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Abstract

Background: Biomedical relation extraction (RE) is of great importance for researchers to conduct systematic biomedical
studies. It not only helps knowledge mining, such as knowledge graphs and novel knowledge discovery, but also promotes
translational applications, such as clinical diagnosis, decision-making, and precision medicine. However, the relations between
biomedical entities are complex and diverse, and comprehensive biomedical RE is not yet well established.

Objective: We aimed to investigate and improve large-scale RE with diverse relation types and conduct usability studies with
application scenarios to optimize biomedical text mining.

Methods: Data sets containing 125 relation types with different entity semantic levels were constructed to evaluate the impact
of entity semantic information on RE, and performance analysis was conducted on different model architectures and domain
models. This study also proposed a continued pretraining strategy and integrated models with scripts into a tool. Furthermore,
this study applied RE to the COVID-19 corpus with article topics and application scenarios of clinical interest to assess and
demonstrate its biological interpretability and usability.

Results: The performance analysis revealed that RE achieves the best performance when the detailed semantic type is provided.
For a single model, PubMedBERT with continued pretraining performed the best, with an F1-score of 0.8998. Usability studies
on COVID-19 demonstrated the interpretability and usability of RE, and a relation graph database was constructed, which was
used to reveal existing and novel drug paths with edge explanations. The models (including pretrained and fine-tuned models),
integrated tool (Docker), and generated data (including the COVID-19 relation graph database and drug paths) have been made
publicly available to the biomedical text mining community and clinical researchers.
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Conclusions: This study provided a comprehensive analysis of RE with diverse relation types. Optimized RE models and tools
for diverse relation types were developed, which can be widely used in biomedical text mining. Our usability studies provided a
proof-of-concept demonstration of how large-scale RE can be leveraged to facilitate novel research.

(J Med Internet Res 2023;25:e48115) doi: 10.2196/48115
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Introduction

Background
With the rapid research and development of new
biotechnologies, a vast amount of biomedical literature has been
published, and biomedical text mining has proved to be
invaluable for analyzing the literature, especially for some hot
topics that have received much attention from scientific research,
such as drug development and public health events. For instance,
the COVID-19 pandemic generated a large number of research
articles (over 368,000 as of August 3, 2023), making it a priority
for the biomedical text mining research community to extract
structured knowledge from the corpus of information. The
infeasibility of manually reviewing large-scale literature leads
to knowledge bottlenecks that contribute to the duplication of
research efforts and inefficiency in the development of treatment
strategies. The development of better knowledge mining
technologies will enable researchers to access relevant
knowledge more efficiently and accurately.

Biomedical natural language processing (NLP) techniques are
used to extract useful information from biomedical text, such
as scientific literature and electronic health records, and these
techniques have been extensively employed to extract and
retrieve structured information from massive article collections
[1]. A critical part of biomedical NLP is relation extraction
(RE), which associates a given sentence or text containing entity
information with a relation type based on characteristics
(entities, context, and semantic features) under predefined
categories. RE can be used to implement many application
scenarios, such as a structured search and knowledge
summarization, and is also the key component for building
knowledge graphs (KGs), a powerful way to represent and
integrate large-scale textual data to generate new insights [2].

Related Work
Biomedical RE can be performed with a variety of algorithms
and data sets. Previous studies adopted computational methods
to extract relations, including co-occurrence–based methods,
pattern-based methods [3], rule-based methods, feature-based
methods [4], and kernel-based methods [5]. For instance,
SemRep is a notable rule-based RE tool developed by the
National Library of Medicine that can extract semantic relations
from sentences in biomedical text [6,7]. Deep neural
network–based methods have been shown to achieve better
results in various NLP tasks and to have good performance in
automatic feature learning [8]. Recent advances in text mining
focus on pretrained language models, and many studies have
shown that pretrained language models have achieved

state-of-the-art NLP methodologies for biomedical text mining
[9]. Data sets also play a critical role in deep learning–based
RE models, as many RE data sets and models have been built.
However, these tasks are mainly focused on the general NLP
domain, and the data sets are usually taken from public domain
articles, such as Wikipedia [10]. Most existing RE data sets in
the biomedical domain, such as GDR [11], are limited in the
amount of data and diversity of relations due to labor-intensive
manual annotation. BioRel is a large-scale RE data set
encompassing 125 biomedical relations via knowledge database
utilization and distant supervision [12]. It could facilitate the
development of deep learning methods in the extraction of
biomedical relations. Although BioRel provides a large-scale
data set and has an abundance of biomedical relation types, as
far as we know, this data set has not been explored at the entity
type level, especially with regard to the influence of the
abundance of entity types on RE performance. Moreover, to
our knowledge, no research has applied the model with
continued pretraining to biomedical RE to build tools and apply
them to practical biomedical problems.

