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Abstract

Background: The sleep and circadian rhythm patterns associated with smartphone use, which are influenced by mental activities,
might be closely linked to sleep quality and depressive symptoms, similar to the conventional actigraphy-based assessments of
physical activity.

Objective: The primary objective of this study was to develop app-defined circadian rhythm and sleep indicators and compare
them with actigraphy-derived measures. Additionally, we aimed to explore the clinical correlations of these indicators in individuals
with insomnia and healthy controls.

Methods: The mobile app “Rhythm” was developed to record smartphone use time stamps and calculate circadian rhythms in
33 patients with insomnia and 33 age- and gender-matched healthy controls, totaling 2097 person-days. Simultaneously, we used
standard actigraphy to quantify participants’ sleep-wake cycles. Sleep indicators included sleep onset, wake time (WT), wake
after sleep onset (WASO), and the number of awakenings (NAWK). Circadian rhythm metrics quantified the relative amplitude,
interdaily stability, and intradaily variability based on either smartphone use or physical activity data.

Results: Comparisons between app-defined and actigraphy-defined sleep onsets, WTs, total sleep times, and NAWK did not
reveal any significant differences (all P>.05). Both app-defined and actigraphy-defined sleep indicators successfully captured
clinical features of insomnia, indicating prolonged WASO, increased NAWK, and delayed sleep onset and WT in patients with
insomnia compared with healthy controls. The Pittsburgh Sleep Quality Index scores were positively correlated with WASO and
NAWK, regardless of whether they were measured by the app or actigraphy. Depressive symptom scores were positively correlated
with app-defined intradaily variability (β=9.786, SD 3.756; P=.01) and negatively correlated with actigraphy-based relative
amplitude (β=–21.693, SD 8.214; P=.01), indicating disrupted circadian rhythmicity in individuals with depression. However,
depressive symptom scores were negatively correlated with actigraphy-based intradaily variability (β=–7.877, SD 3.110; P=.01)
and not significantly correlated with app-defined relative amplitude (β=–3.859, SD 12.352; P=.76).

Conclusions: This study highlights the potential of smartphone-derived sleep and circadian rhythms as digital biomarkers,
complementing standard actigraphy indicators. Although significant correlations with clinical manifestations of insomnia were
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observed, limitations in the evidence and the need for further research on predictive utility should be considered. Nonetheless,
smartphone data hold promise for enhancing sleep monitoring and mental health assessments in digital health research.

(J Med Internet Res 2023;25:e48044) doi: 10.2196/48044
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Introduction

For decades, actigraphy has served as the standard measurement
tool to assess sleep and circadian rhythms. It uses wrist-worn
accelerometers to collect data on physical activities, which offer
an easy proxy for sleep and circadian rhythm measurements;
this includes the time of sleep onset (SO) and wakefulness, as
well as circadian rhythm indicators such as the relative
amplitude (RA) of the sleep-wake cycle. Although previous
systematic reviews and meta-analyses have suggested the central
role of physical activity patterns in mood regulation in mood
disorders [1-3], the circadian rhythms of mental activities may
be more directly related to mood regulation than previously
considered. For instance, swiping the smartphone screen can
engage mental activities but elicit low-level physical activities
below the threshold that actigraphy is able to detect. This
condition may be prevalent, especially in patients with insomnia
[4]. Such differences between physical and mental activities,
as well as the widespread use of smartphones in modern
behavior, warrant an updated approach to tracking sleep and
circadian rhythms based on mental activity.

Human circadian rhythms can now be observed through digital
footprints, which are derived from individuals’ day-to-day
interactions with modern technologies, such as smartphones
[5]. Several mobile apps were available for automatically
measuring sleep using smartphone sensors, including sound,
light, movement, screen events, app use, and battery status [6-9].
However, most sleep assessment algorithms demanded high
power consumption, and only a few apps used low power
through human-smartphone interaction patterns [10-16]. These
patterns encompassed 3 types of passive data: screen events
[13,15,16], smartphone touchscreen interactions [10,14], and
call-detail records [11,12]. Among these, screen events provided
comprehensive records of users’ smartphone activities. The
time stamps of screen events, which included notifications,
screen-on or -off events, and app types, formed time series that
delineated human-smartphone interactions and demonstrated
good temporal stability [17]. Moreover, these time stamps
corresponded to stimuli, individual responses, and the content
of stimuli or responses, which are typically measured in a
laboratory setting [18]. By leveraging the data recording
capabilities of smartphones, these human-smartphone
interactions can now be continuously measured in ecologically
valid, real-world settings. In our previous research, we used the
time stamps of screen events and developed an app-based
algorithm, achieving 90.4% accuracy in estimating sleep time
[16]. However, it is important to note that our app-based
algorithm relied on daily self-reports from a sample of college
students and could only identify uninterrupted sleep [16].
Furthermore, none of the previous studies estimating sleep-wake

patterns from the time stamps of screen events assessed circadian
rhythm indicators such as RA, interdaily stability (IS), and
intradaily variability (IV) [10,14]. Additionally, these studies
solely focused on healthy participants and lacked validation in
clinical settings with individuals experiencing sleep disturbances
or disrupted circadian rhythms. As a result, the scarcity of
clinical evidence has limited the application of circadian
knowledge to diagnosing and treating psychiatric and
neurodegenerative disorders. Further research is warranted to
validate and refine the use of the time stamps of screen events
for assessing circadian rhythms and sleep disturbances,
potentially broadening its clinical utility.

