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Abstract

Background: Traditional methods for investigating work hours rely on an employee’s physical presence at the worksite.
However, accurately identifying break times at the worksite and distinguishing remote work outside the worksite poses challenges
in work hour estimations. Machine learning has the potential to differentiate between human-smartphone interactions at work
and off work.

Objective: In this study, we aimed to develop a novel approach called “probability in work mode,” which leverages
human-smartphone interaction patterns and corresponding GPS location data to estimate work hours.

Methods: To capture human-smartphone interactions and GPS locations, we used the “Staff Hours” app, developed by our
team, to passively and continuously record participants’ screen events, including timestamps of notifications, screen on or off
occurrences, and app usage patterns. Extreme gradient boosted trees were used to transform these interaction patterns into a
probability, while 1-dimensional convolutional neural networks generated successive probabilities based on previous sequence
probabilities. The resulting probability in work mode allowed us to discern periods of office work, off-work, breaks at the worksite,
and remote work.

Results: Our study included 121 participants, contributing to a total of 5503 person-days (person-days represent the cumulative
number of days across all participants on which data were collected and analyzed). The developed machine learning model
exhibited an average prediction performance, measured by the area under the receiver operating characteristic curve, of 0.915
(SD 0.064). Work hours estimated using the probability in work mode (higher than 0.5) were significantly longer (mean 11.2,
SD 2.8 hours per day) than the GPS-defined counterparts (mean 10.2, SD 2.3 hours per day; P<.001). This discrepancy was
attributed to the higher remote work time of 111.6 (SD 106.4) minutes compared to the break time of 54.7 (SD 74.5) minutes.

Conclusions: Our novel approach, the probability in work mode, harnessed human-smartphone interaction patterns and machine
learning models to enhance the precision and accuracy of work hour investigation. By integrating human-smartphone interactions
and GPS data, our method provides valuable insights into work patterns, including remote work and breaks, offering potential
applications in optimizing work productivity and well-being.
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Introduction

The work hours of office workers, including medical staff
members, are typically assessed based on the time spent at the
worksite. However, with the widespread adoption of remote
work during the COVID-19 pandemic, flexible work schedules
have become more prevalent. This shift has made it challenging
to distinguish break times at the worksite from remote work
hours, leading to increased uncertainty in estimating overall
work hours. While self-reports have been commonly used to
study break times, remote work, and work hours [1-3], they
experience potential biases and are not ideal for monitoring
longitudinal time periods accurately. Recall biases, in particular,
can reduce the reliability of self-reported work hours.
Furthermore, distinguishing between being at work
(“on-working”) and off work (“off-working”) is not always
straightforward. Instead, it involves a spectrum of work-related
behaviors, including work performance, work efficiency, and
work fatigue.

To address these challenges, artificial intelligence technologies,
such as machine learning and deep learning, have been used to
classify subjects with high complexity. However, many
applications of supervised machine learning require large
amounts of manually labeled training data, which is resource
intensive and can be subject to biases or poor interrater
reliability, especially in behavioral science. For individuals who
primarily work in 1 specific location, defining their working
state is relatively simple. In this context, we developed an app
called “Staff Hours,” which uses GPS background data to
automatically calculate users’work hours. The app also records
users’ screen events, such as notification timestamps, screen on
or off events, and types of apps used. These screen events have
been shown to be informative in various aspects of human
behavior [4-9]. Given the ubiquity of smartphones in modern
work styles, measuring long-term human-smartphone
interactions through mobile apps not only reflects cognitive
functioning in real time [10] but also provides behavioral
insights that may differ between on-working and off-working
states. Specifically, the timestamps of notifications, screen on
or off events, and types of apps used correspond to stimuli,
individual responses, and the content of stimuli or responses in
mental chronometry [11]. One essential aspect of cognitive
ability is reaction time, which is typically measured by the
elapsed time between a stimulus onset and an individual’s
response in a laboratory setting. In a naturalistic setting,
continuous reaction time measurements can be obtained through
the elapsed time between notification onset and the smartphone
user’s response with the screen on. These continuous reaction
time measurements via human-smartphone interactions may
serve as an indicator of work mode [12].