Objective
In order to investigate and improve large-scale RE with diverse
relation types in biomedical text mining, we conducted a
comprehensive study, including a modeling study, tool
development, and a usability study with COVID-19 literature.
As shown in Figure 1A, we first integrated the Unified Medical
Language System (UMLS) [13], one of the most widely used
knowledge resources in biomedical NLP, with the BioRel data
set to provide richer entity information, generating 4 data sets
with different semantic levels of entities. Next, we conducted
RE model implementations and evaluated the impact of different
levels of semantic information on RE performance. We also
compared a variety of pretrained model architectures and domain
models, including 8 general pretrained model architectures and
10 domain models, and adopted continued pretraining strategies
and ensemble modeling to improve RE performance. The
fine-tuned models were integrated into an RE tool as a Docker
container. In addition, we investigated biological interpretability
and performed multiple application cases on the COVID-19
corpus, including relation enrichment/correlation among topics,
relation graph database construction with existing drug
identification and novel drug path prediction, non-long/long
COVID drug retrieval, and coronavirus-specific relation triple
prediction. Our results provide novel insights into biomedical
RE in large-scale literature text mining for future studies. The
RE task-specific pretrained and fine-tuned models are publicly
available at Hugging Face Hub [14-18], and the RE tool is
publicly available at Docker Hub [19].
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Figure 1. Flowchart of the relation extraction (RE) study and data set construction. (A) Overview flow diagram of 3 main modules in this study. (B)
Demonstration of integrating Unified Medical Language System (UMLS) entity information into the data set for a sentence with entity annotation. CUI:
Concept Unique Identifier.

Methods

Data Collection and Processing
Many biomedical RE data sets focus on some specific entities
and relations, and the data sizes are relatively small. To cover
a wide range of biomedical relations and facilitate pretrained
model strengths on large data sets, we conducted RE model

experiments on BioRel [12], a large-scale data set that includes
more than 763,000 sentences (534,000 in the training set) and
69,000 entities. It consists of 125 relations (including “not a
relation”) that cover most biomedical relation types, including
treatment, side effects, and mechanisms. It also contains relation
directions like A “may treat” B, and B “may be treated by” A.
Examples of relation types and sentences are shown in
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Multimedia Appendix 1. The data set involves multiple entity
types, so we matched these entities to the UMLS database using
a Concept Unique Identifier (CUI) number to obtain entity
semantic information, generating 4 data sets with different entity
type information levels. Specifically, we first downloaded
UMLS metathesaurus data in rich release format (RRF), which
includes all semantic type RRF information with a CUI number,
and extracted 127 semantic type names and unique identifiers
of semantic types (semantic type codes) by CUI number. Then,
we downloaded semantic group data from the UMLS semantic
network and extracted 15 semantic type group names and unique
identifiers of semantic type groups (semantic type group
abbreviations) by semantic type code, which involved the other
2 data sets. Figure 1B shows an example of integrating UMLS
entity information to generate 4 data sets for a sentence with a
CUI number. So far, we have the following 5 data sets with
different entity levels, including the original data set: semantic
type name, semantic type code, semantic type group name,
semantic type group abbreviation, and no entity type.

In the RE application case, the COVID-19 literature corpus was
retrieved from the LitCovid database [20] and the CoronaCentral
database [21]. LitCovid is a database (daily updated and curated)
for tracking COVID-19 scientific literature that provides article
topic categories through manual assignment. The categories are
“general information,” “mechanism,” “transmission,”
“diagnosis,” “treatment,” “prevention,” “case report,” and
“epidemic forecasting.” LitCovid also provides a long COVID
collection comprising articles that investigated the persistent,
long-term, or delayed symptoms of COVID-19, as well as
complications from its treatment at least 4 weeks after the onset
of symptoms. We downloaded the LitCovid corpus with
PubTator [22,23] detection, which provides automatic entity
annotation of 6 biomedical concepts (genes, chemicals, diseases,
cell lines, species, and variations). Given the LitCovid
categories, we mainly focused on treatment and mechanism
literature to extract existing and novel drug therapy knowledge
by relation graph database construction. CoronaCentral is a
resource providing coronavirus papers containing
coronavirus-specific entity recognitions, such as “prevention
methods,” “risk factors,” “transmission types,” and “vaccine
types.” The coronavirus articles with virus-specific mentions
were used to obtain a more specific biomedical association and
improve the research community’s understanding of the
coronavirus.

Ethical Considerations
This work does not involve any ethical or moral issues. The
data used in this study are publicly available dataset and
literature data. This study did not meet the criteria for human
subject research and a review by an institutional review board
was not required.