In this study, we used standard wrist-worn actigraphy to quantify
sleep-wake cycles and, in parallel, recorded the time stamps of
human-smartphone interaction patterns. The current version of
the “Rhythm” app automatically records smartphone use time
stamps and uses an algorithm similar to that of actigraphy to
calculate the circadian rhythms of smartphone use. Based on
the near-24-hour cycle, we defined app-generated daily sleep
indicators and weekly circadian rhythm indicators. We
hypothesized that the indicators derived from human-smartphone
interaction patterns and those derived from actigraphy recordings
represented the circadian rhythms of mental activities and
physical activities, respectively. Furthermore, it was
hypothesized that clinical outcomes would be more strongly
correlated with app-defined indicators than with actigraphy
indicators. This study aimed to (1) develop app-defined circadian
rhythm and sleep indicators, (2) compare these indicators with
actigraphy-derived measures, and (3) investigate the clinical
correlation between these circadian rhythm and sleep indicators
and self-reported depressive symptoms and sleep quality in
individuals with insomnia and healthy controls.

Methods

Study Design
This cross-sectional study was designed with 2 primary
objectives: first, the development of app-defined circadian
rhythm and sleep indicators, and second, a comprehensive
comparison and contrast of these novel indicators with their
counterparts derived from standard actigraphy measures. To
fulfill these aims, we created the “Rhythm” mobile app to
capture smartphone use time stamps and transform them into
sleep and circadian rhythm indicators. The research involved
two distinct participant groups: (1) a total of 33 individuals
diagnosed with insomnia and (2) an age- and gender-matched
control group of 33 healthy participants. Over a minimum span
of 4 weeks, we used standard wrist actigraphy to measure
participants’ sleep-wake patterns.
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The study protocol consisted of several analytical components.
We initially conducted an examination to uncover any
discrepancies between the app-defined circadian rhythm and
sleep indicators and their corresponding actigraphy-derived
counterparts. Subsequently, we carried out analyses to compare
these indicators between the patients with insomnia group and
the healthy control group. This study delved into clinical
associations by investigating correlations between sleep
indicators, measured by the app or actigraphy, and self-reported
sleep quality. Additionally, we explored clinical associations
by examining correlations between circadian rhythm indicators,
measured by the app or actigraphy, and self-reported depressive
symptom scores.

In determining the optimal sample size for this study, we
considered 2 fundamental objectives. The first was to compare
app-defined circadian rhythm and sleep indicators with measures
derived from actigraphy, requiring an analysis at the person-days
level. The second objective aimed to investigate correlations
between specific indicators and self-reported depressive
symptoms, as well as sleep quality, among individuals with
insomnia and healthy controls.

To guide our determination of sample size, we drew insights
from pertinent studies in related areas [19-22]. These studies
explored the daytime sleep-tracking performance of commercial
wearable devices at home [19], the reproducibility of a
standardized actigraphy scoring algorithm for sleep in a US
Hispanic or Latino population [22], the validation of consumer
sleep wearable devices with actigraphy and polysomnography
in adolescents [20], and the comparison of consumer
sleep-tracking devices with polysomnography [21]. The
participant counts in these studies ranged from 16 to 58, and
the data collection spanned from 112 to 350 person-days
[19-22].

Our selected sample size of 66 individuals effectively addresses
both our comparison and correlation objectives. This size aligns
with, or even exceeds, those found in the previously mentioned
studies. Importantly, this sample size equips us with ample
statistical power to explore complex relationships among
multiple variables within our analytical framework. The
inclusion of diverse studies bolsters the strength of our findings.

Regarding the investigation of clinical correlations, the
dependent variables encompass self-reported depressive
symptoms or self-reported sleep quality. The most critical
independent variable involves circadian rhythm or sleep
indicators, followed by age, gender, and an additional variable
representing physical activity level or smartphone use. Abiding
by the “one in ten rule,” which offers a guideline for predictor
parameters in regression analysis [23,24], our sample size of
66 individuals is adequate to accommodate up to 4 independent
variables, as necessitated by our analytical framework. This
estimation is supported by the fact that a sample size of over
40 is required based on the above considerations.

Participants
Between October 2019 and September 2022, a total of 33
individuals diagnosed with insomnia (24 female individuals;
mean age 45.3, SD 14.1 y) and an age- and gender-matched

control group of 33 healthy participants (24 female individuals;
mean age 42.5, SD 9.1 y) were recruited for this study. The age
range for participants was confined to individuals aged between
20 and 65 years.

For the patients with insomnia group, participants were required
to express willingness to engage in the study and align with
specified research prerequisites, including possessing access to
the requisite smartphone app. The diagnosis of insomnia adhered
to specific criteria outlined in the Diagnostic and Statistical
Manual of Mental Disorders, Fifth Edition (DSM-5) and was
conducted through in-depth interviews by experienced
psychiatrists. Notably, all of the patients with insomnia exhibited
comorbid anxiety or mood disorders and were under treatment
with sedatives or hypnotics, receiving care from psychiatrists
YHL and IMC at 2 outpatient clinics.

