
Review

The Role of Novel Digital Clinical Tools in the Screening or
Diagnosis of Obstructive Sleep Apnea: Systematic Review

Miguel Duarte1*, BSc; Pedro Pereira-Rodrigues1,2,3*, PhD; Daniela Ferreira-Santos1,2,3*, PhD
1Faculty of Medicine, University of Porto, Porto, Portugal
2Department of Community Medicine, Information and Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Porto, Portugal
3Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Porto, Portugal
*all authors contributed equally

Corresponding Author:
Miguel Duarte, BSc
Faculty of Medicine
University of Porto
Alameda Professor Hernâni Monteiro
Porto, 4200-319
Portugal
Phone: 351 225 513 600
Fax: 351 225 513 601
Email: m.duarte722@gmail.com

Abstract

Background: Digital clinical tools are a new technology that can be used in the screening or diagnosis of obstructive sleep
apnea (OSA), notwithstanding the crucial role of polysomnography, the gold standard.

Objective: This study aimed to identify, gather, and analyze the most accurate digital tools and smartphone-based health
platforms used for OSA screening or diagnosis in the adult population.

Methods: We performed a comprehensive literature search of PubMed, Scopus, and Web of Science databases for studies
evaluating the validity of digital tools in OSA screening or diagnosis until November 2022. The risk of bias was assessed using
the Joanna Briggs Institute critical appraisal tool for diagnostic test accuracy studies. The sensitivity, specificity, and area under
the curve (AUC) were used as discrimination measures.

Results: We retrieved 1714 articles, 41 (2.39%) of which were included in the study. From these 41 articles, we found 7 (17%)
smartphone-based tools, 10 (24%) wearables, 11 (27%) bed or mattress sensors, 5 (12%) nasal airflow devices, and 8 (20%) other
sensors that did not fit the previous categories. Only 8 (20%) of the 41 studies performed external validation of the developed
tool. Of these, the highest reported values for AUC, sensitivity, and specificity were 0.99, 96%, and 92%, respectively, for a
clinical cutoff of apnea-hypopnea index (AHI)≥30. These values correspond to a noncontact audio recorder that records sleep
sounds, which are then analyzed by a deep learning technique that automatically detects sleep apnea events, calculates the AHI,
and identifies OSA. Looking at the studies that only internally validated their models, the work that reported the highest accuracy
measures showed AUC, sensitivity, and specificity values of 1.00, 100%, and 96%, respectively, for a clinical cutoff AHI≥30. It
uses the Sonomat—a foam mattress that, aside from recording breath sounds, has pressure sensors that generate voltage when
deformed, thus detecting respiratory movements, and uses it to classify OSA events.

Conclusions: These clinical tools presented promising results with high discrimination measures (best results reached AUC>0.99).
However, there is still a need for quality studies comparing the developed tools with the gold standard and validating them in
external populations and other environments before they can be used in clinical settings.

Trial Registration: PROSPERO CRD42023387748; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=387748

(J Med Internet Res 2023;25:e47735) doi: 10.2196/47735
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Introduction

Background
Obstructive sleep apnea (OSA) is a sleep-related breathing
disorder characterized by transitory periods of breathing
cessation due to partial (hypopnea) or complete (apnea)
obstruction of the respiratory tract that affects ventilation during
sleep. Repeated episodes of upper airway obstruction during
sleep may, understandably, result in sleep fragmentation,
nonrestorative sleep, and excessive daytime somnolence [1].
Furthermore, it has a great impact on multiple organ systems
and is associated with hypertension, cardiovascular morbidities
(eg, arrhythmias, coronary artery, and cerebrovascular diseases),
and decrements in cognitive function [2].

The prevalence of this disease varies greatly depending on the
population being studied and on how OSA is defined (eg, testing
methodology, scoring criteria used, and apnea-hypopnea index
[AHI] threshold) [3]. Despite the heterogeneity in population
prevalence studies, this number is high, as nearly one-seventh
or one billion of the world’s adult population is thought to have
some degree of OSA [4-6]. These numbers have been on an
upward trajectory, partially because of the increasing number
of individuals with excess weight and obesity in high-income
countries, as this is one of the causal factors of this pathology
[6,7]. Nevertheless, despite being a highly prevalent disease,
many cases remain undiagnosed and untreated, resulting in a
decrease in quality of life, along with an increase in the
incidence of adverse events and overall mortality [8].

The current gold-standard method for the diagnosis of OSA is
overnight polysomnography, which takes place in a sleep
laboratory with the attendance of a sleep technician [3], and
where oxygen saturation, oronasal airflow, respiratory
movement, electroencephalogram, body position,
electromyogram, electrooculogram, and electrocardiogram are
recorded [3,9].

Traditionally, sleep studies have been categorized into type I
(or polysomnography), type II, type III, and type IV. Contrary
to type I, types II to IV are unattended. Type II studies use the
same number of monitoring sensors as the gold standard but
are performed outside of the sleep laboratory, normally at the
patient’s home. Unfortunately, they lack technical quality
because problems such as sensor displacement or malfunction
cannot be addressed by sleep technicians. Type III studies, also
known as home sleep apnea tests (HSATs), have already been
validated and use devices that measure otherwise limited
cardiopulmonary parameters: 2 respiratory variables (eg, airflow
and breathing effort), oxygen saturation, and a cardiac variable
(eg, heart rate [HR] or electrocardiogram). Finally, type IV sleep
studies are the most limited type of sleep study, using devices
that measure only 1 or 2 parameters, typically HR or oxygen
saturation [3].

Although the polysomnography provides detailed and highly
accurate results, it is a time-consuming, labor-intensive, and
expensive test [6], as it requires the patient to stay overnight in
the sleep laboratory, a sleep technician to attend the study, and
manual scoring of the data to produce the results, just to list

some disadvantages [3]. This causes sleep laboratories to be
unable to keep up with demand, often with long waiting lists
and inaccessibility to a large part of the population [10].