Language Model Implementation
To evaluate the impact of different levels of semantic
information on the performance of RE, we compared the
performance of the 4 generated data sets and the original data
set based on the same language model. Likewise, we conducted
performance analysis on different pretrained model architectures
and domain models based on the same data set for semantic

level (semantic type name). General pretrained model
architectures include ALBERT [24], BERT [25,26], DeBERTa
[27], ELECTRA [28], ERNIE [29], LayoutLM [30], RoBERTa
[31], and XLNet [32]. For the biomedical domain, we adopted
10 popular models with different pretraining corpus and
parameter settings: BioM-ALBERT [33], BioM-ELECTRA
[33], PubMedELECTRA [34], BioMed-RoBERTa [35],
RoBERTa-PubMed [36], BioBERT [9], SciBERT [37],
BioClinicalBERT [38], BlueBERT [39], and PubMedBERT
[40].

Moreover, inspired by Gururangan et al [35] (improving
performance through task-adaptive pretraining on unlabeled
data was found to be effective even after undergoing
domain-adaptive pretraining), we proposed a RE-specific
continued pretraining strategy to specialize a model and achieve
better performance. We adopted the best-performing model to
continue pretraining on the unlabeled text (raw text) of the
BioRel training set. Continued pretraining was based on masked
language modeling (MLM) with the sliding window technique
to predict masked tokens in sequence to obtain good contextual
understanding, and then, we fine-tuned the RE-specific
pretrained model on the labeled training set to evaluate whether
performance improved. We also applied an ensemble model
integrating the top-performing models to improve the RE
performance in this task. The SoftMax function was used to
determine the probability that each single model would correctly
predict the labels of the relations for input text in the ensemble
layer after obtaining the logits of each single model. We
employed the ensemble model to produce the final results by
using the concept of weighted average to accept the matrix and
labels of the submodel prediction scores as input.

Based on the idea of R-BERT [41], tokens of the model input
with different entity levels and special separate tokens on both
sides were transformed into numerical vectors containing
semantic features, which were presented as token embeddings
of the model input representation. For the continued pretraining
configuring, the ratio of tokens to mask for MLM loss was 0.15
and the fraction for stride in the sliding window was 0.8. We
ran 100 epochs with a batch size of 150. For the fine-tuning

hyperparameter, the learning rate was set at 2×10−5 and the
batch size was set at 64, and we ran 5 epochs for each model.
Due to the fact that most sentences in the data set were less than
128 words in length, the maximum length of input was set at
128. Finally, labels of relations were output using a fully
connected layer. The cross-entropy loss was used as the loss
function, and AdamW was used as the optimizer. These
language models were implemented with PyTorch (version
1.12.0), Hugging Face Transformers (version 4.26.1) [42], and
open source pretraining parameters. Regarding hardware, we
conducted pretraining on an NVIDIA GeForce RTX 3090 (24
GB) graphics card. In the fine-tuning phase, we carried out
experiments on 2 NVIDIA Tesla P100 (12 GB) systems.

Evaluation Metrics
The models were fine-tuned on the training set and evaluated
on the testing set. The testing set included a total of 114,515
samples and covered 125 relation types, and the proportion of
each relation type was consistent with the training set. To
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measure the impact of entity level on biomedical RE tasks and
evaluate the performance of language models, we used deep
learning metrics that are often adopted: precision, recall, and
F1-score. The benchmark score for this task, which combined
precision and recall, was the weighted average F1-score. The
formulae are presented in Multimedia Appendix 2. These metrics
were aggregated across 125 relation types in weighted average
levels to compare the overall performance. Precision-recall
curves were drawn for 5 entity levels and all language models. 

Usability Study With the COVID-19 Corpus
To demonstrate the biological significance and interpretability
of the RE application, we conducted experiments to examine
relation type enrichment and correlation within different article
topics. Equal numbers of articles covering 8 topics from
LitCovid were filtered out separately (downloaded on March
7, 2023), and then, we detected relations from these 8 sets to
compare relation enrichment between topics. The correlation
index between topics by diversity and amount of relation was
calculated to illustrate the strength of the correlation between
every 2 topics. Principal component analysis (PCA) was also
performed to display the distance between the 8 topics based
on relation type. 

To understand the clinical treatment and drug discovery for
COVID-19, based on the KG concept, we retrieved “treatment”
and “mechanism” research from LitCovid to build a relation
graph database. Sentences with entities were used in RE
prediction, and the results were encoded in triple format (ie,
head node–relation–tail node), producing metadata regarding
the nodes and their relational connections, as well as the
correlating origins and context. The triple data mainly contained
2 entities and their relation, including the direction of the
relation. We converted these triple data and imported them into
Neo4j, a popular graph database management system, using
custom Cypher scripts.

