The results revealed the following
independent risk factors for PICC-UE in patients with cancer

(ranked by importance from high to low): impaired physical
mobility (odds ratio [OR] 2.775, 95% CI 1.951-3.946), elevated
D-dimer concentration (OR 2.376, 95% CI 1.778-3.176),
diabetes (OR 1.754, 95% CI 1.134-2.712), surgical history (OR
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1.734, 95% CI 1.313-2.290), more than 1 catheter puncture (OR
1.715, 95% CI 1.121-2.624), surgical treatment (OR 1.543, 95%
CI 1.152-2.066), and targeted therapy (OR 1.441, 95% CI
1.104-1.881). Protective factors, ranked by importance from

high to low, were valved catheter (OR 0.639, 95% CI
0.480-0.851), normal BMI (OR 0.449, 95% CI 0.342-0.590),
and polyurethane catheter material (OR 0.305, 95% CI
0.228-0.408). Details are presented in Table 2.

Table 2. Multivariate analysis to identify independent risk factors.

P valueOdds ratio (95% CI)βVariables

.220.712 (0.414-1.224)–.340BMI<18.5 kg/m2

<.0010.449 (0.342-0.590)–.801BMI=18.5-24.0 kg/m2

<.0012.775 (1.951-3.946)1.021Physical mobility

.011.754 (1.134-2.712).562Diabetes

<.0011.734 (1.313-2.290).551Surgical history

<.0012.376 (1.778-3.176).866D-dimer concentration

.0071.441 (1.104-1.881).365Targeted therapy

.0041.543 (1.152-2.066).434Surgical treatment

.011.715 (1.121-2.624).540Puncture times

<.0010.305 (0.228-0.408)–1.188Catheter material

.0020.639 (0.480-0.851)–.447Presence of valve

<.0010.130 (0.087-0.193)–2.043Constant

Prediction Model Construction
The train set and the test set were well balanced, with no
statistically significant differences in composition (P>.05 in all
cases). Further details can be found in Multimedia Appendix
2.

The logistic predictive model was constructed using the 10
independent risk factors identified in the previous phase. The

final model included 9 variables with a χ8
2 value of 320.374

and P<.001. SVM modeling was performed with 10-fold
cross-validation and grid search methods, autonomously
determining the optimal number of vector machines and related
parameters using the tune.svm function. The polynomial kernel
function demonstrated the highest prediction accuracy among
the 4 kernel functions. The RF predictive model for patients
with cancer was constructed with a final minimum of 196 trees.

Model Comparison and Validation
The SVM predictive model exhibited the best predictive efficacy
for PICC-UE when considering AUC and Ci values together.

A comparison of the ROC curves of the 3 models is presented
in Figures 4 (train set) and 5 (test set). The 3 models were
assessed using the TOPSIS integrated analysis in the train set
and test set, as depicted in Tables 3 and 4. The RF predictive
model performed the best in the train set, and the overall
performance of the models is as follows: RF model>SVM
model>logistic model. However, it is worth noting that the Ci
value for the SVM model was 0.82, while that for the RF model
was 0.85, with only a 0.03 difference. In the test set, the TOPSIS
integrated analysis revealed that the SVM predictive model had
the best fit, and the models ranked in terms of overall
performance as SVM model>RF model>logistic model. For a
visual comparison (AUC, sensitivity, specificity, accuracy,
positive predictive value, and negative predictive value) of the
3 models, please refer to Figures 6 (train set) and 7 (test set).
These figures demonstrate that both the SVM model and the
RF model outperform the logistic model in terms of predictive
effects.
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Figure 4. AUC (95% CI) plots of train set.

Figure 5. AUC (95% CI) plots of test set.

Table 3. Comparison of the 3 predictive models in the train set.

Composite
Index

Negative predictive
value (%)

Positive predictive val-
ue (%)

Accuracy
(%)

Specificity
(%)

Sensitivity
(%)

Area under the curve
(%)

Model

0.0096.0639.5289.1391.9158.3875.8Logistic regression

0.8298.1491.7697.6899.3679.1990.4Support vector ma-
chine

0.8599.0493.6298.6199.4489.3484.7Random forest

Table 4. Comparison of the three predictive models in the test set.

Composite
Index

Negative predictive value
(%)

Positive predictive value
(%)

Accuracy
(%)

Specificity
(%)

Sensitivity
(%)

Area under the
curve (%)

Model

0.0095.2419.6275.9177.5358.6268.1Logistic regression

1.0098.9397.4798.8299.7888.5187.5Support vector ma-
chine

0.8198.585.8897.4498.7183.9179.6Random forest
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Figure 6. Comparison of the 3 predictive models in the train set.

Figure 7. Comparison of the 3 predictive models in the test set.