The use of digital tools and innovative devices is a rapidly
expanding area of research and has the potential to revolutionize
the way health services are delivered, increasing access to health
care in an easier way and at lower costs [11]. They can be an
invaluable addition for health care professionals, as they provide
many different functions, ranging from clinical decision support
systems to data collection [12].

Wearable devices provide a level of unobtrusiveness that is not
achievable with standard techniques, conceivably allowing faster
OSA screening, along with improved long-term characterization
and follow-up because of the possibility of day-to-day use.
Subsequently, research on the use of these instruments in the
diagnosis of OSA has been growing rapidly in recent years,
with numerous vital signs and sleep parameters being monitored
and strategies being used [13]. For example, some rely on
movement analysis during sleep using accelerometers
(actigraphy), snoring audio processing using tracheal and
ambient microphones, and oxygen saturation measurement [14].

In contrast, smartphone-based health care platforms are
emerging as an innovative solution owing to their ability to
integrate, in the same device or in combination with other
wireless wearable devices, several of the essential sensors to
obtain the desired physiological variables for sleep-related
disease diagnosis [14]. In addition, because of their ability to
monitor sleep over long periods in the home setting, wrist-worn
sleep devices, such as smartwatches and fitness trackers, are
gaining attention from the sleep medicine community, using
photoplethysmography, microphones, accelerometers, HR, or
oximetry data [15]. Sheet-shaped or under-the-mattress sensors
are also upcoming technologies that use pressure sensors for
the detection of respiratory efforts based on accompanying
thoracic movements [16], which spares the patient from being
restrained by attached sensors and consequently allows a more
natural and comfortable sleep experience.

Therefore, the integration of these contemporary and latest
devices and platforms has the potential to improve patient care
and grant better access to screening or diagnostic tests, allowing
for quicker diagnosis, monitoring, and treatment of patients
with OSA [13].

Objective
Given the shortcomings of the current gold standard and the
promising features of the new innovative digital clinical tools,
this systematic review aimed to identify, gather, and analyze
the most accurate digital tools used for OSA screening or
diagnosis in the adult population. We intend to identify
individuals with a higher risk of developing this disease, which
would benefit the most from a full in-laboratory
polysomnography to confirm the diagnosis, relieving some of
the pressure on this field, following a rule-in approach.

J Med Internet Res 2023 | vol. 25 | e47735 | p. 2https://www.jmir.org/2023/1/e47735
(page number not for citation purposes)

Duarte et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Methods

This systematic review was carried out according to the
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) guidelines [17], and the protocol was
registered in the PROSPERO under the reference
CRD42023387748.

Search Strategy and Selection Criteria
A comprehensive literature search, without any restrictions, was
conducted using the PubMed, Scopus, and Web of Science
databases for articles published until November 2022. Specific
queries were used for each platform, which can be found in
Multimedia Appendix 1. Subsequently, a manual search was
performed using relevant references from the included studies
and relevant reviews on the matter. If there was no access to
the full-text article on the web, the respective authors were
contacted to obtain it.

Articles were independently selected by 2 reviewers (blinded
to each other’s assessment, MD and DFS), applying predefined
criteria to each article’s title and abstract, and in the second
phase, to the integral texts of the selected articles. Divergent
opinions were resolved by consensus. These processes were
conducted using Rayyan (Qatar Computing Research Institute),
a web and mobile app that helps expedite the initial screening
of articles for systematic reviews [18].

Included in this review were studies that reported on adult
patients with suspected OSA or OSA diagnosis (population)
and assessed the accuracy of digital clinical tools for the
screening or diagnosis of OSA (exposure and comparator) while
having polysomnography as a gold standard (outcome). Studies
that evaluated the accuracy of digital tools in pregnant women
or the pediatric population that used HSAT or other types of
sleep studies as the reference test, as well as interventions using
only one portion of the data obtained by polysomnography as
the index test (eg, pulse oximetry, electroencephalography, and
electrocardiogram), were excluded.

Data Extraction
Once the articles were selected, data were extracted to a
prespecified Microsoft Excel spreadsheet by 2 reviewers (MD
and DFS) blinded to each other’s assessment, which included
the following: (1) article information: title, authors, publication
date, country, and journal and (2) methods: participant selection,
sample size, execution or nonexecution of in-laboratory
polysomnography, prevalence of OSA, type of digital tool
analyzed in comparison with polysomnography, inclusion and
exclusion criteria, and potential bias.

To enhance the comprehension and analysis of the data from
all included studies, we grouped the digital clinical tools into
five categories: (1) smartphone-based tools, (2) wearable tools,
(3) bed or mattress sensors, (4) nasal airflow devices, and (5)
other digital tools. The last category was created to avoid further
subdivisions, as some tools did not fit the previous ones.

For each type of tool, specific data were extracted, including
population (n), clinical cutoff values for the diagnosis of OSA

and severity classification (AHI), area under the curve (AUC),
sensitivity, and specificity values.

Moreover, an additional division was made regarding the
validation of the developed tool. If the studies merely developed
a digital tool or developed and tested it on the same collected
population, the results were presented for that group and
represented by “D”—derivation group—in the tables. If the
study was developed and validated on a different population,
those results were presented and represented by “V”—validation
group. In addition, a further subdivision could be performed
regarding subject- or event-wise validation because the results
obtained from each method should not be directly compared.
Even so, given the few included studies that performed
event-wise validation, this subdivision was not considered.
However, these studies are mentioned with a footnote in the
respective tables.

Studies were presented by the year of publication within each
category. Any missing information is reported in the tables of
the Results section by “—” (meaning “not available”), and the
AHI cutoff for which the best metrics were obtained is marked
in italics. A special note to one article presents the results for
several sensor positions, where we only show the best results.
In addition, each manuscript was checked for the definition of
hypopnea, namely, the percentage of desaturation, but as this
definition was not clear in most of the studies, we did not
consider it further.

