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Abstract

Background: Although previous research has made substantial progress in developing high-performance artificial intelligence
(AI)–based computer-aided diagnosis (AI-CAD) systems in various medical domains, little attention has been paid to developing
and evaluating AI-CAD system in ophthalmology, particularly for diagnosing retinal diseases using optical coherence tomography
(OCT) images.

Objective: This diagnostic study aimed to determine the usefulness of a proposed AI-CAD system in assisting ophthalmologists
with the diagnosis of central serous chorioretinopathy (CSC), which is known to be difficult to diagnose, using OCT images.

Methods: For the training and evaluation of the proposed deep learning model, 1693 OCT images were collected and annotated.
The data set included 929 and 764 cases of acute and chronic CSC, respectively. In total, 66 ophthalmologists (2 groups: 36 retina
and 30 nonretina specialists) participated in the observer performance test. To evaluate the deep learning algorithm used in the
proposed AI-CAD system, the training, validation, and test sets were split in an 8:1:1 ratio. Further, 100 randomly sampled OCT
images from the test set were used for the observer performance test, and the participants were instructed to select a CSC subtype
for each of these images. Each image was provided under different conditions: (1) without AI assistance, (2) with AI assistance
with a probability score, and (3) with AI assistance with a probability score and visual evidence heatmap. The sensitivity,
specificity, and area under the receiver operating characteristic curve were used to measure the diagnostic performance of the
model and ophthalmologists.

Results: The proposed system achieved a high detection performance (99% of the area under the curve) for CSC, outperforming
the 66 ophthalmologists who participated in the observer performance test. In both groups, ophthalmologists with the support of
AI assistance with a probability score and visual evidence heatmap achieved the highest mean diagnostic performance compared
with that of those subjected to other conditions (without AI assistance or with AI assistance with a probability score). Nonretina
specialists achieved expert-level diagnostic performance with the support of the proposed AI-CAD system.
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Conclusions: Our proposed AI-CAD system improved the diagnosis of CSC by ophthalmologists, which may support
decision-making regarding retinal disease detection and alleviate the workload of ophthalmologists.

(J Med Internet Res 2023;25:e48142) doi: 10.2196/48142
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Introduction

Computer-aided diagnosis (CAD) is a software system that
assists in the diagnostic decision-making of clinicians [1]. CAD
systems can be used to support clinicians in various tasks, such
as detecting breast cancer [2], lung cancer [3], colorectal cancer
[4], and even Alzheimer disease [5]. Thus, these systems
potentially alleviate the heavy workload of clinicians, resulting
in the improved quality of clinical services [6,7].

With recent advancements in computer vision and deep learning
techniques, deep neural networks have been reported to achieve
expert-level performance in clinical diagnoses [8-10]. This, in
turn, has led researchers to construct CAD systems involving
artificial intelligence (AI) models, such as AI-based
computer-aided diagnosis (AI-CAD), to assist with clinical
diagnosis, for example, by detecting major thoracic diseases on
chest radiographs [6] and classifying skin cancer using skin
photographs [11]. Although prior studies have made valuable
progress in developing high-performance AI-CAD systems in
various medical domains, minimal attention has been focused
on developing and evaluating AI-CAD systems in
ophthalmology, especially for the diagnosis of retinal diseases
using optical coherence tomography (OCT) images.

Following age-related macular degeneration (AMD), diabetic
retinopathy, and branch retinal vein occlusion, central serous
chorioretinopathy (CSC) is the fourth most prevalent
vision-threatening retinopathy and is characterized by serous
detachment of the neurosensory retina at the posterior pole
[8,12]. Most patients with CSC are male, and they experience
decreased or distorted vision with altered color sensitivity and
persistent subretinal fluid (SRF) damage to the retinal outer
layer, resulting in permanent vision loss, which degrades their
quality of life [13,14]. When diagnosing CSC, assessing the
chronicity of the disease is difficult but critical for the
formulation of a treatment strategy or the prediction of its
prognosis [8,15]. A patient with chronic CSC with or without
sustained sensory retinal detachment may already have
irreversible poor vision or require active intervention; hence,
preventing permanent visual disturbance that can reduce a
patient’s quality of life [15] is important.