The healthy control group was recruited by selecting 33
participants from a cohort of medical staff actively engaged in
a workplace health promotion initiative across 7 hospitals in
northern Taiwan. Recruitment was carried out through various
channels, including email, intranet announcements, and posters
within the hospital premises. This approach ensured a one-to-one
match with the recruited patients with insomnia. The selection
of healthy controls was guided by age and gender considerations
to ensure alignment with the patients with insomnia group. The
healthy controls did not meet the criteria for insomnia according
to the DSM-5. Notably, none of the medical staff members were
excluded from night shifts during the study duration, promoting
a more comprehensive assessment and minimizing potential
biases concerning sleep patterns. Recruitment procedures were
uniformly executed for both the patients with insomnia group
and the healthy controls, with physicians approaching potential
participants meeting the study’s inclusion criteria. In parallel,
research assistants engaged potential healthy controls, ensuring
consistency across recruitment strategies.

All eligible participants expressing interest underwent a
comprehensive informed consent process before inclusion.
Following informed consent, participants were requested to
install the app and wear a wrist-mounted actigraphy device for
a minimum of 4 weeks. This combined effort contributed to a
data set comprising 2097 person-days of data collection.
Participation in the study was restricted to individuals possessing
Android smartphones due to technical constraints associated
with the research tools. To ensure data integrity, participants
were explicitly instructed not to share their smartphones with
others during the study duration. Although participants were
unaware of the specific analysis linking actigraphy with the app
until the study’s conclusion, they wore the wrist actigraphy
devices throughout the entire observation period. Worth noting
is that while participants were instructed to wear their wrist
actigraphy devices consistently, specific guidance concerning
smartphone placement was not provided.

Mobile App “Rhythm” and Actigraphy

Actigraphy Measurement
Participants were instructed to wear the research-grade wrist
actigraphy device on their nondominant wrist for a minimum
of 4 weeks. Accelerations along 3 axes were gathered by the
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actigraphy watches, combined using the Euclidean distance of
the accelerations’deviation from zero (Z) and a bandpass filtered
from 0.5 to 3 Hz. The Z values over a predefined threshold are
integrated within 2 seconds, and the activities of 1-second
epochs (acti-counts) are derived from averaging the integrated
segments within 1 minute [25,26].

We used the standard Cole-Kripke algorithm with minor
adaptations to estimate putative sleep and wake times (WTs)
from the acti-count data. This algorithm categorizes data into
rest-active states on a minute-by-minute basis, using a weighted
sum of the current minute with contiguous minutes to mitigate
the influence of sudden fluctuations in activity that could
potentially affect categorization accuracy. The implementation
of the algorithm was conducted using MATLAB (MathWorks),
using preexisting codes. By integrating both objective actigraphy
data and subjective participant input, our intention was to
enhance the reliability and accuracy of actigraphy as a sleep
measurement tool.

Acknowledging the significance of actigraphy validation studies
against established polysomnography, which includes the use
of actigraphy alongside a sleep diary and a standardized scoring
protocol [22], we adapted a comparable approach to validate
our actigraphy-derived sleep times. Given that all participants
were required to install the mobile app “Rhythm” and wear a

wrist actigraphy device for at least 4 weeks, a significantly
longer period than the study using a standardized scoring
protocol where participants underwent 7 days of continuous
wrist actigraphy and completed daily sleep diaries, we
introduced an additional step involving weekly phone interviews
with participants, similar to a sleep diary approach, to
cross-reference and corroborate the actigraphy data.

Smartphone Use Measurement
The app automatically recorded smartphone events as 3 key
variables: time stamp of screen-on or -off events, time stamp
of notifications, and label for the app in use [13,16]. To
accurately capture app use behaviors in real-life scenarios, we
considered the possibility of users temporarily leaving their
smartphones, such as during work, charging, or other activities,
while they remain active. This intermittent disengagement from
the smartphone poses a challenge in accurately representing
app use patterns. To address this issue, we introduced the
“app-count” method, which involves using longer durations to
represent app use behaviors (Figure 1). Specifically, the
“app-count” was defined as the sum of minute-by-minute use
counts in nonoverlapping 5-minute epochs (288 epochs/d). By
using longer durations, we aimed to encompass the overall
engagement with the smartphone during both active use and
periods of temporary disengagement.

Figure 1. The study design. (A) The app, Rhythm, automatically recorded smartphone events as 3 key variables: time stamp of the screen-on or -off
events, notification (inverted triangle), and label of the app in use. The box at the top right corner shows the details of the smartphone events. (B) We
used standard wrist-worn actigraphy to quantify sleep-wake cycles and, in parallel, recorded the timestamps of human-smartphone interaction patterns.