Finally, as we intended to identify and select patients with a
high probability of having OSA suitable to perform
polysomnography, tools with high specificity values were
considered the best, following a rule-in approach.

Risk of Bias
At 2 points in time, 2 reviewers (MD and DFS) assessed the
risk of bias in all 41 included studies. It was performed by
analyzing and answering a total of 10 questions from the Joanna
Briggs Institute critical appraisal tool for diagnostic test accuracy
studies [19]. All answers can be found in the tables and are
represented by symbols according to their risk of bias. A green
minus sign is presented in the table if a low risk of bias was
found for a question. A red plus sign is presented if a substantial
risk of bias is found. A yellow question mark is presented if the
risk of bias was unclear. If the question did not apply to our
specifically analyzed studies, they were indicated as not
applicable.

Regarding the questions, each was replaced with the letter Q in
the tables, followed by the number of the question: Q1, “Was
a consecutive or random sample of patients enrolled?” Q2, “Was
a case-control design avoided?” Q3, “Did the study avoid
inappropriate exclusions?” Q4, “Were the index test results
interpreted without knowledge of the results of the reference
standard?” Q5, “If a threshold was used, was it prespecified?”
Q6, “Is the reference standard likely to correctly classify the
target condition?” Q7, “Were the reference standard results
interpreted without knowledge of the results of the index test?”
Q8, “Was there an appropriate interval between the index test
and reference standard?” Q9, “Did all patients receive the same
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reference standard?” and Q10, “Were all patients included in
the analysis?”

Given that the index test (digital tool) and the gold standard
(polysomnography) were performed simultaneously in all studies
included, Q8 was not applicable to any of the designs.

Results

Overview
We retrieved 1714 articles, of which 477 were duplicates. From
the 1237 articles, after in-depth scrutiny, we retained 41 papers
that met the inclusion criteria, as shown in Figure 1.

Disagreements were observed between the reviewers during
both phases of the analysis. The overall rate of concordance in
the title and abstract screening was 87%, whereas that in the
integral version was 92%.

The gold-standard diagnostic test, polysomnography, was
performed in all the studies included in our review. Some studies
were unclear about the overall context in which the
polysomnography was performed and did not report any details
about the polysomnography data collection (eg, setting,
equipment used, number of channels, and overall conditions);
therefore, we excluded them from the analysis.

The oldest digital clinical tool was developed in 2002 and
consists of a small, lightweight device worn underneath the
nose and above the upper lip, which identifies and counts nasal
airflow cessations through the night and uses it to predict the
probability of OSA [20]. In contrast, in 2022, a variety of tools
were developed and tested, namely a smartphone-based method
[21], a wearable adhesive patch [22], 2 radar devices [23,24],
and an audio recorder [25]. The frequency distribution of the
tools included in our systematic review is shown in Table 1.

Figure 1. Flow diagram showcasing the article selection process. PSG: polysomnography.
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Table 1. Frequency distribution of the tools included in our systematic review (n=41).

Number of articles, n (%)Digital tools

4 (10)Smartwatch

1 (2)Smart pillow

7 (17)Smartphone

1 (2)Ring

1 (2)Respiration belt

5 (12)Radar

1 (2)Neck device

5 (12)Nasal air flow

2 (5)Microphones

10 (24)Mattress sensor

1 (2)Garment

1 (2)Bone conducted vibration

2 (5)Adhesive patch

Overall, the largest sample size was 620 patients [26], whereas
the smallest consisted of only 5 patients [27], with a median
sample size of 53 patients with suspected OSA. The overall
prevalence of OSA was reported in 21 of the 41 included studies,
with values ranging from 51% [28] to 100% [29].

AHI was used to define OSA presence or absence, as well as
to stratify patients by severity level, with the chosen cutoff in
each paper stated in the respective table. A considerable number
of studies did not report the cutoff value (12/41, 29%), whereas
among those who chose only 1 definition cutoff, the most
frequent was AHI≥15 (8/41, 19%), followed by AHI≥5 (3/41,
7%). One study [30] used a different cutoff from the rest,
AHI≥20, whereas another study [31] performed a comparison
between the different severity-level subgroups using AHI=5,
AHI=15, and AHI=30 instead of comparing the presence or
absence of the disease for a specific AHI cutoff, thus impairing
the comparison with the rest. The remaining studies (17/41,
41%) presented several severity cutoffs and corresponding
results for each, often AHI≥5, AHI≥15, and AHI≥30.

Smartphone-Based Tools
Of the 41 included articles, 7 (17%) analyzed the screening or
diagnostic ability of smartphone-based tools (Table 2) by using
1 or more of the sensors incorporated in the smartphones. A
total of 3 studies used a microphone to capture audio signals to
detect the patient’s respiratory effort, which were then processed
and analyzed to predict the diagnosis [21,32,33], with 1 study
[33] concomitantly using the smartphone’s accelerometer. In

contrast, 2 studies created apps as a form of screening using
models that can predict the risk of OSA from patient variables
[26] or process signals to detect patterns of sleep-disordered
breathing [28]. The remaining 2 studies transformed the
smartphone into a sonar device that emits sound and then
captures its reflection, using it to classify the respiratory
movements of the patient [34,35].

OSA definition was stated in only 43% (3/7) of studies, all of
which used an AHI≥15 cutoff. The largest sample size recorded
was 620 patients, whereas the smallest sample comprised only
15 patients. The prevalence of OSA was reported in 71% (5/7)
of articles, ranging from 51% to 70%. Regarding the studies
that only performed internal validation, the best AUC,
sensitivity, and specificity values were 0.95, 94%, and 97%,
respectively, for an AHI≥15 cutoff [28]. As for the studies that
performed external validation, 2 studies were found, namely,
Narayan et al [32] that reported AUC, sensitivity, and specificity
values of 0.87, 94%, and 63%, respectively, and Tiron et al [35]
that reported values of 0.92 (95% CI 0.85-0.95), 88% (95% CI
67%-95%), and 80% (95% CI 68%-89%), respectively.