In ophthalmology, OCT is a noninvasive, rapid, and accurate
test that produces highly reproducible outcomes [8,16,17]. It is
frequently used to evaluate structural abnormalities associated
with retinal disease, including CSC, without requiring physical
contact [17]. It is now considered the imaging modality of choice
for the diagnosis and follow-up of patients with CSC [18,19].
OCT has been used to examine the alterations in CSC's retinal
pigment epithelium (RPE) and outer retina morphology [20].

Further, OCT can assess and quantify the presence of SRF,
which can aid in estimating the episode duration and
determine the subsequent treatment [17].

Herein, we propose an AI-CAD system that can alleviate the
heavy workloads and improve the diagnostic performance of
retinal disease for ophthalmologists. We tried to find out whether
AI could really help ophthalmologists’ diagnostic activities
through a CAD system in the field of ophthalmology, and we
selected CSC, one of the representative macular diseases, and
built a CAD system. In particular, the proposed AI-CAD system
may support ophthalmologists in distinguishing the subtypes
of CSC. To investigate the effectiveness of the proposed system,
we conducted a within-subject user study involving 66
ophthalmologists.

Methods

Ethical Considerations
This study was conducted in accordance with the 1964
Declaration of Helsinki guidelines. The Ethics Committee of
Hangil Eye Hospital approved the research protocol (IRB 21018)
and its implementation and waived the requirement for informed
consent as this study was retrospective and observational in
nature and used medical records to extract the required data.

AI-CAD System Construction for CSC-Subtype
Detection

Data Collection and CSC Labeling
To train and evaluate the proposed deep learning model, 1693
OCT images of patients who visited Hangil Eye Hospital
between June 2017 and June 2021 were collected and annotated.
This study aimed to construct an AI-CAD system that identifies
CSC subtypes.

All CSC cases were diagnosed by independent retinal specialists
using fundus examinations, fluorescein angiography (FA),
indocyanine green angiography (ICGA), and OCT images. On
all CSC cases, FA and ICGA were performed simultaneously
using a Heidelberg Retina Angiograph (Heidelberg Engineering)
confocal scanning laser ophthalmoscope. Other potentially
conflicting retinal pathologies such as AMD, polypoidal
choroidal vasculopathy, pachychoroid neovasculopathy, and
pachychoroid pigment epitheliopathy were excluded from our
analysis.

Acute CSC was diagnosed based on the presence of serous
retinal detachment involving the macula, as demonstrated by
OCT, and the leakage at the level of the RPE on FA [16,17,21].
In the acute CSC cohort, only classic, acute CSC with a
symptom duration of less than 4 months since the first episode
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was included. Chronic CSC was diagnosed based on the RPE
status and was defined as chronic chorioretinopathy with
widespread RPE decompensation, with or without subretinal
detachment, and with or without an active leakage site,
according to the Daruich et al [22] classification scheme [21].
Chronic CSC was diagnosed when extensive RPE atrophy was
observed, independently of SRF, according to their definition
[15,22]. Further, 2 retina experts (JSH and DDJH) reviewed the
images from OCT, FA, and ICGA imaging techniques and also
assessed the medical records. If there was a difference in
opinions, another retina expert (JMH) stepped in to identify the

inconsistency and consulted with the others. Any differences
were settled through mutual agreement. Representative CSC
cases are illustrated in Multimedia Appendix 1.

User Interface of AI-CAD System
The proposed AI-CAD system formulated in this study (Figure
1) comprises three components: (1) an AI probability panel, (2)
an evidence heatmap panel, and (3) a status panel. Further, we
designed the user interface of the proposed AI-CAD system
using HTML, CSS, and JavaScript, while implementing the
server-side functionality with Python and Flask [23].

Figure 1. An illustration of the proposed AI-CAD system. (A) AI probability panel, (B) AI evidence heatmap panel, and (C) status panel. AI: artificial
intelligence; AI-CAD: artificial intelligence–based computer-aided diagnosis; CSC: central serous chorioretinopathy; M: male.