In this study, we used data sets of human-smartphone interaction
patterns and GPS-defined locations to develop a machine

learning–based indicator of work mode probability. It was
hypothesized medical staff members exhibit distinct
human-smartphone interaction patterns between on-working
and off-working states. Our specific aims were to (1) evaluate
the accuracy of the machine learning algorithm in distinguishing
human-smartphone interaction patterns between GPS-defined
on-working and off-working periods and (2) identify the
distribution and proportion of break times during GPS-defined
work hours and remote work hours during GPS-defined
off-working periods based on the probability of being in work
mode.

Methods

Study Sample
We collected data from 121 medical staff members who had at
least 5 days’ worth of data representing their “typical work
hours” between May 2018 and April 2022. The data were
obtained from the Staff Hours database owned by the National
Health Research Institutes. The Staff Hours app, used in the
study, automatically estimated users’ work hours on a daily
basis through GPS records using a previously described
algorithm [4,13,14]. All participants volunteered for the study
and had installed the app, providing informed consent for
electronic data collection. The app was available on both
Android and iOS platforms.

The typical work schedule considered in the study had the
following characteristics: (1) off-working status at the beginning
and end of the day (excluding night shifts and on-call duties),
(2) on-working status starting before noon, and (3) work
duration longer than four hours. Data from each participant were
included for analysis if they met these criteria for at least 5 days.
This 5-day threshold was chosen based on the common 5-day
workweek schedule of modern workplaces, and it was deemed
sufficient to capture the range of human-smartphone interaction
patterns at work. The machine learning models were trained on
the selected typical work schedule, and data were analyzed over
holidays, defined as days without records of GPS location at
the worksite (indicating 0 work hours).

Ethical Considerations
The study was approved by the institutional review board of
the National Health Research Institutes (EC1100109-E), and
all clinical investigations were conducted in accordance with
the Declaration of Helsinki.

Design of the Staff Hours App
In this study, the Staff Hours app was designed to automatically
record GPS data and smartphone events, including screen on
or off timestamps, app notifications, and app labels. The app
could track up to 5 workplace locations, and work hours
recording began when the smartphone detected the workplace
location within a 1-km radius for a continuous 1800-second
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period. Work hours recording ceased when the workplace was
not detected within 1 km of the device for a continuous
1800-second period. To optimize battery usage, the GPS data
were sampled at fixed intervals of 600 seconds (refer to Figure
1).

The Android version of Staff Hours automatically captured
additional smartphone events, such as timestamps of the screen

on or off events, app notifications, and labels for the active apps.
For example, during the off-working state between timestamps
20:00:00 and 20:30:00, the participant’s timestamps of
smartphone events recorded notifications at timestamps 20:00:00
and 20:10:00. Additionally, at timestamp 20:10:05, a screen on
the event was detected until timestamp 20:25:05, during which
the active app label was “YouTube” (refer to Figure 2).

Figure 1. The measurement of human-smartphone interaction patterns and GPS locations in this study. The Staff Hours app simultaneously recorded
users’ GPS location and smartphone events as 3 key variables: timestamps of the screen on or off events, notifications, and labels of the app in use. The
boxes at the top-right corner show the details of the smartphone events. The temporal resolution of screen events was 1 second. The sampling rate of
GPS data was fixed at 10 minutes. GPS-defined work hours started when the workplace location was within range for a consecutive 1800 seconds and
ended when there was a consecutive 1800-second period without the workplace being detected as within range. The red dots represent GPS-defined
work hours, whereas the blue dots represent GPS-defined off-work periods.

Figure 2. The differences in human-smartphone interaction patterns between on-working and off-working states. In this figure, a hypothetical user’s
reaction time to a phone call at work was 1 second (10:00:00 to 10:00:01), and the reaction intensity was 15 minutes (10:00:01 to 10:15:01); contrastingly,
there was no reaction to a phone call off work. And vice versa, the individual presented a longer reaction time and a lower reaction intensity to YouTube
at work than off work. The screen events were converted into 5 features for each application (app) used within the time window of 1800 seconds. The
5 features, composed of the timestamps of screen-on or off, types of app, and notifications, were (1) the duration of app usage, (2) the frequency of
notifications during each usage episode, (3) the frequency of notifications occurring outside the episode, (4) the reaction time from the moment a push
notification was received to the beginning of the app usage, and (5) the reaction intensity, which was defined as the duration of the app usage following
the notification.
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As the Android operating system allowed background recording
of human-smartphone interaction patterns, this valuable
information included app usage duration, notification
frequencies during each app usage episode, occurrences of
notifications outside episodes, reaction time from receiving a
push notification to initiating app usage, and reaction intensity,
which defined the duration of app usage following the
notification.