Figure 2 illustrates the following steps: (1) to quantify the
“app-count” of smartphone use in a 5-minute time window by
considering app-count as the number of switches from one app
to another per minute, noting that herein app-count was used
to mimic acti-count in actigraphy; (2) to determine the

near-24-hour cycle (ie, the circadian rhythm), which comprises
an active phase, including the acrophase, and an inactive phase,
including the nadir; and (3) to identify sleep time during the
inactive phase by the threshold of app-counts.
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Figure 2. The algorithm of the smartphone use count. (A) Smartphone use from screen-on to the successive screen-off was defined as 1 episode. (B)
The use counts were defined as the number of app uses per minute. (C) The app-count was defined as the minute-by-minute use counts summed up into
a 5-minute epoch to avoid excessive zero-count segments due to the nature of the use data. (D) We used the single-component single cosinor model to
fit the time series of app-counts. In this study of circadian rhythm, it is reasonable to assume that the period is known, being synchronized to the 24-hour
cycle. The 24-hour cycle comprises an active phase, including the acrophase, and an inactive phase, including the nadir. Circadian rhythm indicators
quantify the regularity, shape, and timing of these app-counts. We further identified sleep time during the inactive phase by the threshold of app-use
counts.

Circadian Rhythm and Sleep Indicators
The acti-counts and app-counts generated from smartphone use
data were processed into 6 sleep indicators and 3 circadian
rhythm indicators.

The daily sleep indicators included SO, WT, the midpoint of
sleep, wake after sleep onset (WASO), total sleep time (TST),
and the number of awakenings (NAWK). To better estimate the

daily sleep indicators from the app-count, we extracted the
approximately 16- to 24-hour-long cycles by band-pass filter,
and putative sleep was assumed to occur at the half-cycle with
nadir. The time with 8 consecutive epochs with zero app-count
was considered SO, and the time with 6 consecutive epochs
with nonzero app-count was considered WT. The WASO was
calculated by the number of epochs with a nonzero app-count
after SO (Figure 3).
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Figure 3. The sleep indicators derived from smartphone use and physical activity. (A) The sleep indicators were computed based on the 5-minute epoch
of the app-count. The approximately 16- to 24-hour-long cycles of app-count were extracted by a band-pass filter, and putative sleep was assumed to
occur in the inactive phase with nadir. The time with 8 consecutive epochs (40 minutes) with 0 app-count was considered sleep onset (SO), and the time
with 6 consecutive epochs (30 minutes) with nonzero app-count was considered wake time. The wake after sleep onset (WASO) was calculated by the
number of epochs with a nonzero app-count after SO. There were 3 WASOs (ie, the number of awakenings [NAWK] was 3) and the duration of the
WASO was 95 minutes. We also measured the SO (3:13) and the wake time (8:48). The total sleep time (TST) was 575 minutes. (B) The actigraphy-defined
sleep indicators showed a similar actigraphy-based sleep onset (SOact) of 21:37, actigraphy-based wake time of 8:57, a shorter app-defined wake after
sleep onset (WASOapp) of 10 minutes, and a longer app-defined total sleep time of 670 minutes than their app-defined counterparts. AU: arbitrary unit.

The derived parameters were applied to the actigraphy in many
different patient groups; we also adopted them for our app-count
data to quantify human-smartphone interaction patterns. We
used a nonparametric method to calculate circadian rhythm

indicators based on the 4-week data set of app-counts or
acti-counts (Figure 4). The nonparametric method was used to
calculate 3 of the circadian rhythm indicators: RA, IS, and IV.
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Figure 4. The circadian rhythm indicators were calculated from at least 1-week-long data sets of (A) app-counts or (B) acti-counts. The nonparametric
method was used to calculate 3 circadian rhythm indicators: relative amplitude (RA), interdaily stability (IS), and intradaily variability (IV). RA reflected
the difference in activity levels between the most and least active periods of the day. IS represents the degree of consistency of activity patterns from
one 24-hour period to the next. IV quantified the fragmentation between periods of activity and periods of rest within a 24-hour period. The app-defined
circadian rhythm indicators showed significantly higher RA, lower IS, and higher IV than their actigraphy-defined counterparts. AU: arbitrary unit.

RA, the ratio of the differences between the most active 10
continuous hours (M10) and the least active 5 continuous hours
(L5) over the summation of M10 and L5, was calculated to
measure the amplitude of rest-activity rhythms while considering
the daily variations and unbalanced amplitudes of peak and
trough in daily activity or app-use rhythms.

IS quantified the stability of the rhythms between days, that is,
the coupling strength of the rhythms to the supposedly stable
environmental factors. It could vary between 0 and 1, with
higher values indicating more stable daily rhythms.

IV indicated the fragmentation of the rhythms, that is, the
frequency and extent of transitions between rest and activity. It
could vary roughly between 0 and 2, with higher values
indicating higher fragmentations.

RA, IS, and IV were calculated for a minimum period of 1 week
[27].

This study used all 3 nonparametric indicators rather than the
indicators through cosinor (parametric) analysis. The units of
most indicators of cosinor analysis are app-counts or acti-counts,
so those indicators are not comparable.

Self-Reported Questionnaires on Sleep Quality and
Depressive Symptoms
Participants’ sleep quality and depressive symptoms were
evaluated at the end of the study using self-administered
questionnaires, namely the Pittsburgh Sleep Quality Index
(PSQI) and the Patient Health Questionnaire (PHQ-9).