The AI probability panel displays the probability score for each
retinal disease (acute or chronic CSC). These scores are
generated from the last fully connected layer of the proposed
deep learning model using the softmax activation function and
allow users to measure the confidence of the AI model with its
decision. The probabilities are illustrated with progress bars to
enable users to intuitively perceive the model’s confidence.

The evidence heatmap panel reveals important regions in the
OCT image while the model classifies the target label (eg, acute
or chronic CSC). Gradient-weighted class activation mapping
was adopted to highlight the important regions [24]. The
activated regions were calculated using the feature-map
gradients of the convolutional neural network (CNN) layer. The
heatmap highlights the area of the image wherein the proposed
model was used for classification. Moreover, users can zoom
in or zoom out of the OCT images in the panel to observe the
details of the pathologic regions.

The status panel displays the patient information of the current
sample. Patient information included identification number,
sex, and age. Users were able to identify the demographic
information of a patient while analyzing a given image.

AI-CAD System CSC-Subtype Detection Model
To automatically classify a given OCT image into 2 different
CSC subtypes, we use CNN-based architecture, VGG-16 [25].
The convolutional filters in CNN layers learn local patterns
such as edges and textures, which is crucial for image
recognition. Although other well-known CNN architectures,
including VGG-19 and Resnet-50 [26], have been used
previously, VGG-16 was selected in this study as it outperforms
the others in our validation set. The proposed model uses
spectral domain OCT (SD-OCT) images as input and predicts
1 of the 2 subtypes, that is, acute or chronic CSC. The detailed
architecture of the proposed model is illustrated in Multimedia
Appendix 2.
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To train and evaluate the AI model, the data were randomly
split into the training, validation, and test sets in an 8:1:1 ratio.
The validation set was exclusively used to tune the
hyperparameters of the model, and the test set was singularly
used to evaluate the final performance of the model. We trained
the proposed model using batch sizes of 64 and 30 epochs and
Adam optimization [27] (learning rate: 0.0002). Moreover, we
leverage transfer learning method to avoid overfitting. The
details of transfer learning, data set construction, including
collection, labeling, and preprocessing, are described in
Multimedia Appendix 3.

Observer Performance Test
To investigate whether each component of the proposed system
can assist in improving the diagnostic performance of
ophthalmologists, a web-based experiment was conducted in
which each participant was instructed to classify CSC subtypes
from a given SD-OCT image. The experimental procedure
comprised 3 steps (Figure 2). In the first step, observers had to
identify the possible CSC subtype based on the SD-OCT image.
The observers diagnosed retinal disease without artificial
intelligence assistance (ie, No AI). In the subsequent step, an
AI probability panel was provided to the observers (ie, artificial
intelligence assistance with a probability score [AI Prob]). The

AI probability panel shows the probability score of each retinal
disease (acute or chronic). At the end of the step, both the AI
probability panel and AI evidence heatmap panel were added
to the system to provide a visual explanation to the observers
(ie, artificial intelligence assistance with a probability score and
visual evidence heatmap [AI Prob+Evid]).

In each step, all observers had to determine whether the given
OCT image reflected acute or chronic CSC by selecting a button
on the web system. The same OCT image was used in the 3
steps. As 100 SD-OCT images were used in our experiment,
each participant assessed 300 cases (ie, 3 steps × 100 images)
in total. The 100 images were randomly extracted from the test
set that was not used to train our model. The step-by-step user
interface for the observer performance test is illustrated in
Multimedia Appendix 4.

The study recruited 66 participants, including 36 retina and 30
nonretina specialists. The retina specialists were medical doctors
who had completed 1-2 years of the retina fellowship training
program. In contrast, nonretina specialists were board-certified
ophthalmologists who were not specialized in the retina. The
detailed information of the 66 participants is summarized
Multimedia Appendix 5.