Considering the differences in data collection capabilities
between Android and iOS devices, we focused on analyzing
and using human-smartphone interaction patterns specifically
from the Android version of the Staff Hours app in our study.
The model’s performance was assessed based on this data set,
while future research could investigate whether the model’s
performance differs depending on the phone operating system,
considering the potential impacts of internal settings on GPS
data quality, as suggested in previous research.

Data Preprocessing
Human-smartphone interaction patterns were transformed into
5 features for each app used within an 1800-second time
window. These features encompassed timestamps of the screen
on or off events, app types, and notifications, quantifying app
usage duration, notification frequencies during usage episodes,
frequencies of notifications outside episodes, reaction time from
push notification to app usage, and reaction intensity (refer to
Figure 2). The total number of features quantifying
human-smartphone interaction patterns was 5 times the number
of apps used within each 1800-second time window. Data were
excluded if no screen events were recorded on a certain day.

The machine learning algorithm was trained using GPS-defined
working states, where off-working states were coded as 0 and
on-working states as 1. To ensure accurate training, time
windows of 1800 seconds containing both GPS-defined
on-working and off-working states were excluded from the
training data sets. We chose to use 1800-second time windows
due to the nature of our work hours recording process, which
involved detecting workplace locations for continuous
1800-second periods to commence or cease work hours

recording. Additionally, we considered previous research on
factors like fatigue, boredom, and smartphone use during work
hours, where similar 1200-second time windows were used to
capture relevant behavior [15]. Thus, we adopted time windows
of 1800 seconds for our machine learning algorithm.

Data between midnight and 5:45 were excluded for several
reasons: (1) this period primarily covered sleep time during a
typical workday; (2) participants did not use their smartphones
during sleep [6-8], which could introduce confusion between
smartphone nonuse patterns during nocturnal hours and nonuse
patterns during work hours in the machine learning process;
and (3) the other 18.25-hour data (from 5:45 to midnight) might
consist of approximately half on-working and half off-working
data, given the typical work hours of 8 to 10 hours per day.

Model Development
In this study, we used a 2-stage supervised machine learning
process to develop our algorithm. In the first stage, we used
extreme gradient boosted trees (XGB) to transform
human-smartphone interaction patterns into probabilities using
softmax. In the second stage, we used the 1-dimensional
convolutional neural networks (1D-CNN) model to generate
successive probabilities based on preceding probabilities in a
sequence (refer to Figure 3). The algorithm was trained using
human-smartphone interaction patterns and the corresponding
GPS-defined working status. The GPS-defined on-working or
off-working statuses were labeled as either 1 or 0, resulting in
a probability between 0 and 1 from any time series of
human-smartphone interaction patterns (refer to Figure 3).

To address individual differences in smartphone usage, we
developed separate models for each participant. We
implemented machine learning algorithms with a 5-fold
cross-validation approach. Missing values were imputed by
sampling with replacement from nonmissing values. We used
the package named TensorFlow (version 2.4.1; Google) to
implement the 1D-CNN model. All data processing and analysis
were performed using Python (version 3.8.5; Python Software
Foundation), NumPy version 1.19.2, and scikit-learn version
0.23.2 [16].
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Figure 3. The algorithm to generate probability in work mode. Our algorithm used a 2-stage supervised machine learning process to differentiate
human-smartphone interaction patterns at work and off work, which were defined by GPS locations. The first stage applied extreme gradient boosted
(XGB) trees to transform human-smartphone interaction patterns into a provisional probability, and the second stage applied the 1-dimensional
convolutional neural networks (1D-CNN) to yield the next-minute probabilities given the preceding probability in a temporal sequence. More specifically,
the 1D-CNN model is composed of 3 convolution (Conv) layers and 2 fully connected (FC) layers. The activation function of these layers included
rectified linear unit (ReLU) and sigmoid function. The first 2 convolution layers used max pooling, and the third convolution layer used global average
pooling. GPS-defined on-working or off-working statuses were labeled as either 1 or 0. The trained machine learning algorithm yielded a probability
between 0 and 1 from any time series of smartphone usage patterns. The higher probability in work mode generated from human-smartphone interaction
patterns indicates a greater correspondence with on-working states defined by GPS. The red line represents GPS-defined work hours, whereas the blue
line represents GPS-defined off-work periods.
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Statistical Analysis