PSQI Measurement
The PSQI was used to measure the overall sleep quality of
individuals in 1 month. This index comprises 19 items that
evaluate 7 components of sleep quality, and the sum of the 7
component scores yields 1 total score of subjective sleep quality
(range 0-21); higher scores represent poorer subjective sleep
quality. The cutoff score for PSQI-defined cases of poor sleep
quality is a 6 or greater [28]. A Taiwanese version of the PSQI
had been validated with adequate reliability [29], and the
Cronbach α in this study was .802.

PHQ-9 Measurement
The PHQ-9 is a self-administered questionnaire for depressive
symptoms. Each of the 9 depressive symptom criteria yields a
score between 0 and 3, such that the PHQ-9’s total score ranges
from 0 to 27. A PHQ-9 score of 10 or greater has a sensitivity
of 93% and a specificity of 88% for the diagnosis of a major
depressive episode [30]. The diagnostic validity of the Chinese
version of the PHQ-9 is comparable with clinician-administered
assessments [31], and the Cronbach α in this study was .924.

Statistical Analysis
In this study, we used a 2-way ANOVA to compare the
app-defined circadian rhythm and sleep indicators with their
actigraphy counterparts. Additionally, we investigated the
differences in these indicators between patients with insomnia
and healthy controls using the same statistical approach.

To assess the clinical relevance of the sleep indicators measured
by the “Rhythm” app, we conducted multivariate regression
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models to explore their association with subjective sleep quality,
represented by the total PSQI scores. Specifically, we focused
on understanding how 2 sleep indicators, namely WASO and
NAWK, obtained from both the app and actigraphy data, related
to participants’ PSQI scores. In these analyses, we controlled
for potential confounding factors such as age and gender.

To examine the relationship between circadian rhythm indicators
(IS, IV, and RA) and PHQ-9 scores, a measure of depressive
symptoms, we used multivariate regression models. Within
these models, we designated PHQ-9 scores as the dependent
variable, while the circadian rhythm indicators (IS, IV, and RA)
were introduced as independent variables. These analyses also
encompassed the control of potential confounding factors,
including age and gender. It is noteworthy that previous research
[32] has highlighted significant variations in rest-activity rhythm
patterns based on sex and age. Furthermore, we used an
additional model to account for potential confounding effects.
In this model, we incorporated age, gender, and 1 of 3
supplementary independent variables: overall activity level,
overall smartphone use, or nighttime phone use. This
comprehensive approach ensured that we addressed and
mitigated potential confounding factors while investigating the
relationship between circadian rhythms and depressive
symptoms.

A value of P<.05 was considered to be statistically significant.
Data arrangement and statistical analysis were performed using
SPSS Statistics (version 25; IBM Corp).

Ethical Considerations
The study protocol received approval from the institutional
review boards of the National Taiwan University Hospital
(202004005RIND) and the Chang-Gung Memorial Hospital

(202002452A3 and 202100434B0A3). The study was conducted
in accordance with the principles outlined in the Declaration of
Helsinki. Prior to their inclusion in the study, participants
provided informed consent. To safeguard the privacy and
confidentiality of participants, all collected data underwent
rigorous de-identification processes before analysis. It is
important to note that participants were not subjected to any
compensation obligations related to their participation in the
study.

Results

Participant Characteristics
A total of 33 patients with insomnia had higher PSQI scores
(mean 10.2, SD 4.6 vs mean 4.4, SD 2.1; P<.001) and depressive
symptom scores (mean 10.6, SD 6.6 vs mean 1.8, SD 2.8;
P<.001) than the 33 healthy controls. There were no significant
differences in age (P=.17) and gender proportion between the
2 groups (P>.99).

Comparison of Circadian Rhythm and Sleep Indicators
Table 1 and Figure 5 show the comparison of app-defined and
actigraphy-defined circadian rhythm and sleep indicators.
Patients with insomnia and healthy controls both presented (1)
no significant differences between app-defined SO (SOapp) and
actigraphy-based SO (SOact; P=.92), (2) no significant
differences between app-defined WT (WTapp) and
actigraphy-based WT (WTact; P=.34), and (3) an 8.7 (SD
41.4)-minute longer app-defined WASO (WASOapp) than
actigraphy-based WASO (WASOact). Finally, there was no
significant difference between app-defined TST (TSTapp) and
actigraphy-based TST (TSTact; P=.74).
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Table 1. The comparison of app-defined and actigraphy-based circadian rhythm and sleep indicators in patients with insomnia and healthy controls.