Moreover, we used the relation graph database to identify
existing drugs and discover novel drug candidates. For existing
drugs, we defined 3 conditions to identify drugs with more
plausible associations with COVID-19, which also helped us
to visualize the paths associated with the drug-disease. To
discover potential drugs not directly connected to COVID-19,
we adopted the drug paths defined by Sosa et al [43]. They used
the Global Network of Biomedical Relationships (GNBR) [44],
a large KG, to predict new drug paths for rare diseases, and they
defined three 4-node paths connecting the drug-disease. Within
path a, the medication uses the same genetic process to treat a
different condition. Within path b, the medication addresses a
condition that is treated similarly to the condition of interest.
Within path c, the medication addresses the condition through
2 connected genes. We also added additional qualifications on
the 3 drug paths based on the original pattern to find more
plausible nodes and edges. The results were ranked by the
Adamic Adar score [45]. This algorithm was used to compute
the closeness of nodes based on their shared neighbors. The
calculation of the Adamic Adar score is shown in Multimedia
Appendix 2.

Results

Impact of Entity Information Level and Language
Model Implementation
Data sets with 5 different entity levels were used for
experiments, and they were fine-tuned with the same pretrained
model (PubMedBERT with continued pretraining) for
comparison. The precision-recall curves are shown in Figure
2A. The performance of RE was the best when using semantic
name (F1-score=0.8998) and semantic name code
(F1-score=0.8817), the next best when using semantic type
group (F1-score=0.8279) and semantic type group abbreviation
(F1-score=0.8230), and the worst when using the original data
set that had no entity information (F1-score=0.7440). The
performance values for semantic name were slightly higher than
for semantic name code, and were slightly higher for semantic
type group than for semantic type group abbreviation. The
results showed that the detailed semantic name can provide
more semantic information than the abbreviation and code name
to improve the performance of RE. Multimedia Appendix 3
shows the F1-score difference of each relation type for the 4
entity information levels compared to the no semantic type. It
can be seen that “semantic type group abbreviation” had 104
relation types with improvement, 13 with no change, and 8 with
a decrease; “semantic type group” had 112 relation types with
improvement, 10 with no change, and 3 with a decrease;
“semantic type code” had 115 relation types with improvement,
7 with no change, and 3 with a decrease; and “semantic type”
had 125 relation types with improvement. Regarding the specific
performance of each relation type, there were some relation
types with substantial performance improvement at all 4 levels,
such as “gene encodes gene product” and “process involves
gene,” as these relation types tended to concentrate on certain
fixed combinations. Similarly, when using “semantic type” and
“semantic type code,” some relation types were further enhanced
compared to “semantic type group” and “semantic type group
abbreviation,” such as “associated with malfunction of gene
product” and “has physiologic effect,” indicating that these
relation types were more focused on the combination of entity
types. In addition to the above-mentioned relation types that
were affected by entity type combination, there were also
relation types whose performances were affected by the semantic
features behind the entity type information, resulting in
“semantic type group” and “semantic type” performing better
than “semantic type group abbreviation” and “semantic type
code,” respectively, such as “disease excludes primary anatomic
site” and “is abnormal cell of disease,” indicating that the full
texts of “semantic type group” and “semantic type” were
transformed into numerical vectors containing semantic features
during tokenization, such that the model input representation
had richer token embeddings, which was helpful for the model
to identify the relation type. Therefore, entity semantic
information helps RE from not only the combination of entity
types, but also its semantic features in token embeddings.
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Figure 2. Precision-recall curves (x-axis: recall, y-axis: precision). (A) The performance comparison of 5 entity levels. (B) The performance comparison
of 8 pretrained model architectures. (C) The performance comparison of 10 domain models, CT_PubMedBERT, and the model ensemble (BERT
included for comparison). BERT-based domain models are represented by solid lines, and nonBERT-based domain models are represented by dashed
lines.

We implemented a variety of pretrained model architectures
and domain models. The results are shown in Figure 2B, Figure
2C, and Table 1. We used the precision-recall curve to visualize
performance comparison, and the precision, recall, and F1-score
to evaluate the performance of each pretrained model. For
general model architecture, the performance of BERT was
slightly better than that of DeBERTa, RoBERTa, and XLNet,

achieving an F1-score of 0.8790. For domain models,
PubMedBERT with our continued pretraining
(CT_PubMedBERT) achieved the best results for a single
language model, with a weighted average precision of 0.8998,
recall of 0.9010, and F1-score of 0.8998. The ensemble model
integrating BioBERT, BlueBERT, and CT_PubMedBERT with
continued pretraining (the 3 best-performing single models)
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achieved the best overall results with an average precision of 0.9026, recall of 0.9046, and F1-score of 0.9028.

Table 1. Precision, recall, and F1-score of different architectures and models.