Table 3 shows the risk of bias for studies within this category.
In the patient selection domain, 1 study [33] had a high risk of
bias, 3 studies had a low risk of bias [21,28,34], and 3 others
had an unclear risk of bias [26,32,35]. For the index test domain,
4 studies presented a high risk [21,26,33,34], namely in
questions Q4 and Q5, with 2 studies having a low risk [28,32],
and 1 study being unclear [35].

J Med Internet Res 2023 | vol. 25 | e47735 | p. 5https://www.jmir.org/2023/1/e47735
(page number not for citation purposes)

Duarte et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Study characteristics of the smartphone-based tools categorya.

Specificity, %
(95% CI)

Sensitivity, %
(95% CI)

Area under the
curve, (95% CI)

OSA preva-
lence, n (%)

Sample size, n (group type:
D=derivation group,
V=validation group)

OSAb definitionDigital toolStudy, year

86 (—)100 (—)—8 (53)15 (D)—cSmartphone
(audio; ac-
celerometer)

Al-Mardini et al
[33], 2014

———26 (70)37 (D)—Smartphone
(sonar; au-
dio)

Nandakumar et
al [34], 2014

63 (—)94 (—)0.87 (—)48 (53)32 (D); 59 (V)AHId≥15Smartphone
(audio)

Narayan et al
[32], 2018

97 (—)94 (—)0.95 (—)83 (51)162 (D)AHI≥15Smartphone
(app; sonar)

Lyon et al [28],
2019

—Male: 86 (—);

female: 56 (—)

Male: 0.61 (—);

female: 0.62 (—)

357 (58)620 (D)—Smartphone
(app)

Haberfeld et al
[26], 2020

80 (68-89)88 (77-95)0.92 (0.85-0.95)—128 (D); 120 (V)AHI≥15Smartphone
(sonar; au-
dio)

Tiron et al [35],
2020

89 (—)72 (—)0.88 (—)—16 (D)—Smartphone
(audio)

Castillo-Escario

et al [21], 2022e

aWhen external validation was performed, the results are only presented for the validation group.
bOSA: obstructive sleep apnea.
cNot available.
dAHI: apnea-hypopnea index.
eUsed event-wise validation.

Table 3. Risk of bias for smartphone-based tools category using the Joanna Briggs Institute critical appraisal checklist for diagnostic test accuracy
studies.

Risk of biasStudy, year

Index testPatient selection

Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

N/AdcbaAl-Mardini et al [33], 2014

N/ANandakumar et al [34], 2014

N/ANarayan et al [32], 2018

N/ALyon et al [28], 2019

N/AHaberfeld et al [26], 2020

N/ATiron et al [35], 2020

N/ACastillo-Escario et al [21], 2022

aIndicates unclear risk of bias.
bIndicates high risk of bias.
cIndicates low risk of bias.
dN/A: not applicable.

Wearable Tools
Table 4 shows the 10 (24%) of the 41 wearable tools included
in our systematic review. The device used in 4 of them was a

smartwatch, making use of their built-in sensors, such as
photoplethysmography signals or an accelerometer [36-39]. For
the other wearables, there was a garment or body-worn sensor
that recorded electrocardiogram, thoracic movements, and
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positional signals [40]; a respiration belt that registered thoracic
movement during respiration [41]; and a neck device that
recorded snoring and position using a microphone and
accelerometer, respectively [42]. In addition, 2 adhesive patches
were included: one that recorded electrocardiogram and
actigraphy signals that were patched to the chest [43], and one
that recorded blood saturation on the hand using a photoelectric
reflex sensor [22]. Finally, a ring device capturing oxygen
saturation, photoplethysmography signals, and accelerometer
data are also shown in this table [44].

OSA definition was stated in 70% (7/10) of studies. The AHI≥15
cutoff was used in 3 of them, whereas the rest presented 2 or 3
severity cutoffs (AHI≥5, AHI≥15, and AHI≥30). The largest
sample size was 404 patients, whereas the smallest had only 20
patients. The prevalence of OSA was reported in 50% (5/10)
of articles and varied between 54% and 85%. Considering
studies that only performed internal validation, the best AUC,

sensitivity, and specificity values were 0.93, 86% (95% CI
57%-98%), and 100% (95% CI 54%-100%), respectively, for
an AHI≥15 cutoff [38]. Once again, 2 studies [36,42] also
performed external validation in a distinct group. Levendowski
et al [42] reported sensitivity and specificity values of 78% and
92%, respectively, for AHI≥5 cutoff. In the study by Fedorin
and Slyusarenko [36], these measures have not been reported.
As previously stated, in 1 study, the authors presented results
for 3 positions of the sensor, but we chose to include only the
best position [43].

In Table 5, we can see that, for the patient selection domain,
only 1 study showed a high risk of bias [43], with 6 studies
having a low risk [22,36,37,40,41,44], and 3 studies being
unclear [38,39,42]. As for the index test domain, 6 studies
presented a high risk [36-38,40-42] among questions Q5 and
Q10, and the other 4 studies showed a low risk of bias
[22,39,43,44].
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Table 4. Study characteristics of the wearable tools categorya.