Figure 2. An illustration of the experimental procedure. In total, 66 ophthalmologists participated in the experiment. All observers were instructed to
select one of the possible retinal diseases after reviewing the given SD-OCT image. In step 1, only the SD-OCT image was provided without any AI
advice (ie, No AI). In step 2, the decision probability provided by AI was displayed on the system (ie, AI Prob). Finally, in step 3, the visual evidence
of the AI decision was provided in addition to the AI probability panel (ie, AI Prob+Evid). The AI model was trained, validated, and tested using 1389,
141, and 163 images, respectively. The experiment was conducted using 100 images randomly sampled from the test set. AI: artificial intelligence; AI
Prob+Evid: artificial intelligence assistance with a probability score and visual evidence heatmap; AI Prob: artificial intelligence assistance with a
probability score; No AI: without artificial intelligence assistance; SD-OCT: spectral domain optical coherence tomography.
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Statistical Analysis
Receiver operating characteristic analysis was conducted to
evaluate the performance of the proposed model and
ophthalmologists in classifying the CSC subtypes. Thereafter,
the receiver operating characteristic curve with the true-positive
and false-positive rates was plotted to measure the area under
the receiver operating characteristic curve (AUROC) score.
Friedman [28] test, followed by the Wilcoxon signed-rank test,
was used to quantify the differences among the 3 different
conditions (ie, No AI, AI Prob, and AI Prob+Evid) [29]. A
2-tailed t test was used to compare diagnostic performance
between the nonretina and retina specialists.

Results

CSC-Subtype Detection Model Performance
The proposed model exhibited high accuracy, sensitivity, and
specificity values of 96.3%, 97.1%, and 95.7%, respectively
(n=163). The model achieved 98.4% (n=163) of the AUROC
which outperforms Resnet-50 (n=163; AUROC 87.9%) and
VGG-19 (n=163; AUROC 96.1%). The model failed to
accurately predict 6 cases only in our test set. Importantly, the
training AUROC of 95.6% (n=163) indicates that our model
strikes a balance between avoiding overfitting and underfitting,
further affirming its reliability.

Performance Comparison Between the AI-CAD System
and Ophthalmologists
The diagnostic performance of the AI-CAD system was
compared with that of ophthalmologists. The AUROCs were
calculated to evaluate the AI-CAD and human predictive
abilities for 100 images randomly extracted from the test set.
The AI-CAD system (AUROC 99.5%; n=100) outperformed
both retina (AUROC 92.1%; n-36) and nonretina (AUROC
87.8%; n=30) specialists.

Diagnostic Performance of Ophthalmologists
The retinal-disease detection performance of the 36 retina and
30 nonretina specialists were evaluated under 3 different
conditions (ie, No AI, AI Prob, and AI Prob+Evid; Table 1).
The results of the Friedman test followed by the Wilcoxon
signed-rank test revealed significant differences in diagnostic
performance among the 3 different conditions for retina
(statistic=59.5, df=2; P<.001) and nonretina (statistic=44.4,
df=2; P<.001) specialists. In particular, the retina specialists
who were provided with the AI probability panel and AI
evidence heatmap panel (ie, AI Prob+Evid) achieved the highest
mean diagnostic performance (AUROC 95.8%, 95% CI
0.948-0.969; n=36) compared with those subjected to other
conditions (No AI: 0.921, 95% CI 0.907-0.935; P<.001; and AI
Prob: 0.956, 95% CI 0.946-0.967; P<.05). The nonretina
specialists also displayed their best performance (0.929, 95%
CI 0.913-0.946) with numerical and visual information
compared with when they were subjected to other conditions
(No AI: 0.878, 95% CI 0.860-0.895; P<.001; and AI Prob: 0.922,
95% CI 0.905-0.940; P<.001).

Table 1. Diagnostic performance of retina and nonretina specialists.

Accuracy (95% CI)Specificity (95% CI)Sensitivity (95% CI)AUROCa (95% CI)Step and observer group

Step 1: No AIb

0.859 (0.840-0.878)0.821 (0.794-0.848)0.934 (0.910-0.958)0.878 (0.860-0.895)Nonretina specialist

0.918 (0.904-0.932)0.912 (0.890-0.933)0.930 (0.905-0.954)0.921 (0.907-0.935)Retina specialist

0.891 (0.878-0.905)0.870 (0.850-0.890)0.932 (0.915-0.949)0.901 (0.889-0.913)Both

Step 2: AI Probc

0.905 (0.884-0.926)0.867 (0.837-0.897)0.977 (0.966-0.989)0.922 (0.905-0.940)Nonretina specialist