P value differencesHealthy controls, mean (SD)Patients with insomnia, mean (SD)Variable

InteractioncMeasurementbGroupaActigraphyAppActigraphyApp

Sleep indicators

.34.92.0323.34 (0.80)23.56
(0.91)

23.98 (1.37)23.80 (1.39)Sleep onsetd

.86.34.0016.85 (0.79)7.12 (0.85)7.73 (2.02)7.91 (1.41)Wake timed

.55.53.0013.10 (0.69)3.34 (0.71)3.85 (1.53)3.86 (1.30)Midpoint of sleepd

.17.99<.0010.26 (0.26)0.37 (0.37)0.66 (0.53)0.55 (0.61)Number of awaken-
ings

.46.002.0052.74 (2.61)12.95
(15.09)

12.17 (17.56)18.44 (19.39)Wake after sleep on-
set (minutes)

.37.74.19447.85 (46.53)440.96
(57.21)

452.95 (103.36)468.09 (60.99)Total sleep time
(minutes)

Circadian rhythm indicators

.005<.001<.0010.90 (0.08)0.95 (0.06)0.81 (0.09)0.93 (0.08)Relative amplitude

.03<.001.700.45 (0.07)0.21 (0.09)0.40 (0.16)0.24 (0.11)Interdaily stability

.005<.001.661.04 (0.26)1.13 (0.20)0.91 (0.24)1.23 (0.23)Intradaily variability

aThe effect of patients with insomnia versus health controls.
bThe effect of app versus actigraphy.
cThe interaction effect of group and measurement.
dTime are in day decimal time, for example, 23.50=23:30 PM.

Figure 5. Circadian rhythms of (A) patients with insomnia and (B) healthy controls were measured using both actigraphy and the Rhythm app. The
left panel depicts a representative patient with insomnia (Pittsburgh Sleep Quality Index: 10 and Patient Health Questionnaire: 21), while the right panel
portrays a healthy control participant (Pittsburgh Sleep Quality Index: 1 and Patient Health Questionnaire: 0). The upper graph illustrates the smartphone
use data measured over 7 days using the app, indicated in orange, while the lower graph shows the activity data measured by actigraphy during the same
time frame, shown in blue. Although visual inspection of the graphical representation suggests that circadian rhythms of patients with insomnia, whether
measured by actigraphy or the app, appear more irregular than those of healthy controls, quantified circadian rhythm indicators reveal consistency with
our research findings: patients with insomnia exhibit higher app-defined intradaily variability (IVapp) and lower actigraphy-based intradaily variability
(IVact), alongside lower actigraphy-based relative amplitude (RAact). AU: arbitrary unit; ISact: actigraphy-based interdaily stability; ISapp: app-defined
interdaily stability; RAapp: app-defined relative amplitude.
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Associations Between Sleep Indicators and Subjective
Sleep Quality
Both app-defined and actigraphy-defined sleep indicators
showed later SO (P=.03) and WT (P=.001) in patients with
insomnia than in healthy controls, with statistical significance.

Patients with insomnia showed a greater NAWK and a longer
WASO than healthy controls (Table 1). Table 2 shows that the
PSQI scores were positively associated with WASOapp,
WASOact, app-defined NAWK (NAWKapp), and
actigraphy-based NAWK (NAWKact) after controlling for
participants’ age and gender.

Table 2. Comparisons of associations between subjective sleep quality, depressive symptoms, and objective circadian rhythms involving sleep indicators
defined by app and actigraphy.

ActigraphyAppVariable

P value2-tailed t
(df=62)

Coefficients (SE)P value2-tailed t (df=62)Coefficients (SE)

<.001.002Sleep indicators versus sleep quality

3.6884.211 (1.142)3.2783.327 (1.015)Number of awakenings

3.8430.153 (0.040)3.2810.096 (0.029)Wake after sleep onset
(minutes)

Circadian rhythm versus depressive symptoms

.01–2.641–21.693 (8.214).76–0.312–3.859 (12.352)Relative amplitude

.06–1.899–12.003 (6.320).850.1941.578 (8.124)Interdaily stability

.01–2.533–7.877 (3.110).012.6059.786 (3.756)Intradaily variability

Sleep quality was measured by the PSQI, and depressive
symptoms were measured by the PHQ-9. Coefficients (β)
represent estimates of PSQI or PHQ-9 scores in multivariate
regression models. PSQI scores were examined in relation to
sleep indicators (WASO and NAWK), while PHQ-9 scores
were studied concerning circadian rhythm indicators (IS, IV,
and RA). Both analyses controlled for age and gender. The P
value is used in the comparison of coefficients involving the
app and actigraphy.

Associations Between Circadian Rhythm Indicators
and Depressive Symptoms
Table 2 and Figure 6 present the results of our analyses, which
aimed to explore the associations between depressive symptom
scores and various circadian rhythm indicators while controlling
for age and gender. The findings revealed significant correlations
between depressive symptom scores and certain indicators.
Specifically, app-defined IV (IVapp) showed a positive
association with depressive symptoms (β=9.786, SD 3.756;
P=.01), while actigraphy-based IV (IVact; β=–7.877, SD 3.110;
P=.01) and actigraphy-based RA (RAact; β=–21.693, SD 8.214;
P=.01) exhibited negative associations.

Figure 6. The correlations between depressive symptom scores and circadian rhythm indicators: (A) interdaily stability, (B) intradaily variability, and
(C) relative amplitude. The depressive symptoms were measured by the total scores of the Patient Health Questionnaire-9 (PHQ-9). The hollow circles
indicate an individual’s depressive symptoms and the value of circadian rhythm indicators measured by the app, and the dashed line indicates the
regression line. Meanwhile, the solid circles indicate the actigraphy counterparts, and the black solid line indicates the regression line.