F1-scoreRecallPrecisionArchitecture and model

ALBERT

0.85330.85660.852ALBERT

0.85770.86250.8611BioM-ALBERT

BERT

0.8790.8810.8784BERT

0.86840.87180.8675BioClinicalBERT

0.88380.88570.8836BioBERT

0.88150.88340.8808SciBERT

0.88380.88650.8833BlueBERT

0.89250.8940.892PubMedBERT

0.89980.9010.8998CT_PubMedBERT

0.90280.90460.9026Ensemblea

DeBERTa

0.87630.87750.8757DeBERTa

ELECTRA

0.82360.82490.8231ELECTRA

0.84870.85080.848BioM-ELECTRA

0.69160.71040.6904PubMedELECTRA

ERNIE

0.67980.70070.6753ERNIE

LayoutLM

0.63110.66450.6287LayoutLM

RoBERTa

0.8740.87520.8736RoBERTa

0.86960.8740.8685BioMed-RoBERTa

0.87580.8780.8752RoBERTa-PubMed

XLNet

0.87540.87620.8749XLNet

aThe ensemble model integrated BioBERT, BlueBERT, and CT_PubMedBERT with continued pretraining.

The F1-scores for each relation label in CT_PubMedBERT are
shown in Multimedia Appendix 4. There were 48 relation labels
(87,369/114,565, 76.3% of the total testing set) that had
F1-scores greater than 90%, and the categories that performed
the best were “biological process involves gene product,”
“chemical or drug initiates biological process,” “chemotherapy
regimen has component,” “gene encodes gene product,” “gene
product encoded by gene,” “gene product has organism source,”
“gene product plays role in biological process,” “is component
of chemotherapy regimen,” “is organism source of gene
product,” and “organism has gene.” These categories all
demonstrated a precision, recall, and F1-score of 99%.
Multimedia Appendix 5 shows the F1-score change of
CT_PubMedBERT compared with PubMedBERT for each

relation type. We can see that CT_PubMedBERT improved
most relation types (improved 88 relation types, caused no
change in 6 relation types, and decreased 31 relation types).
Specifically, CT_PubMedBERT showed improvement over
PubMedBERT for relation types with low performance owing
to lack of data (the proportion of the relation type in the data
set reflects its probability of occurrence in real scenarios), and
13 of the 15 relation types with F1-scores of less than 0.5
showed improvement (1 had no change and 1 decreased),
indicating that the task-specific language modeling of
CT_PubMedBERT has advantages for identifying minority
relation types.

We set the epoch to 100 to improve visualization of the F1-score
trend and training step loss for our large data set and complex
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relation types. As shown in Multimedia Appendix 6, the
F1-score increased continuously, and the loss continued to
decrease even after 100 epochs. The focal loss in the training
set converged more slowly, but still fluctuated and decreased
slightly. The model did not fit the large data set perfectly even
after 100 epochs. Nonetheless, in terms of running time and
performance evaluation, the results were satisfactory after just
5 epochs.

Owing to complicated and heavy deep learning dependencies
that are difficult to install and launch, we compiled a Docker
image with all the relevant frameworks for this RE model. It
contained all the required libraries, packages, and files, saving
time for framework installation. The usage tutorials and
documentation for the interactive Jupyter Notebook are provided
on the Docker hub [19], and the RE tool is publicly available
as a Docker container online. We also uploaded our continued
pretraining model and its fine-tuned RE models to the Hugging
Face Hub [14-18].

Usability Analysis With COVID-19 Cases
The biological significance of RE was evaluated by correlation
and relation enrichment. Figure 3A shows the pairwise
correlation between 8 topics calculated by relations,
demonstrating the strength of the correlation between 2 topics
from the perspective of RE. The correlations between “case
report” and “diagnosis,” and “case report” and “treatment” were

relatively high, while the correlations between “mechanism”
and “prevention,” and “mechanism” and “general” were
relatively low. Macroscopically, descriptions related to
“diagnosis” and “treatment” of patients were often included in
many “case report” articles, while “mechanism” research of
viruses often investigated specific biological processes and gene
activities, and it did not involve “general” descriptions and
“prevention” information. Therefore, the correlation coefficient
calculated from RE conformed to the actual content overlap
between different topics. We also compared the proportions of
the top 10 relation types in each of the 8 article types. Figure
3B shows that in the “treatment” topic, the proportion of
treatment-related relation types was relatively high, while in
the “mechanism” topic, the proportion of relation types related
to gene function was relatively high, which shows that the RE
model had biological significance. Specifically, Figure 3C shows
the PCA of relation type for 8 topics. The distance between 2
topics represented their relation-based similarity, and articles
involving “treatment,” “mechanism,” and “case report” had
relatively topic-specific relation types compared with other
topics. We also performed visualization of relation strength
between different entity types by the number of relations and
relation type, as shown in Figure 3D. “Gene,” “disease,” and
“chemical” had strong RE associations with other entity types,
as did “species,” owing to the inclusion of “SARS-CoV-2,” and
these findings are in line with real scenarios.
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Figure 3. Visualization of topics and entities based on relation extraction (RE). (A) Pairwise correlation between 8 topics calculated by relations. (B)
Proportion of the top 10 relations among 8 topics. (C) Principal component analysis (PCA) of 8 topics. (D) Strength of correlations between different
types of entities calculated by RE. The top right part is calculated by the number of relations, and the bottom left part is calculated by the number of
relation types. SNP: single-nucleotide polymorphism.