0.952 (0.940-0.964)0.943 (0.924-0.962)0.969 (0.954-0.984)0.956 (0.946-0.966)Retina specialist

0.930 (0.918-0.943)0.909 (0.889-0.928)0.973 (0.963-0.982)0.941 (0.930-0.951)Both

Step 3: AI Prob+Evidd

0.912 (0.892-0.933)0.876 (0.846-0.906)0.982 (0.974-0.990)0.929 (0.913-0.946)Nonretina specialist

0.954 (0.942-0.966)0.945 (0.926-0.964)0.971 (0.956-0.987)0.958 (0.948-0.969)Retina specialist

0.935 (0.923-0.947)0.914 (0.895-0.933)0.976 (0.967-0.985)0.945 (0.935-0.955)Both

aAUROC: area under the receiver operating characteristic curve.
bNo AI: without artificial intelligence assistance.
cAI Prob: artificial intelligence assistance with a probability score.
dAI Prob+Evid: artificial intelligence assistance with a probability score and visual evidence heatmap.

J Med Internet Res 2023 | vol. 25 | e48142 | p. 5https://www.jmir.org/2023/1/e48142
(page number not for citation purposes)

Yoon et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Benefits of the AI-CAD System in CSC-Subtype
Classification
This study investigated how the AI-CAD system can help
nonretina specialists detect retinal diseases. The t test results
revealed no significant differences in AUROC between the
nonretina specialists supported by the AI-CAD system (AI Prob:

0.922, 95% CI 0.905-0.940; P=.88; and AI Prob+Evid: 0.929,
95% CI 0.913-0.946; P=.42) and retina specialists not supported
by the AI-CAD system (No AI: 0.921, 95% CI 0.907-0.935).
This finding demonstrates that nonretina specialists can achieve
expert-level diagnostic performance with the support of the
proposed AI CAD system (Figure 3).

Figure 3. Comparison of the diagnostic performance of retina and nonretina specialists. The t test results revealed no significant difference in AUROC
between nonretina specialists supported by AI-CAD (AI Prob: 0.922, 95% CI 0.905 to 0.940; P=.88 or AI Prob+Evid: 0.929, 95% CI 0.913 to 0.946;
P=.42) and retina specialists with no AI support (No AI: 0.921, 95% CI 0.907 to 0.935). This implies that nonretina specialists can achieve expert-level
performance with the proposed AI-CAD system. AI: artificial intelligence; AI Prob+Evid: artificial intelligence assistance with a probability score and
visual evidence heatmap; AI Prob: artificial intelligence assistance with a probability score; AI-CAD: artificial intelligence–based computer-aided
diagnosis; AUROC: area under the receiver operating characteristic curve; No AI: without artificial intelligence assistance.

Changes in Clinical Diagnosis With the Support of the
AI-CAD System
To evaluate the proposed system’s positive effect in assisting
ophthalmologists, the number of positive (ie, false negative to
true positive and false positive to true negative) and negative
(ie, true positive to false negative and true negative to false
positive) changes that could be observed between the No AI and

AI Prob+Evid conditions were recorded. Chronic CSC was set
as the positive class. Overall, 42.8% (307/718) of the
misclassified cases under the No AI condition were accurately
classified in the AI Prob+Evid condition (Table 2). In particular,
106 false-negative cases turned into true positives after using
the proposed AI-CAD system, implying that the proposed
system is useful for ophthalmologists in distinguishing between
acute and chronic CSC.
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Table 2. Clinical diagnosis changes after AI-CADa use.

Clinical diagnosisObserver group

Sum of negative
changes

Negatively changed by AISum of positive
changes

Positively changed by AIb

TN to FPTP to FNFPe to TNfFNc to TPd

85316711552Nonretina specialist, n

9631408654Retina specialist, n

17116307201106All, n

aAI-CAD: artificial intelligence–based computer-aided diagnosis system.
bAI: artificial intelligence.
cFN: false negative.
dTP: true positive.
eFP: false positive.
fTN: true negative.