Upon recognizing the potential influence of confounding factors
on the relationship between lower IVact and higher depression
symptoms, we conducted additional analyses. To account for
participants’overall activity level, represented by the M10 value
derived from actigraphy data, we included it as an independent

variable in addition to age and gender. The M10 value is a
widely accepted indicator of a person’s overall physical activity
level [33,34]. Our examination revealed a negative correlation
between IVact and the M10 value (r=–0.621; P<.001) measured
by actigraphy. Even after adjusting for overall activity level
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(M10 value), the correlation of lower IVact with higher
depression symptoms remained significant (β=–13.061, SD
3.857; P=.001).

Similarly, we further investigated the potential relationship
between phone use and mood based on intriguing findings from
our sample. To explore this association, we assessed the
correlations between IVapp and indicators of overall phone use
or nighttime phone use. These indicators included overall
screen-on time and app-switch frequency, representing phone
use. Nighttime phone use was defined as the period between
22:00 and the next 6:00. Our analysis revealed a negative
correlation between IVapp and overall smartphone use time
(r=–0.416; P<.001) and overall app-switch frequency (r=–0.396;
P<.001). However, there were no significant correlations
between IVapp and nighttime smartphone use time (r=–0.220;
P=.08) or nighttime app-switch frequency (r=–0.237; P=.06).

To further elucidate the relationship, we included these
indicators of overall phone use or nighttime phone use, in
addition to age and gender, as independent variables in our
analysis. The results indicated that the correlation of higher
IVapp with higher depression symptoms remained significant
even after controlling for overall smartphone use time (β=9.102,
SD 4.066; P=.03), overall app-switch frequency (β=9.366, SD
4.021; P=.02), nighttime smartphone use time (β=9.637, SD
3.841; P=.02), or nighttime app-switch frequency (β=9.694,
SD 3.848; P=.01).

Discussion

Principal Findings
In this study, we investigated circadian rhythm and sleep
indicators in individuals with insomnia, a population that had
received limited attention in previous smartphone-based
sleep-wake cycle estimations. To achieve this objective, we
adopted a novel approach, capturing circadian rhythms derived
from human-smartphone interactions, which complemented the
physical activity-based circadian rhythms obtained from
actigraphy. Our findings revealed significant correlations
between the IVapp and depressive symptom scores, as well as
between the RAact and depressive symptom scores. These
correlations aligned with existing patterns observed in
individuals with depression [35-38], suggesting disrupted
circadian rhythmicity in this population. On the other hand, we
observed negative correlations between the IVact and depressive
symptom scores, while no significant correlation was found
between the app-defined RA (RAapp) and depressive symptoms.
It is important to emphasize that IV was not a direct measure
of circadian rhythms per se; rather, it represented the
fragmentation in activity profiles between daily rest and activity
periods [39]. The different correlations between depressive
symptoms and circadian rhythm indicators, as measured by the
app and actigraphy, may have reflected varying clinical
implications and applications of circadian rhythms based on
different types of activities. For instance, actigraphy primarily
captured physical activity, while the app-derived indicators
might have been associated with activities beyond the physical
aspects, which could be interpreted as potential mental activity.

Comparison to Previous Work
Previous studies on smartphone-based sleep-wake cycle
estimations primarily focused on healthy participants and used
experimental sleep disruption protocols to evaluate device
algorithm performance [10-16,21]. In contrast, this study took
a unique approach by specifically examining individuals with
insomnia, contributing to the understanding of sleep
interruptions, which manifest as WASO, TST, and the NAWK
in clinical settings. Moreover, our algorithm was designed to
theoretically correspond more closely to mental activities than
the tappigraphy algorithm [10], as certain smartphone
touchscreen interactions might be less consciously engaged
[40]. This study revealed that WASOapp was longer than
WASOact, indicating that human-smartphone interactions while
users were still in bed could be detected as periods of
wakefulness, even when physical activity fell below the
accelerometer’s threshold for identifying wakefulness. This
discrepancy aligned with the common underestimation of
WASO by actigraphy and other consumer devices in previous
studies [21]. Therefore, our findings suggest that WASOapp may
serve as a potential digital biomarker to capture disturbed sleep,
complementing the clinical implications of WASOact. These
observations are consistent with the findings of tappigraphy,
which demonstrated that the probability of touches on
smartphones remained greater than 0 for approximately 2 hours
after SOact [10].

Furthermore, our findings were consistent with the existing
literature, showing an association between RAact and depressive
symptoms [41]. However, we did not observe a significant
association between RAapp and depressive symptom scores,
partly due to the invariant nature of RAapp resulting from specific
app-defined least active period (L5app). This was reflected in
the higher and invariant nature of RAapp, compared to RAact,
with the L5app approaching 0. This implies that there was
minimal smartphone use during the L5app, while detectable
physical activity was still recorded during the actigraphy-defined
least active period. Overall, this study builds upon previous
research and provides important insights into the potential
applications and limitations of smartphone-based assessments
for individuals with insomnia.