Specificity, %
(95% CI)

Sensitivity, %
(95% CI)

Area under the
curve (95% CI)

OSA preva-
lence, n (%)

Sample size, n (group type:
D=derivation group,
V=validation group)

OSAb definitionDigital toolStudy, year

92 (—)d;

87 (—);

88 (—)

78 (—)d;

81 (—);

87 (—)

——e20 (D); 24 (V)AHIc>5d;
AHI≥10;
AHI≥15

Neck deviceLevendowski et
al [42], 2014

79 (65-88)94 (83-98)—32 (60)53 (D)AHI≥15Adhesive
patch sensors
(chest)

Selvaraj and
Narasimhan
[43], 2014

————32 (D)—Garment or
body-worn
sensor

Ben Azouz et al
[40], 2018

89 (—)82 (—)—22 (54)41 (D)AHI>15SmartwatchHayano et al
[39], 2020

—96 (—)——20 (D)—SmartwatchChen et al [37],
2021

——0.97 (—)248 (61)404 (D)—Respiration
belt

Ganglberger et
al [41], 2021

100 (29-100);

100 (54-100)d;

80 (44-98)

77 (50-93);

86 (57-98)d;

80 (44-98)

0.81 (—);

0.93 (—)d;

0.80 (—)

17 (85)20 (D)AHI≥5;

AHI≥15d;
AHI≥30

SmartwatchChen et al [38],
2021

3 (0-15);

74 (59-85);

95 (87-99)d

100 (92-100);

93 (77-99);

71 (42-92)d

0.93 (0.88-0.98);

0.96 (0.90-1.00);

0.96 (0.92-1.00)d

43 (55)78 (D)AHI≥5;
AHI≥15;

AHI≥30d

RingYeh et al [44],
2021

————107 (D); 69 (V)AHI>15SmartwatchFedorin and
Slyusarenko
[36], 2021

77 (—);

89 (—)d

93 (—);

92 (—)d

0.95 (0.91-0.98);

0.95 (0.92-0.98)d

—196 (D)AHI≥5;

AHI≥15d
Adhesive
patch sensor
(palm)

Xu et al [22],
2022

aIf the study used different clinical cutoff values for obstructive sleep apnea diagnosis, the results are only presented for the best-achieved cutoff and
marked in italics. When external validation was performed, the results are only presented for the validation group.
bOSA: obstructive sleep apnea.
cAHI: apnea-hypopnea index.
dBest-achieved cutoff.
eNot available.
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Table 5. Risk of bias for wearable tools category using Joanne Briggs Institute critical appraisal checklist for diagnostic test accuracy studies.

Risk of biasStudy, year

Index testPatient selection

Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

dN/AcbaLevendowski et al [42], 2014

N/ASelvaraj and Narasimhan [43],
2014

N/ABen Azouz et al [40], 2018

N/AHayano et al [39], 2020

N/AChen et al [37], 2021

N/AGanglberger et al [41], 2021

N/AChen et al [38], 2021

N/AYeh et al [44], 2021

N/AFedorin and Slyusarenko [36],
2021

N/AXu et al [22], 2022

aIndicates low risk of bias.
bIndicates unclear risk of bias.
cN/A: not applicable.
dIndicates high risk of bias.

Bed or Mattress Sensors
Bed or mattress-based sensors, for which the description can
be found in Table 6, are also a big part of our pool of articles,
with 11 (27%) of the 41 studies analyzing the performance and
screening capability of these pressure-based sensing devices in
the context of OSA [16,30,45-52]. In addition to
under-the-mattress sensors, there is also a smart pillow paired
with an oximeter, which offers diagnostic capability by detecting
apnea events and interventional intent by being able to inflate
and change its conformation and deobstruct the patient’s airway
[29].

OSA definition was stated in 82% (9/11) of the studies. The
majority presented 3 severity cutoffs (AHI≥5, AHI≥15, and
AHI≥30), with 1 study using values of AHI>5, AHI>15, and
AHI>20. For the rest, 2 studies used a cutoff of AHI≥5, 1 study
used AHI≥15, and the other used AHI≥20. The largest sample
size recorded was 366 patients, whereas the smallest sample

size consisted of only 10. The prevalence of OSA was reported
in 55% (6/11) of articles, ranging from 54% to 100%. With
respect to studies that only performed internal validation, the
best AUC, sensitivity, and specificity values were 1.00, 100%,
and 96%, respectively, for an AHI≥30 cutoff [50]. This study
used the Sonomat, a foam mattress that, aside from recording
breath sounds, has pressure sensors that generate voltage when
deformed, thus detecting respiratory movements, and using it
to classify OSA events. In this category, only 1 study externally
validated the device; Agatsuma et al [16] reported sensitivity
and specificity values of 92% and 98%, respectively, for an
AHI≥30 cutoff, with no mention of the AUC value.

Table 7 shows, in the patient selection domain, 3 studies with
a high risk of bias [29,47,50], 6 with a low risk
[16,30,45,48,49,51], and 2 with unclear risk [46,52]. In turn, in
the index test domain, 4 studies had a high risk [29,47,51,52],
namely in questions Q5 and Q10, and the other 7 studies
presented a low risk of bias [16,30,45,46,48-50].
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Table 6. Study characteristics of the bed or mattress sensors categorya.

Specificity, %
(95% CI)

Sensitivity, %
(95% CI)

Area under
the curve,
(95% CI)

OSA prevalence,
n (%)

Sample size, n (group type:
D=derivation group,
V=validation group)

OSAb definitionDigital toolStudy, year

41 (—);

90 (—);

98 (—)d

100 (—);

100 (—);

92 (—)d

——e201 (D); 165 (V)AHIc≥5;
AHI≥15;

AHI≥30d

Under-the-
mattress sen-
sor

Agatsuma et al
[16], 2009

81 (—);

92 (—)d;

82 (—)

77 (—);

95 (—)d;

94 (—)

——157 (D)AHI>5;

AHI>15d;
AHI>30

Under-the-
mattress sen-
sor

Tenhunen et al
[52], 2013

———40 (100)40 (D)—Smart pillow
+ oximeter

Zhang et al [29],

2013f

90 (—)90 (—)——101 (D)AHI≥20Under-the-
mattress sen-
sor

Tsukahara et al
[30], 2014

75 (—);