Discussion

Principal Findings
This study proposed the development of an AI-CAD system to
assist ophthalmologists in distinguishing chronic from acute
CSC. In particular, the proposed system provides (1) the
probability of retinal disease and (2) visual evidence to
effectively assist ophthalmologists in their clinical decisions.
To evaluate the effectiveness of the proposed AI-CAD system
in enhancing ophthalmologists’ clinical decision-making, a
within-subject user study involving 66 ophthalmologists was
conducted. The extensive experiments demonstrated that the
proposed AI-CAD system effectively assists ophthalmologists
in improving their diagnostic performance for retinal disease.

The proposed deep neural network in the AI-CAD system
achieved a high retinal-disease detection performance of 99.5%
(n=100) of the AUROC, outperforming all 66 ophthalmologists
who participated in the experiment. The high performance of
the proposed AI-CAD model implies that it can lessen the heavy
workloads and reduce potential errors by clinicians [8,9]. The
quality of clinical services can be improved by using a deep
learning model that guarantees consistent and high-level
detection performance for retinal disease.

The observer performance test revealed that the proposed
AI-CAD system can effectively help ophthalmologists diagnose
retinal disease. The experimental results revealed that the
diagnostic performance of the retina specialists and nonretina
specialists increased by 3.5% (n=36) and 4.4% (n=30),
respectively (Table 1). This signifies that the proposed system
successfully improved the ability of ophthalmologists to detect
retinal disease. In particular, the performance difference between
cases with and without the AI-CAD system was higher in the
nonretina specialist group (n=30; 4.4%) than that in the retina
specialist group (n=36; 3.5%), implying that the nonretina
specialist group tended to receive support more than the retina
specialist group. This finding is consistent with that of a prior
study, which revealed that relatively less-skilled physicians
exhibited greater improvement in the detection of pulmonary
disease compared with that of skilled physicians [6,7].

Moreover, ophthalmologists achieved an even higher AUROC
(retina specialists: 0.958; nonretina specialists: 0.929) if AI
diagnosis information was availed with its visual explanation
(gradient-weighted class activation mapping). This indicates
that providing probability scores with a visual explanation is
more useful for ophthalmologists than simply displaying the
probability scores alone, thereby exhibiting consistency with
prior work that revealed the usefulness of visual modality in
detecting diseases [7].

Practical Issues
Deploying a clinical decision support system (CDSS) in
real-world health care settings presents a set of practical
challenges. Chief among these concerns is the system’s
susceptibility to errors, which can undermine trust in AI-driven
solutions. To address this, a dynamic training model becomes
indispensable. In the realm of academia, researchers have
embraced the “Human-In-the-Loop” paradigm to tackle this
issue [30-32]. This approach involves the seamless integration
of human oversight and intervention into the CDSS’s
decision-making processes. By empowering human experts to
review and amend the system's outputs, we expedite the
identification and rectification of errors. Consequently, this
iterative feedback mechanism bolsters the CDSS's
trustworthiness and reliability in real-world applications,
bringing it into closer alignment with user expectations and
requirements.

Another pivotal concern pertains to the system's security.
Safeguarding patient data and upholding the integrity of the
CDSS is paramount within the health care domain. This
demands the implementation of robust encryption, stringent
access controls, and regular security audits to protect sensitive
information and prevent unauthorized access or data breaches.
Furthermore, continuous monitoring and timely updates to the
CDSS are essential for addressing emerging security threats
and vulnerabilities, ensuring a high level of security in
real-world applications.

By concurrently addressing error mitigation and security, CDSS
developers and health care professionals can collaborate in
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creating a more dependable and trustworthy system that serves
the best interests of both patients and medical practitioners.

Limitations
This study has some limitations. First, all images were acquired
from a single OCT device located at a single academic center.
Although the data set was sufficient to train and validate the
proposed model for distinguishing between CSC subtypes,
external validation with a different center is needed. Second,
experiments were conducted using the web-based AI-CAD
system developed in this study. Thus, the environment was
relatively different from that of actual clinical practice.
However, we attempted to design and develop a user-friendly
AI-CAD system under the supervision of retina specialists.
Third, considering that the model's training data comprises
images taken exclusively by the Heidelberg Spectralis device
(Heidelberg Engineering Inc), its performance might be
insufficient when dealing with images from different devices.
Future studies should prioritize (1) extending the proposed
AI-CAD system to other retinal diseases, such as AMD and
diabetic retinopathy; (2) developing strategies to improve the
reliability of doctors when using the AI-CAD system; and (3)
exploring the application of transfer learning techniques to
address the challenges arising from variations in devices.