Model Evaluation
To evaluate the performance of our model, we measured the
accuracy of each person-day and calculated the area under the
receiver operating characteristic curve (AUC) for each
individual. We assessed the AUC and its accuracy for days with
typical work hours, holidays, and both. We excluded the
transition area, defined as the 15 minutes before and after GPS
data switched from on-working to off-working or vice versa,
from the calculation of accuracy and the receiver operating
characteristic curve analysis. On-working states were determined
based on working probabilities higher than 0.5, while
off-working states were defined by working probabilities lower
than 0.5. These states were derived from human-smartphone
interaction patterns using the machine learning algorithm. We

calculated sensitivity, specificity, and overall accuracy by
comparing the 2 working states estimated by the probability in
work mode and GPS-defined working states. True positives
were defined as on-working states identified by both the
probability in work mode and GPS location, while false positives
were on-working states identified solely by the probability in
work mode but not by the GPS location. The algorithm’s
performance was evaluated by examining each participant’s
AUC [17], summarizing the model's performance across all
possible thresholds and misclassification error weightings for
each person-day (refer to Figure 4). We reported the overall
AUC for days with typical work hours and holidays. As there
were no GPS-defined work hours on holidays, we could not
calculate the AUCs for holidays alone. An AUC lower than 0.7
was considered indicative of low discrimination [17].

Figure 4. Receiver operating characteristic curve. A participant’s area under the receiver operating characteristic curve (AUC) in the first stage of this
model, derived via extreme gradient boosted (XGB) trees and without 1-dimensional convolutional neural networks (1D-CNN), was 0.791, and the
AUC increased to 0.912 in the final output with 1D-CNN. In this study, the average AUC derived via XGB without 1D-CNN, was 0.748 (SD 0.088),
and the average AUC increased to 0.915 (SD 0.064) in the final output with 1D-CNN among 121 participants.

The reference accuracy is obtained by applying a well-known
“9 to 5” paradigm, which assumes that each day, regardless of
being a typical workday or a holiday, has work hours from 9
AM to 5 PM, and the remaining time is considered off-working
hours. Using this paradigm, we calculate the probability of
correctly identifying working states for each day without prior
knowledge of whether it is a workday or not. It serves as a
baseline for comparison with our algorithm’s performance. It
is important to note that we did not find any similar models to
directly compare with ours in the recent systematic review [18].
Therefore, we used the reference accuracy method mentioned
above to assess the effectiveness of our algorithm in identifying
working states. We hypothesized that our algorithm, trained
using data from typical work hours, would also perform

effectively during holidays, accurately identifying most working
probabilities lower than 0.5 based on human-smartphone
interaction patterns observed during holiday periods. To evaluate
our model’s performance, we conducted paired t tests to
compare the accuracies of our algorithm with the reference
accuracies for days with typical work hours, holidays, and both
scenarios. This comparison provides insights into how well our
algorithm performs in distinguishing working and nonworking
states compared to the established “9 to 5” reference.

Investigation of the Minimum Number of Features
To address potential interpretability concerns related to the XGB
approach, we assessed the number of smartphone usage features
required in each machine learning model to achieve predictive
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power similar to using all features. We ranked the features for
each XGB model based on their feature importance scores and
identified common features with high importance scores among
all participants. Using the greedy algorithm, we obtained the
optimal AUC with a minimum number of variables. We set the
threshold for differences between the AUC using all variables
and the AUC with a minimum number of variables to be less
than 0.01.

Investigation of the Model’s Stability
Considering the individual differences in smartphone usage,
we trained separate models for each participant to achieve model
robustness. To determine the number of days required in the
data set for model stability, we examined the association
between individuals’ AUCs and the number of days used for

training. Data collected from 5 working days theoretically
encompass the variety of smartphone usage patterns within a
1-week cycle.