92 (—)d;

92 (—)

100 (—);

100 (—)d;

92 (—)

0.98 (—);

0.99 (—)d;

0.98 (—)

26 (81)32 (D)AHI >5;

AHI>15d;
AHI>20

Under-the-
mattress sen-
sor

Hwang et al [46],
2014

77 (—);

91 (—);

96 (—)d

94 (—);

88 (—);

100 (—)d

0.94 (—);

0.97 (—);

1.00 (—)d

35 (81)43 (D)AHI≥5;
AHI≥15;

AHI≥30d

Under-the-
mattress sen-
sor

Norman et al [50],
2014

———13 (54)24 (D)AHI≥5Under-the-
mattress sen-
sor

Mora et al [48],
2015

100 (—)d;

97 (—);

95 (—)

95 (—)c;

90 (—);

90 (—)

0.98 (—)d;

0.98 (—);

0.98 (—)

—131 (D)AHI≥5d;
AHI≥15;
AHI≥30

Under-the-
mattress sen-
sor

Meng et al [47],
2016

89 (—)88 (—)—64 (67)96 (D)AHI≥15Under-the-
mattress sen-
sor

Davidovich et al
[45], 2016

77 (—)89 (—)—8 (57)14 (D)AHI>5Under-the-
mattress sen-
sor

Mosquera-Lopez et
al [49], 2019

45 (—)57 (—)——10 (D)—Under-the-
mattress sen-
sor

Sadek et al [51],

2020f

aIf the study used different clinical cutoff values for the diagnosis of obstructive sleep apnea, the results are only presented for the best-achieved cutoff
and marked in italics. When external validation was performed, the results are only presented for the validation group. Studies that used event-wise
validation are mentioned in a footnote.
bOSA: obstructive sleep apnea.
cAHI: apnea-hypopnea index.
dBest-achieved cutoff.
eNot available.
fUsed event-wise validation.
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Table 7. Risk of bias for bed or mattress sensors category using the Joanna Briggs Institute critical appraisal checklist for diagnostic test accuracy
studies.

Risk of biasStudy, year

Index testPatient selection

Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

N/AbaAgatsuma et al [16], 2009

dN/AcTenhunen et al [52], 2013

N/AZhang et al [29], 2013

N/ATsukahara et al [30], 2014

N/AHwang et al [46], 2014

N/ANorman et al [50], 2014

N/AMora et al [48], 2015

N/AMeng et al [47], 2016

N/ADavidovich et al [45], 2016

N/AMosquera-Lopez et al [49],
2019

N/ASadek et al [51], 2020

aIndicates low risk of bias.
bN/A: not applicable.
cIndicates unclear risk of bias.
dIndicates high risk of bias.

Nasal Airflow Devices
In Table 8, we list the 5 (12%) nasal airflow devices out of the
41 tools. Of all the studies, 3 tested the accuracy of an
under-the-nose pressure sensor named SleepStrip for detecting
sleep events and diagnosing OSA [20,53,54]. Another study
analyzed an under-the-nose pressure sensor that has not yet been
marketed [27]. Finally, one piece of equipment was used to
measure the nasal airflow using a nasal cannula [55].

OSA definition was only stated in the 3 studies using SleepStrip,
with 1 of the studies using the usual cutoffs of AHI≥5, AHI≥15,
and AHI≥30, and the other 2 studies using different cutoffs
(AHI>10, AHI>20, and AHI>40). The largest sample size
recorded was 288 patients, whereas the smallest sample

comprised only 5. Only 1 (20%) out of the 5 studies reported
values for the prevalence of OSA, registering 81% [53].
Contrary to the previous categories, none of the included studies
performed external validations. The best reported AUC,
sensitivity, and specificity values were 0.94 (95% CI 0.85-0.98),
94%, and 94%, respectively, for a clinical cutoff of AHI>40
[54].

This category showed the highest risk of bias (Table 9). All
studies showed a high [54] or unclear [20,27,53,55] risk of bias
in the patient selection domain. In the index test domain, there
was only 1 study [53] with a low risk, whereas 4 studies
[20,27,54,55] had a high risk of bias spanning questions Q5 and
Q10.
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Table 8. Study characteristics of nasal airflow devices categorya.

Specificity, %
(95% CI)

Sensitivity,
% (95% CI)

Area under the
curve, (95% CI)

OSA preva-
lence, n (%)

Sample size, n (group type:
D=derivation group,
V=validation group)

OSAb definitionDigital toolStudy, year

57 (—);

70 (—);

86 (—)d

86 (—);

80 (—);

80 (—)e

——e288 (D)AHIc>10;
AHI>20;

AHI>40d

Under-the-nose
pressure sensor
SleepStrip

Shochat et al
[20], 2002

————34 (D)—Nasal cannulaWong et al
[55], 2008

77 (—);

87 (—);

94 (—)d

83 (—);

80 (—);

94 (—)d

0.80 (0.68-0.89);

0.84 (0.72-0.92);

0.94 (0.85-0.98)d

64 (D)AHI>10;
AHI>20;

AHI>40d

Under-the-nose
pressure sensor
SleepStrip

Ozmen et al
[54], 2011

100 (—);

100 (—);

100 (—)d

54 (—);

44 (—);

45 (—)d

0.77 (0.61-0.94);

0.82 (0.73-1.00);

0.91 (0.79-1.00)d

33 (81)41 (D)AHI≥5; AHI≥15;

AHI>30d
Under-the-nose
pressure sensor
SleepStrip

Dinç et al
[53], 2014

————5 (D)—Under-the-nose
pressure sensor

Jin and
Sánchez-
Sinencio [27],
2015

aIf the study used different clinical cutoff values for the diagnosis of obstructive sleep apnea, the results are only presented for the best-achieved cutoff
and marked in italics. When external validation was performed, the results are only presented for the validation group.
bOSA: obstructive sleep apnea.
cAHI: apnea-hypopnea index.
dBest-achieved cutoff.
eNot available.