We built a COVID-19 relation graph database composed of
mechanism and treatment research. The abstracts were
downloaded on June 12, 2023, and the RE pipeline was
performed. A total of 1,849,915 relation triples were identified
in 92,907 papers. After merging identical triples and removing
“not a relation” triples, a total of 17,939 unique entities and
200,770 unique relation triples were imported into the Neo4j
graph database (version 4.4.21), with node attributes containing
entity names and normalized IDs, and edge attributes containing
the relation type, the direction, the number of sources, and the
mean and sum of the probabilities. The relation graph database
constituted a coherent network and allowed entities and relations
to be queried, browsed, and navigated. The visualization made
it possible for us to view and analyze the network by filtering
nodes or edges, and allowed us to explore paths from one piece
of information to another. Moreover, it allowed us to add
updated information and analyze its indications against the
relation graph database. Multimedia Appendix 7 shows a
demonstration of the relation graph database. The orange nodes
are diseases, the brown nodes are genes, and the purple nodes
are chemicals or drugs. Owing to the data sources, the causation
relations from “treatment” papers predominantly reflected
COVID-19 pathologies and therapies, and those from
“mechanism” papers mainly reflected molecular interactions

and biological processes. For example, as shown in Multimedia
Appendix 7, we can visualize how topotecan acts as a potential
drug through the relation graph database (topotecan reduces
SARS-CoV-2–induced inflammation by affecting human
topoisomerase 1 [46,47]). The importable data of the relation
graph database for Neo4j are publicly available [48].

The relation graph database was notable for its extensive
coverage of drug-disease interactions, as well as the associated
nodes of biological mechanisms linked to COVID-19. As shown
in Figure 4A, to identify existing drugs having more plausible
associations with COVID-19, 3 conditions must be met. First,
the drug should be able to produce an effect on a gene associated
with COVID-19. Second, the drug should be therapeutic for a
disease associated with COVID-19. Third, the above relations
should be identified in at least two different texts to ensure
plausibility. The top 3 results, ordered by the Adamic Adar
score, were tocilizumab, ritonavir, and baricitinib. The graph
for tocilizumab (ranked first) is shown in Figure 4B.
Tocilizumab mainly affects interleukin 6 (IL-6), Janus kinase
2 (JAK2), and signal transducer and activator of transcription
1 (STAT1) [49,50], while it has a therapeutic effect on
COVID-19–related inflammation, dyspnea, and autoimmune
diseases [51-53].
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Figure 4. Existing and novel drug graphs. (A) Existing drug identification patterns. (B) Existing drug identification examples. (C) Novel potential drug
prediction patterns. (D) Novel potential drug examples. ACE2: angiotensin converting enzyme 2; COPD: chronic obstructive pulmonary disease; IL:
interleukin; JAK2: Janus kinase 2; STAT1: signal transducer and activator of transcription 1; TNFα: tumor necrosis factor-α.

To discover novel potential drugs, we used the relation graph
database to retrieve 3 drug paths. As shown in Figure 4C, the
first node drug in paths a, b, and c is not directly connected to
COVID-19 in the entire relation graph database but is connected
to COVID-19 through 2 intermediate nodes. The black edges
represent the interentity connections defined by Sosa et al [43],
and the red edges are the edge qualifications we performed. In
all 3 paths, the second node (disease or gene) must be associated
with COVID-19 (a disease can represent a symptom associated
with COVID-19 or a disease that occurs concurrently with
COVID-19). In path b, we also defined that there must be an
association between the 2 drugs. The results of the 3 paths were
finally ranked by the Adamic Adar score, where the results of