We assessed the performance of the best model through
discrimination, calibration capability, and clinical applicability
analysis. The AUC values evaluated the discrimination, and the
SVM model demonstrated strong differentiation with an AUC
of 0.718 for external validation (Figure 8). The

Hosmer-Lemeshow test for goodness of fit resulted in χ8
2=8.205,

P=.06, which is greater than 0.05, indicating a well-fitting model
for external validation. The calibration curve for the optimal
model is presented in Figure 9. The clinical applicability of this
predictive model is demonstrated by the DCA curve in Figure
10.

Figure 8. External validation of the ROC curve.
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Figure 9. External validation of the Calibration curve.

Figure 10. External validation of the DCA.

Discussion

Principal Findings
Our prospective study is a pioneering contribution to the field,
being the first to develop and validate a predictive model for
PICC-UE in patients with cancer that can guide decision-making
without requiring extensive laboratory testing. We adhered to
the Guidelines for Developing and Reporting Machine Learning
Predictive Models in Biomedical Research for model
development. Our model demonstrates outstanding performance
in predicting PICC-UE in patients with cancer, achieving an
AUC of 0.904 in the train set and 0.875 in the test set.
Importantly, we identified 10 highly correlated independent
risk factors using univariate, LASSO, and multivariate analyses
to build the model, with the 3 most significant risk factors being
physical mobility (P<.001), D-dimer concentration (P<.001),
and diabetes (P=.01).

PICC-UE incidence varies, ranging from 7.5% to 22.0% in
China [28,29] and from 2.5% to 40.7% in other countries [4].
Duwadi et al [30] noted a higher PICC-UE incidence in the ICU
compared with other units, attributing it to the ICU environment
and patient severity. Additionally, PICC-UE rates differed in
studies from different regions [28,29]. In our study, the
incidence of PICC-UE was 8.38% (284/3391), which is lower
than in most previous studies [4,29]. This could be attributed

to our hospital’s intravenous infusion therapy committee,
improved standardized nurse train, rigorous quality control
management, and numerous educational sessions on patient
health management. These differences in incidence may also
be related to variations in inclusion criteria, follow-up methods,
duration, and the sample size in our study. Future prospective
studies with larger, multicenter samples and extended follow-up
may be necessary for further validation.

In terms of general information, medical history, and laboratory
indicators, we discovered that BMI, physical mobility, diabetes,
surgical history, and D-dimer concentration were linked to the
occurrence of PICC-UE. In particular, patients who are

overweight (BMI>24.0 kg/m2) [31], those with reduced physical
activity [32], and individuals with diabetes prone to
hypercoagulation [32] were at a higher risk of catheter
thrombosis. A recent surgical trauma can also stimulate the
release of a significant amount of coagulation factors to aid
wound healing [33], while a prolonged period of postoperative
bed rest can slow blood flow, both of which increase the risk
of coagulation [34]. An elevated D-dimer level is indicative of
a hypercoagulation state, with a concentration exceeding 500
μg/L signifying a high risk of thrombosis [35]. Bertoglio et al
[36] demonstrated that PICC catheter thrombosis is a significant

risk factor for UE. Patients with a low BMI (BMI<18.5 kg/m2)
have compromised immunity and are prone to malnutrition,
increasing their risk of catheter-related complications and the
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need for catheter removal [37]. Excessive physical activity
increases catheter-vessel wall friction, raising the risk of
bloodstream infection and early catheter dislodgment [38].

In terms of therapy schedule and placement information, we
observed that targeted therapy, surgical treatment, puncture
times, catheter material, and the presence of a valve were linked
to the occurrence of PICC-UE. The use of targeted drugs [39]
and multiple punctures [40] can lead to vascular endothelial
damage, exposing subendothelial prothrombotic components,
inducing platelet aggregation, contributing to catheter
thrombosis, and elevating the risk of extubation [41]. Surgical
treatment leading to PICC-UE aligns with the explanation of
the recent surgical history mentioned earlier. Additionally,
patients recovering from postoperative anesthesia are often
unconscious and may inadvertently remove the catheter due to
the foreign body sensation at the catheter placement site [42].
We identified a higher risk of PICC-UE associated with silicone
catheters. This is attributed to the use of new
high-pressure–resistant polyurethane catheters in our hospital,
which incorporate a surface-active macromolecule with fluorine
atom doping. This component inhibits platelet adhesion and
protein procoagulation, ultimately lowering the incidence of
PICC-related thrombosis [13]. Catheter valves effectively
prevent blood regurgitation, reducing both catheter-related
blockages and thrombosis [13].

In this study, we developed a comprehensive predictive model
to assess the risk of high-risk PICC-UE in patients with cancer.
The model’s performance was evaluated using the AUC as a
measure of classification efficacy, and all models in our study
achieved AUC values exceeding 0.7, demonstrating their strong
ability to distinguish high-risk patients. After comparing the
AUC and Ci values, the SVM model emerged as the optimal
choice. Calibration and DCA curves confirmed the SVM
model’s accuracy, stability, generalizability, and clinical
applicability.