Table 9. Risk of bias for nasal airflow devices category using the Joanna Briggs Institute critical appraisal checklist for diagnostic test accuracy studies.

Risk of biasStudy, year

Index testPatient selection

Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

dN/AcbaShochat et al [20], 2002

N/AWong et al [55], 2008

N/AOzmen et al [54], 2011

N/ADinç et al [53], 2014

N/AJin and Sánchez-Sinencio [27],
2015

aIndicates low risk of bias.
bIndicates unclear risk of bias.
cN/A: not applicable.
dIndicates high risk of bias.

Other Digital Tools
A total of 8 (20%) out of the 41 studies included tools that did
not fit the previous categories, which are shown in Table 10.
Among these studies, there are 5 that used radar technology to
screen for OSA, which are novel devices in the shape of
noncontact bedside sensors that use radio waves to detect and
measure thoracic movement and respiration [23,24,56-58].
Audio recording using noncontact microphones was also

featured in 2 studies, with posterior sleep sound analysis using
algorithms and deep learning methods [25,59]. In addition, 1
study detected snoring using an unconventional method by
capturing its vibration using a bone-conducted transducer [31].

OSA definition was stated in 88% (7/8) of the studies. Some of
them used severity cutoffs to define OSA, with 4 studies using
the usual 3 cutoff points (AHI≥5, AHI≥15, and AHI≥30), and
1 study using only 2 cutoffs (AHI≥10 and AHI≥15). A total of
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1 study used AHI≥5 as the OSA definition and another study
used AHI≥15. The largest sample size recorded was 359
patients, whereas the smallest had only 12 patients. The
prevalence of OSA was reported in 50% (4/8) of the articles
and varied between 79% and 85%. With regard to the studies
that only performed internal validation, the best AUC,
sensitivity, and specificity values were 0.97, 89% (95% CI
81%-93%), and 94% (95% CI 90%-97%), respectively, for a
cutoff of AHI≥30 [58]. External validation was performed in 3
studies within this category. One of them applied the tool to a
cohort of male participants aged between 18 and 70 years, with
a clinical diagnosis of hypertension and receiving
antihypertensive medication [56]. The other 2 studies [24,25]

validated the tools in a different group of 59 and 2 patients with
similar characteristics as the derivation group. Crinion et al [56]
reported AUC, sensitivity, and specificity values of 0.85, 88%,
and 67%, respectively, for an AHI≥15 cutoff, whereas the study
by Wang et al [25] presented values of 0.99, 96%, and 92%,
respectively, for an AHI≥30. By contrast, the study by Zhuang
et al [24] did not report any discrimination measures.

The studies included in this category had a lower risk of bias
in the entire assembly, as shown in Table 11. In the patient
selection domain, the risk of bias was negligible, whereas in
the index test domain, only 2 studies faltered in questions Q5
[24] and Q10 [59].

Table 10. Study characteristics of other digital tools categorya.

Specificity, %
(95% CI)

Sensitivity, %
(95% CI)

Area under
the curve,
(95% CI)

OSA preva-
lence, n (%)

Sample size, n (group type:
D=derivation group, V=valida-
tion group, T=test group, V=val-
idation group)

OSAb definitionDigital toolStudy, year

85 (—);

96 (—)d

100 (—);

89 (—)d

——e32 (D)AHIc≥10;

AHI≥15d

Face frame with
a microphone
attached

Alshaer et al
[59], 2013

47 (—);

92 (—)d;

89 (—)

98 (—);

90 (—)d;

84 (—)

0.90 (—);

0.97 (—)d;

0.96 (—)

60 (81)74 (D)AHI≥5;

AHI≥15d;
AHI≥30

RadarZaffaroni et al
[57], 2013

67 (—)88 (—)0.85 (—)53 (79)67 (D); 55 (V)AHI≥15RadarCrinion et al
[56], 2020

100 (—);

100 (—)d;

100 (—)

91 (—);

100 (—)d;

92 (—)

0.91 (—);

1.00 (—)d;

1.00 (—)

23 (82)28 (D)AHI=5;

AHI=15d;
AHI=30

Bone-conducted
transducer

Xin et al [31],
2021

56 (44-68);

81 (74-87);

94 (90-97)d

96 (93-98);

90 (84-93);

89 (81-93)d

0.90 (—);

0.94 (—);

0.97 (—)d

—359 (D)AHI≥5;
AHI≥15;

AHI≥30d

Radar—Orb-
Sense

Zhao et al
[58], 2021

70 (—)100 (—)0.85 (—)57 (85)67 (D)AHI≥5Radar; ringWei et al [23],
2022

————10 (D); 2 (V)—RadarZhuang et al

[24], 2022f

83 (—);

96 (—);

92 (—)d

94 (—);

89 (—);

96 (—)d

0.94 (—);

0.98 (—);

0.99 (—)d

—116 (D); 19 (T); 59 (V)AHI≥5;
AHI≥15;

AHI≥30d

Audio recorderWang et al
[25], 2022

aIf the study used different clinical cutoff values for the diagnosis of obstructive sleep apnea, the results are only presented for the best-achieved cutoff
and marked in italics. When external validation was performed, the results are only presented for the validation group. Studies that used event-wise
validation are mentioned in a footnote.
bOSA: obstructive sleep apnea.
cAHI: apnea-hypopnea index.
dBest-achieved cutoff.
eNot available.
fUsed event-wise validation.
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Table 11. Risk of bias for other digital tools category using the Joanna Briggs Institute critical appraisal checklist for diagnostic test accuracy studies.