path a contained 49 chemicals, the results of path b contained
97 chemicals, and the results of path c contained 9 chemicals.
The list of results and the entire graphs of the 3 paths (JSON
format) are available online [54]. As shown in Figure 4D, we
also provide an example for each of the 3 paths. In path a,
revefenacin was a drug for chronic obstructive pulmonary
disease (COPD), which can help relax the lung muscles and
help relieve cough and shortness of breath [55], while COPD
has many potential negative interactions with COVID-19 [56]
and abnormal expression of angiotensin converting enzyme 2
(ACE2) plays an important role in both COPD and COVID-19
[57,58]. Since revefenacin and COVID-19 did not appear
together in all literature abstracts, we did a full-text search
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review and found that Djokovic et al [59] used structure-based
molecular modeling and physiological-based pharmacokinetic
modeling for drug repurposing, and the full text mentions
revefenacin as a candidate with potential activity on the
SARS-CoV-2 main protease. In path b, we focused the second
node of the disease on a specific symptom (gastrointestinal
symptom), and rabeprazole and omeprazole have been used to
treat gastrointestinal diseases and have the same type of efficacy
[60,61], while omeprazole has been used to treat COVID-19
[62]. Rabeprazole was also mentioned in the full text of the
study by Ray et al [63] as a possible treatment for COVID-19,
either alone or in combination with other drugs. In path c,
SB203580 can affect p38 [64], while abnormalities in p38, IL-6,
and tumor necrosis factor-α (TNFα) have all been shown to be
associated with COVID-19 [65-67]. In addition, p38 has also
been shown to be associated with IL-6 and TNFα activity [68].
We also found that the potential treatment of inflammation with
SB203580 as a p38 inhibitor has been discussed in detail in the
full text of the review on COVID-19 by Malekinejad et al [69].

We also filtered out long COVID articles and non-long COVID
articles of “treatment” separately and extracted drugs by
detecting therapeutic relations. As shown in Multimedia
Appendix 8, the results based on RE indicated that 107 drugs
were involved in the treatment of long COVID, 154 drugs were
involved in the treatment of non-long COVID, and only 47
drugs appeared for both non-long COVID and long COVID.
For the CoronaCentral data (downloaded on March 27, 2023)
[21], we retrieved coronavirus-specific entity types, including
viral lineages, risk factors, symptoms, and prevention methods,
along with general entities, like drugs and diseases, from all
SARS-CoV-2 articles to extract relations between them. Finally,
we built a set of SARS-CoV-2–specific knowledge triples.
Benefiting from these coronavirus-specific entity types, the RE
was applied to extract more detailed results. The CoronaCentral
data have been made available [70].

Discussion

Principal Findings
In this study, we comprehensively investigated biomedical RE
from the perspectives of data, model, and application. The study
conducted performance analyses for different entity information
levels, pretrained model architectures, and domain models. We
also proposed a continued pretraining model for the specific
RE task, which achieved the best performance for a single
model. The RE models were then integrated as a convenient
Docker tool with applications to practical biomedical problems.
LitCovid was used to obtain a corpus of literature sorted by
topic. Relation enrichment and correlation analysis for 8 types
of topics demonstrated that there were differences in relation
type between article topics, indicating the biological significance
of text mining from the perspective of RE. For articles on
treatment and mechanism topics, the output relation triples
between key entities were constructed as a relation graph
database, which not only allowed us to obtain known therapeutic
drugs from existing research, but also helped us to perform drug
repurposing via link algorithms and predict novel drug paths.
In addition, RE on the treatment corpus of non-long COVID

and long COVID could help us to pinpoint the therapeutic drug
differences between them. In order to apply RE more
profoundly, we also extracted relations between
coronavirus-specific entities, like symptoms, viral lineages, and
risk factors, from CoronaCentral, giving us a more precise
knowledge network of the coronavirus. 

The data set we applied consisted of 125 biomedical relations
covering treatment, components, side effects, metabolic
mechanisms, etc. All relation types and example sentences are
presented in Multimedia Appendix 9. Compared to existing
biomedical data sets, such as ChemProt [71,72], DDI [73], and
GAD [74], data sets integrating BioRel and UMLS contain
significantly more words, entities, and relations. The
experiments on data sets with different entity levels showed
that relation prediction was the most accurate when the input
contained the semantic type name of the entity. Additionally,
the entity types with a unique identifier (such as “T047” and
“DISO,” which appear in code and abbreviation formats)
performed worse than those with a full expression, and could
result in the wrong prediction. Finally, although semantic type
group can categorize all semantic types, the information is also
more likely to lead to an incorrect prediction. Taken together,
these results suggest that more detailed information on entity
types with semantic information can help to significantly
improve the accuracy of RE.

In model comparison, CT_PubMedBERT achieved the best
performance, and biomedical domain models had better
performance than general models. The reason was that the model
pretrained with biomedical domain-specific literature corpora
and unlabeled task-specific data sets had the most extensive
background information, giving it a more precise handle on the
meaning of individual words. Domain models also integrated
the contextual information of sentences into the word vector
owing to the use of domain-specific vocabulary and pretraining
from scratch (as opposed to the Word2Vec model [75,76]).
Moreover, the ensemble model improved the overall RE
performance, as confirmed by the performance indicators.