The PICC-UE predictive model for patients with cancer
developed in this study using the ML algorithm offers insights
for related research. In the predictor screening process, previous
studies often relied on a single statistical method [43], while
our approach combined univariate analysis, 10-fold
cross-validation LASSO, and multivariate screening, enhancing
precision and rigor. This approach resulted in the creation of a
more concise and accurate predictive model through multiple
rounds of variable filtering. The LASSO method effectively
aggregates features, achieves dimensionality reduction, and
serves as a feature screening tool, preventing issues related to
covariance and overfitting [44].

This study used multiple ML algorithms to construct the
predictive model, a more scientifically rigorous approach
compared with using a single method alone [26]. ML algorithms
are well-suited for managing high-dimensional variables and
their intricate interactions, making full use of the available data
[22]. The test set demonstrated superior predictive performance
in forecasting PICC-UE based on the results from the train set,
significantly enhancing prediction accuracy. This study
compared 3 ML models and selected the best-performing one,
significantly improving the model’s accuracy. We used AUC

and TOPSIS methods for a comprehensive and rigorous
screening of the optimal predictive model. The SVM algorithm
in the optimal model robustly encompasses the data and reduces
the model’s complexity through linear regression with
insensitive loss functions in a high-dimensional feature space
[45]. Importantly, external validation of the model using
independent data demonstrated significant predictive superiority.

Our study has successfully developed a highly predictive model
for the risk of PICC-UE in patients with cancer using the SVM
algorithm. This model enables the development of personalized
precautions for patients with cancer at a high risk of PICC-UE,
such as the regular assessment of physical mobility and the
provision of targeted physical activity guidance for patients
with impaired physical mobility [32]. For patients with abnormal
BMI, dynamic monitoring of BMI and weight adjustment
through exercise and diet should be implemented [32]. Patients
with diabetes require special attention [32], with routine blood
tests on admission and regular monitoring of D-dimer
concentrations [35] to take preventive measures against early
catheter removal. For patients with a history of surgery and
those undergoing surgical treatment or targeted therapy
[33,34,39], close monitoring of the catheter exit site is essential.
Patients should receive instructions for regular catheter
maintenance and be advised to seek medical attention if they
experience any discomfort. Our study concluded that patients
with multiple punctures are at a higher risk of PICC-UE. It is
recommended that the medical department standardizes the
qualifications of PICC placement nurses and conducts regular
training and assessments [40]. Furthermore, medical departments
should exercise strict control over the choice of catheter
materials and the presence of valves in catheters to minimize
catheter-related complications and lower the incidence of
PICC-UE [13].

Limitations and Challenges
This study has some limitations. First, it did not include
individual genetic data, which can be a significant factor in
PICC-UE. Future studies may benefit from incorporating genetic
data to improve predictive accuracy. Second, external validation
was limited by a small data set, which included data from only
2 hospitals. More extensive external validation is required to
thoroughly validate the predictive model. Lastly, we did not
consider how the risk factors and predictive model for PICC-UE
may differ among various subpopulations of patients with
cancer, including different age groups, genders, and cancer
stages.

Despite the limitations, our study has identified 10 independent
predictors, including BMI, mobility, diabetes, surgical history,
and other factors, that are significantly associated with an
increased risk of PICC-UE in patients with cancer. Furthermore,
our SVM predictive model has been externally validated and
demonstrates excellent generalization. The optimal SVM model
achieved a high accuracy of 97.68% in the train set and 98.82%
in the test set, indicating excellent model fitting. The LASSO
algorithm used for risk factor screening effectively prevented
overfitting. Our findings can raise awareness among clinicians
and patients for the early prevention and reduction of PICC-UE
in high-risk cancer populations. Further prospective multicenter
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studies are needed to validate risk factors and establish effective
UE prophylaxis interventions. Our group is in discussions with
a computer company to develop a plug-in for our hospital’s
electronic system. This plug-in aims to automatically capture
independent risk factors for PICC-UE from patient
hospitalization information. Using the optimal prediction model
from this study, patients’ risk of PICC-UE is categorized into
3 levels: red (high risk), yellow (medium risk), and green (low
risk). Using the color-coded cues, health care providers can
implement tailored interventions for high-risk patients while

offering self-monitoring guidance and health education to
medium- and low-risk patients.

Conclusions
In summary, the developed predictive model for assessing the
risk of PICC-UE in patients with cancer has shown excellent
discrimination, high predictive accuracy, and broad applicability
across a range of risk factors. This model serves as a valuable
tool for the early identification of high-risk patients and holds
promise for clinical implementation.
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PICC: peripherally inserted central catheter
RF: random forest
ROC: receiver operating characteristic
SIS: Safe Infusion System
SVM: support vector machine
TOPSIS: Technique for Order Preference by Similarity to Ideal Solution
UE: unplanned extubation
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