Comparison With Prior Work
This study has several implications. First, to the best of our
knowledge, this study is the first attempt to develop and evaluate
an AI-CAD system for the detection of retinal disease using
OCT. Prior studies have developed AI-CAD systems for the
detection of pulmonary disease and evaluated their effectiveness
[6,33,34]. However, minimal attention has been focused on the
application of an AI-CAD system for the diagnosis of retinal
diseases, such as CSC and AMD. In this study, an AI-CAD
system that can assist ophthalmologists in identifying retinal
diseases was developed and its usefulness in detecting retinal
disease was evaluated.

Second, the proposed AI-CAD system is potentially useful for
small or local medical care centers where retina specialists are
unavailable. Unlike in large-scale medical care centers or
hospitals, retina specialists are rarely found in small or local
centers. Diagnosing subtypes of retinal diseases (ie, acute vs
chronic CSC [8] and polypoidal choroidal vasculopathy vs
retinal angiomatous proliferation [10]) requires more elaborate

expertise than simply screening abnormal cases (ie, normal vs
CSC [8]), and the proposed AI-CAD system exhibits higher
performance than that of retina specialists with over 10 years
of experience, implying that the proposed system potentially
plays an important role in such cases. In CSC, assessing the
chronicity of the disease at the time of diagnosis is crucial for
selecting an appropriate course of treatment or forecasting its
prognosis [8,15,22]. Acute CSC typically follows a self-limiting
natural course, whereas chronic CSC with or without sustained
SRF may be associated with irreversible vision loss or may
require active intervention, such as intravitreal antivascular
endothelial growth factor injections or photodynamic therapy,
all of which are intended to prevent long-term visual loss that
can lower the patient’s quality of life. Further, on comparing
diagnostic performance between nonretina and retina specialists,
the experimental results of this study demonstrate that nonretina
specialists can achieve retina specialist-level performance with
the support of the proposed AI-CAD system (Figure 3). This
implies that the proposed system can alleviate the heavy
workload of ophthalmologists who have expert-level diagnostic
performance and facilitate the decision-making process of
less-skilled ophthalmologists (nonretina specialists) by
improving their diagnostic performance.

Conclusions
To the best of our knowledge, this study is the first attempt to
design, develop, and evaluate an AI-CAD system for the
detection of retinal disease using OCT. First, an AI-CAD system
was developed with a high-performance deep learning model.
Thereafter, an observer performance test was conducted with
the proposed system to determine the ability of the system to
assist ophthalmologists in diagnosing retinal diseases. The
results indicated that the proposed AI-CAD system can provide
retinal expert-level diagnostic performance and help
ophthalmologists improve their diagnostic performance in
detecting CSC subtypes. Thus, the proposed AI-CAD system
can alleviate the heavy workload of ophthalmologists and help
in the decision-making process involved in detecting CSC
subtypes. As a base study, this study demonstrates the usefulness
and effectiveness of using an AI-CAD system in detecting retinal
diseases, particularly CSC subtypes. In the future, the proposed
AI-CAD system may be easily extended to the detection of
other retinal diseases, such as AMD, diabetic retinopathy, and
branch retinal vein occlusion.
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AI-CAD: artificial intelligence–based computer-aided diagnosis
AI: artificial intelligence
AI Prob+Evid: artificial intelligence assistance with a probability score and visual evidence heatmap
AI Prob: artificial intelligence assistance with a probability score
AMD: age-related macular degeneration
AUROC: area under the receiver operating characteristic curve
CAD: computer-aided diagnosis
CDSS: clinical decision support system
CNN: convolutional neural network
CSC: central serous chorioretinopathy
FA: fluorescein angiography
ICGA: indocyanine green angiography
No AI: without artificial intelligence assistance
OCT: optical coherence tomography
RPE: retinal pigment epithelium
SD-OCT: spectral domain optical coherence tomography
SRF: subretinal fluid
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