In practical applications, different data sources (literature) may
lead to controversial statistical analysis results. For example,
hydroxychloroquine has been increasingly found to be useless
in the treatment of COVID-19 [77], but many studies, especially
early stage studies, include a description that it is a potential
and safe drug [78-80]. Therefore, data preprocessing is critical
to the quality of RE results. For example, to find more promising
drug–COVID-19 treatment triples, 3 preprocessing steps were
used. First, papers within the last year (June 1, 2022, to June 1,
2023) were selected to remove studies in the early stage of the
pandemic that were not in-depth. Second, the Altmetric score
of each paper was crawled, which is an important indicator of
research attention, and papers with higher-than-average scores
(about 10% of all papers) were used. Third, a rule-based
approach was used to increase credibility by selecting text with
conclusive descriptions in the abstract. According to these
criteria, the top 3 drugs ranked by the sum of the probability
scores included ritonavir, dexamethasone, and baricitinib, which
are currently widely used and validated in the treatment of
COVID-19 [81].
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Biomedical and clinical researchers typically keep track of new
discoveries through extensive collections of scientific articles,
and language model–based NLP techniques are of great help to
researchers in extracting information of interest [82]. Research
into KG construction, graph path prediction, and automatic text
summary greatly benefits from the automated RE process
[83,84]. Building a KG can be very tedious and time-consuming
if the entities and relations need to be manually identified and
inputted. The RE models and tools we built improve the
development of large-scale biomedical RE and enable the
automatic extraction of relations from scientific articles. These
tools make it possible to rapidly build and update a KG. More
importantly, applying graph algorithms to KGs enables
knowledge discovery, and the representations of KGs can be
used for many downstream tasks. The large-scale RE in
biomedical text mining can help inform future research, and
rigorous conclusions can be drawn through further experiments.

The statistics of the error analysis involved the
CT_PubMedBERT model mispredicting the gold standard
relation type as other relation types. Multimedia Appendix 10
shows the top 100 misprediction types by percentage of total
errors, and the mispredictions can be mainly divided into 3
categories. The first category included mispredicting the
direction of the relation, such as the first (7.03%) and second
(5.95%) ranked misprediction types (“anatomic structure is
physical part of” and “has physical part of anatomic structure”),
which both express anatomic structure part relations but in
different directions. The second category included confusing
relation types involving subordinate meanings with “not a
relation,” such as “nichd parent of” and “chemical structure of,”
indicating that the model may be less effective in distinguishing
subordinate relation types from no relation. The third category
included errors in distinguishing similar relation types, such as
“disease has primary anatomic site” and “disease has associated
anatomic site,” both of which mean that the disease has an
anatomic site. Therefore, the improvement of these 3 categories
of errors is a direction for future research, for example, data
augmentation may improve the second and third categories,
while manual review to generate custom rules may improve the
first category.

Limitations
Our study provides a biomedical RE implementation that makes
analysis accessible to the research community. Nevertheless,
several limitations exist. First, the rare entity type and
unbalanced data distribution of relation categories limit the
performance of the RE. For example, “associated with
malfunction of gene product,” “biomarker type includes gene
product,” and “gene product has structural domain or motif”
had a relatively small amount of data but achieved F1-scores
above 0.95 because semantic features in these relations are
usually unambiguous and distinctive. The relations “anatomic
structure is physical part of,” “disease has associated anatomic
site,” and “may treat” achieved comparatively high F1-scores
owing to the greater amount of data. In addition, we observed
multiple errors and reversed mistakes between relations. Our
RE model would benefit the most from optimizations to the
data set and algorithm. Short sentences include fewer words
and might not provide the RE model with detailed information
for correct prediction. Domain-specific expressions, such as
formula symbols, measurement units, and proper nouns, are
frequently used in scientific writing. Therefore, incorporating
customized rules into biomedical RE will increase the efficiency
of the model. To improve performance by enhancing semantic
features, effective data augmentation might also be used for
relation types with small data sizes.

Conclusions
Our study broke new ground in the pretrained language model
it used, the comprehensiveness of its biomedical RE topics, the
many types of relations it covered, and the insights it generated
into hot and prolific scientific topics. We not only evaluated
the impact of entity semantic richness, but also compared
different model architectures and domain models. We also
proposed a continued pretraining model for our specific RE task
and fine-tuned it to achieve the best performance. The RE
models were packaged as an easy-to-use tool and were applied
to the COVID-19 corpus for usability analysis. Furthermore,
our relation graph database pipeline can be applied to other
large-scale biomedical text mining areas of interest and is not
intrinsically limited to cases as shown in this study. It is our
hope that our contributions to the field of knowledge mining
and the presented tools will facilitate other biomedical and
clinical research in the future.
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