Strengths
This study offered several strengths that contributed to the
understanding of smartphone-based circadian rhythm and sleep
indicators, particularly in individuals with insomnia. One of the
notable strengths was the unique focus on patients with
insomnia, a population that had received limited attention in
previous smartphone-based sleep-wake cycle estimations. By
examining sleep disruptions and circadian rhythm indicators in
this specific group, our findings provided valuable insights into
the clinical relevance of these indicators in real-world settings.
Another strength lay in our novel approach of capturing
circadian rhythms derived from human-smartphone interactions,
which complemented the physical activity–based circadian
rhythms obtained from actigraphy. This methodological
innovation opened up new avenues for exploring mental
activity-based circadian rhythms, allowing us to gain a deeper
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understanding of potential associations between smartphone
interactions, circadian rhythms, and mental health indicators.
The observed correlations between IVapp and depressive
symptom scores, as well as RAact and depressive symptom
scores, offered preliminary evidence of the relevance of
smartphone-derived circadian rhythm indicators in mental health
research. Furthermore, this study highlighted the potential of
smartphone apps in digital health research and applications.
With the increasing ubiquity of smartphones and the continuous
development of health-related apps, our research demonstrated
the feasibility of using smartphones as a convenient tool to
gather data on circadian rhythms and sleep patterns. The use of
smartphone apps for digital phenotyping and health monitoring
held promise for future medical research, particularly in
understanding the impact of sleep disruptions and circadian
rhythm disturbances on mental health outcomes. In addition to
its clinical applications, the smartphone app developed in this
study could serve as a valuable tool for internet medical
research. As data from smartphone interactions and app use
could be easily collected remotely and in real time, researchers
could harness this information to conduct large-scale
epidemiological studies or gather longitudinal data for
monitoring changes in sleep patterns and circadian rhythms
over time. The potential of this smartphone app extends beyond
insomnia research and could be applied to broader public health
initiatives focused on understanding sleep health and mental
well-being in the general population.

Limitations
Several methodological limitations should be noted when
interpreting this study’s findings. First, it is important to note
that the “Rhythm” app was developed based on the Android
operating system, and future efforts should be made to create
versions compatible with other operating systems, such as iOS
and Windows. Second, due to the small sample size used in the
clinical correlations, caution is warranted when generalizing
our algorithm’s performance, and further studies with larger
and more diverse samples are necessary for validation. Third,
there were certain challenges in capturing smartphone behaviors
during physically inactive states (eg, WASOapp during

actigraphy-defined sleep) and mental activities during physically
active states (eg, sleep inertia in actigraphy-defined awakening
but app-defined sleep). Future research could focus on
addressing these aspects to enhance the accuracy and
comprehensiveness of our data. Fourth, incorporating a weekly
phone interview for actigraphy validation may be prone to recall
bias, unlike the daily completion intended for diaries. Last, we
acknowledge a potential limitation related to the precise
definition of moments when users temporarily leave their
smartphones, such as during work, charging, or other activities.
The smartphone’s inactivity during these intervals presented
difficulties in accurately capturing app use patterns. To
overcome this limitation, improved data collection methods or
additional sensors could be explored to provide more detailed
insights into user interactions with their smartphones during
such periods.

Conclusion
In conclusion, this study addressed a significant gap in the
literature by investigating circadian rhythm and sleep indicators
in individuals with insomnia, an understudied population in
smartphone-based sleep-wake cycle estimations. We introduced
a novel approach of capturing circadian rhythms through
human-smartphone interactions, complementing the traditional
physical activity-based methods of actigraphy. The findings
highlighted significant correlations between IVapp and depressive
symptom scores, as well as RAact and depressive symptom
scores, aligning with patterns observed in individuals with
depression. This study’s unique focus on patients with insomnia
and innovative methodological approach offer valuable insights
into the clinical relevance of smartphone-derived circadian
rhythm indicators in mental health research. Additionally, the
study demonstrated the potential of smartphone apps for digital
health research and internet medical research, paving the way
for broader applications in understanding sleep health and
mental well-being in diverse populations. These strengths
collectively contribute to advancing digital health research and
offer opportunities for future investigations into the impact of
sleep disruptions on mental health outcomes.
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Abbreviations
DSM-5: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition
IS: interdaily stability
IV: intradaily variability
IVact: actigraphy-based intradaily variability
IVapp: app-defined intradaily variability
L5: least active 5 continuous hours
L5app: app-defined least active period
M10: most active 10 continuous hours
NAWK: number of awakenings
NAWKapp: actigraphy-based number of awakenings
NAWKapp: app-defined number of awakenings
PHQ-9: Patient Health Questionnaire
PSQI: Pittsburgh Sleep Quality Index
RA: relative amplitude
RAact: actigraphy-based relative amplitude
RAapp: app-defined relative amplitude
SO: sleep onset
SOact: actigraphy-based sleep onset
SOapp: app-defined sleep onset
TST: total sleep time
TSTact: actigraphy-based total sleep time
TSTapp: app-defined total sleep time
WASO: wake after sleep onset
WASOact: actigraphy-based wake after sleep onset
WASOapp: app-defined wake after sleep onset
WT: wake time
WTact: actigraphy-based wake time
WTapp: app-defined wake time
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