Distribution of the Probabilities of Work Mode, Break
Time, and Remote Work Hours
For each person-day with typical work hours, break times were
defined as periods when the probability in work mode fell below
0.5 during GPS-defined on-working states, and remote work
hours were defined as periods when the probability in work
mode exceeded the threshold during GPS-defined off-working
states (refer to Figure 5). We compared work hours defined by
human-smartphone interactions and those defined by GPS
counterparts, as well as break times and remote work using
paired t tests.

Figure 5. Probability in work mode diagram for 1 day. The scatter plot illustrates the proposed probability in work mode diagram for 1 day. The red
line represents GPS-defined work hours, whereas the blue line represents GPS-defined off-work period. We set a threshold of 0.5 for the probability in
work mode defined at work and off work. We interpreted office-working, break times, off-working, and remote working by the probability in work
mode and GPS. In this scenario, the period between 9:03 to 14:32 is 1 episode of the individual’s “office working” period, during which the probability
in work mode is higher than 0.5 and the GPS location is “at work.” The period between 14:33 to 15:06 is a “break time,” during which the probability
in work mode falls lower than 0.5 but the GPS location is still at work. By contrast, the period between 19:58 to 20:31 is a “remote working” period,
during which the probability in work mode is higher than 0.5 and the GPS location indicates “off work.”

Results

A total of 121 participants (64 women, 52.9%; mean age 37.9,
SD 8.7 years), with 5503 person-days were included in this
study. Most of them (64/121, 52.9%) were medical doctors.
The average AUC in the first stage of this model, derived via
XGB and without 1D-CNN, was 0.748 (SD 0.088), and the
AUC increased to 0.915 (SD 0.064) in the final output with
1D-CNN. Among the 121 participants, 1 (0.8%) participant’s
AUC was below 0.7, whereas other participants’ AUC ranged
from 0.756 to 0.993. Figure 4 offers an illustrative example of
the probability in a work mode diagram for 1 day, providing a
visual representation of the concept.

The average accuracy of 81.9% (SD 16.0%) achieved by our
algorithm was significantly higher than the reference accuracy
(estimated by the “working 9 to 5” paradigm) of 73.0% (SD
16.3%) among the total 5503 person-days (P<.001). Among
the 3762 person-days with typical work hours, the average
accuracy of 83.2% (SD 12.1%) via our algorithm was
significantly higher than the reference accuracy (estimated by
the “working 9 to 5” paradigm) of 82.3% (SD 11.3%; P=.001).
Additionally, for the 1741 holidays, the average accuracy of
79.1% (SD 22.0%) via our algorithm was significantly higher
than the reference accuracy (estimated by “working 9 to 5”) of
53% (SD 18.5%; P<.001). The accuracy of typical work hours
was significantly higher than that of holidays (P<.001).
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Based on our interpretation, we calculated the following
averages: (1) 9.3 (SD 2.5) hours of office working (defined by
both GPS location at the worksite and probability in work mode
higher than 0.5), (2) 0.9 (SD 1.2) hours of break time (GPS
location at the worksite but probability in work mode lower
than 0.5), (3) 4.4 (SD 2.5) hours of off-working state (defined
by both GPS location off the worksite and probability in work
mode lower than 0.5), and (4) 1.9 (SD 1.8) hours of remote
working (GPS off the worksite but probability in work mode
higher than 0.5). Figure 5 provides an illustrative example of
the probability in the work mode diagram for further insights
into the concept.

The average break time of 0.9 (SD 1.2) hours (54.7, SD 74.5
minutes) per day accounted for 9.2% (SD 12.5%) of
GPS-defined work hours. Furthermore, the remote work time
of 111.6 (SD 106.4) minutes was significantly longer than the
break time of 54.7 (SD 74.5) minutes (P<.001). Consequently,
the average work hours of 11.2 (SD 2.8) hours (669.3, SD 167.8
minutes), as defined by probability in work mode higher than
0.5, were significantly longer than the GPS-defined counterparts
(612.4, SD 135.8 minutes) by 56.9 minutes (P<.001).

Discussion

In this study, we developed a novel machine learning model
that leveraged human-smartphone interactions and GPS location
data to accurately estimate work hours, achieving an average
prediction performance of 0.915. The model provided enhanced
accuracy in work hour estimation, offering comprehensive
insights into work patterns, including remote work and breaks.
Both the accuracy on typical workdays and holidays
significantly surpassed the references estimated by the “working
9 to 5” paradigm. Our approach uniquely used
human-smartphone interaction patterns and GPS data collected
passively through the Staff Hours app, developed by our team
[4,13,14]. While the field of behavioral science has seen
numerous studies using machine learning models for digital
phenotyping of mental health and device use patterns [18], our
study stands out as the first to explore the use of
human-smartphone interaction patterns to distinguish
work-related states. This innovative approach opens new
possibilities for understanding work behaviors and related
factors. The model’s ability to identify break times at work and
remote work off-site further improved the accuracy of
investigating work hours. Simultaneously recording informative
features (screen events) and corresponding labels (GPS data)
with high temporal resolution allowed the model to provide
dense daily assessments, offering potential insights into
minute-by-minute variations in work performances. Our
approach was unobtrusive, imposing no additional burden on
the participants beyond their normal smartphone use. Moreover,
our data collection occurred in naturalistic settings, capturing
human-smartphone interactions in a more ecological context
than conventional assessments. This feature enhances the
applicability and real-world relevance of our findings.

Our study demonstrated that machine learning and deep learning
models using human-smartphone interaction patterns can
effectively differentiate behaviors at work and off work.

Specifically, our tree-based machine learning model (XGB)
effectively classified participants’behaviors using screen events
collected passively by our app, providing an interpretable
explanation through feature importance. Leveraging deep
learning techniques such as 1D-CNN, we successfully decoded
the probability of being in work mode in time series data. The
inclusion of 1D-CNN significantly improved the AUC from
0.748 to 0.915, as it efficiently used the probabilistic information
from the human-smartphone interaction feature classifier during
decoding, allowing for continuous updates of the predicted
probability with each new data point. Notably, the design of the
combined XGB and 1D-CNN models resembled an approach
used to decode words and sentences from the cerebral cortical
activities of a paralyzed individual with anarthria in a previous
study [19]. In that study, a neural network and a natural language
model were used to decode words and sentences as the patient
attempted to articulate speech. The application of the natural
language model resulted in a significant improvement in word
decoding accuracy from 39.5% to 74.4% [19]. This similarity
in modeling strategies highlights the validity and effectiveness
of individualized models, given the diverse human-smartphone
interaction patterns we encountered. Moreover, while we
observed substantial interindividual differences in model
performance, our results revealed that 99.2% (120/121) of the
participants’ AUCs reached a level with acceptable
discrimination (higher than 0.7) [20,21], indicating the model’s
overall effectiveness. These interindividual differences not only
reflected variations in model performance but also elucidated
differences in participants’ work patterns, including the
proportion of break times during work hours and instances of
remote work outside of the worksite.

There are several methodological limitations should be noted
when interpreting our findings. First, our results assumed that
the probability in work mode during “typical work hours” for
medical staff in clinical practice was mostly associated with
medical institutions, even during the COVID-19 outbreak. While
the model demonstrated promising accuracy for medical staff,
it is essential to acknowledge the limitation in generalizing our
findings to other occupations. The model’s generalizability to
different job contexts and settings requires further investigation.
Second, a small percentage (1/121, 0.8%) of participants did
not exhibit acceptable discrimination levels (AUC higher than
0.7). This could be attributed to various factors, such as
individuals turning off their smartphones all day, using different
smartphones for work and off-work activities, or relying on
personal computers or tablets as alternatives to smartphones.
In such cases, the probability in work mode failed to
discriminate between on-working and off-working states. Third,
the data collection efforts were limited to Android users, and
we did not include data from iOS users. The Staff Hours app,
which automatically recorded GPS data, was specifically
designed for Android devices. As a result, we were unable to
assess potential variations in the model’s predictive capabilities
based on different phone operating systems. Finally, while the
investigation of human-smartphone interaction behaviors is
informative, it is inherently limited. However, our study
contributes to the progression toward a more comprehensive,
neurobehavioral-oriented investigation, providing insights into
precise brain activities and their manifestation in behaviors.
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In conclusion, our study presents a novel approach to predicting
the probability of a smartphone user being in a work mode,
using human-smartphone interaction data and machine learning
techniques. The probability in work mode also exhibits the
ability to identify break periods at the worksite and remote work

outside of the worksite. With its basis on passively collected
smartphone data with high temporal resolution, the probability
in work mode can significantly enhance the precision and
accuracy of work hour investigations.
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