Risk of biasStudy, year

Index testPatient selection

Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

cN/AbaAlshaer et al [59], 2013

N/AZaffaroni et al [57], 2013

N/ACrinion et al [56], 2020

N/AXin et al [31], 2021

N/AZhao et al [58], 2021

N/AWei et al [23], 2022

N/AZhuang et al [24], 2022

N/AWang et al [25], 2022

aIndicates low risk of bias.
bN/A: not applicable.
cIndicates high risk of bias.

Discussion

Principal Findings
As previously stated, this review aimed to gather the available
evidence on upcoming digital tools in the screening or diagnosis
of OSA, with a total of 41 tools that presented promising results,
showing high discrimination measures (best results reaching
AUC values higher than 0.99). This was done by grouping
digital tools based on the technologies used, making
discrimination measures comparable. Furthermore, we did not
intend to replace the current gold standard, polysomnography,
as the American Academy of Sleep Medicine guideline
recommendations explicitly state that “clinical tools...should
not be used to diagnose OSA in adults in the absence of
polysomnography or home sleep apnea testing” [3]. However,
digital devices and other mobile health tools can play an
important adjuvant role in this process, which is also recognized
by the American Academy of Sleep Medicine guidelines. It
states that in “non-sleep clinic settings, these tools may be more
helpful to identify patients who are at increased risk for OSA”
[3] proving our rule-in approach. Recent reviews have assessed
the potential use of digital tools in sleep-breathing disorders.
The study by Behar et al [60] reviewed existing smartphone
apps being used, particularly in OSA screening. They focused
essentially on studies that applied questionnaires via an app or
that used built-in smartphone sensors and characteristics, such
as the accelerometer and the ability to record sleep sounds.
However, it lacks a comparison of these proposed
smartphone-based tools with the gold standard and the respective
discrimination measures. The study by Kim et al [61]
concentrated on the reliability of smartphones in the screening
of moderate to severe OSA. In addition to the fact that our
review covers a more versatile set of digital clinical tools, we
also considered all diagnostic cutoffs, thus evaluating the use

of these tools in the screening or diagnosis of all levels of OSA.
We also found 2 other systematic reviews with similar aims to
ours, but they only featured articles published until 2017. The
studies by Mendonça et al [9] and Rosa et al [11] included an
extensive array of new digital tools, some still in the research
project phase, and others already commercially available.
Nevertheless, both reviews included studies without
polysomnography as the gold standard, allowing the use of
HSAT as a comparison and reference test.

Of the 41 included studies, 7 were smartphone-based tools; 10
were wearables; 11 used bed or mattress sensors; 5 measured
nasal airflow; and 8 used other technologies such as radar
devices, adhesive patches, or microphones. Out of all of them,
only 8 performed external validation of the developed digital
tool, whereas 27, the majority, merely performed internal
validation. In addition, it is worth mentioning that 8 studies did
not present discrimination measures. Regarding internal
validation studies, most included bootstrapping or
cross-validation techniques.

For the group of studies that only performed internal validation,
the one with the highest reported accuracy was that of Norman
et al [50]. They used a foam mattress (Sonomat) that, aside from
recording breath sounds, has pressure sensors that generate
voltage when deformed, thus detecting respiratory movements
and classifying OSA events. The highest AUC, sensitivity, and
specificity values were 1.00, 100%, and 96%, respectively, for
a clinical cutoff AHI≥30. When looking at the studies that
externally validated the proposed tools, the study that arose as
the best, by Wang et al [25], showcased AUC, sensitivity, and
specificity values of 0.99, 96%, and 92%, respectively, for an
AHI≥30. The proposed tool consists of a noncontact audio
recorder that records sleep sounds, which are then analyzed
using a deep learning technique that automatically detects sleep
apnea events, calculates AHI, and identifies OSA. An overall
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note should be made for the studies that used mattress sensors,
as they revealed some of the best sensitivity, specificity, and
AUC values among those that only performed internal
validation. In turn, nasal airflow devices showed high specificity,
but lacked sensitivity.

On the basis of the currently available published data,
contactless devices, such as audio recorders jointly with machine
learning techniques, were also shown to have the most
significant potential for screening, diagnosis, and possibly
monitoring OSA, being a promising path forward. Future work
can follow this strategy to further validate these tools because
they are still in the development and testing phases.

Clinical questionnaires, such as the STOP-Bang, Berlin, and
NoSAS (Neck, Obesity, Snoring, Age, Sex) scores, can help
identify patients at increased risk of OSA [3]. Although they
are easy to perform and validate in different populations, they
do not offer any advantages over digital clinical tools. Given
the possibility of day-to-day use and signal recording, the latter
can improve the long-term characterization and follow-up of
individuals with sleep-breathing disorders. On the basis of the
sensitivity and specificity values, STOP-Bang reached 84% and
54%, respectively [62]. For primary care patients, the Berlin
questionnaire achieved values of 86% and 77%, respectively
[63]. Finally, in the general population, the NoSAS score had
sensitivity and specificity values ranging from 79% to 85% and
69% to 77%, respectively [64]. When comparing this with our
best results (internally or externally validated), we can see that
most digital clinical tools achieved higher sensitivity and
specificity values (eg, the best externally validated tool had
96% sensitivity and 92% specificity).

It is important to consider the limitations and strengths of our
methodology as well as those of the included studies. Although
we cannot be certain that we retrieved all the published literature
on the topic, we are confident that our methodology is adequate.
The fact that the search was performed in 3 different search
engines (one related to health sciences and 2 with a broader
spectrum) minimized this risk. Furthermore, it is worth noting
that a great part of the available work has substantial gaps in
terms of the study design. Although all studies performed an
appropriate statistical analysis, many lacked a satisfactory
number of participants in both the test and validation groups.
At the time of patient enrollment, the reasons for performing
polysomnography were also not clear in all manuscripts. The
prevalence of OSA varies from 51% to 100%, with some studies
not describing this proportion. In addition, most studies
evaluated symptomatic patients referred to a sleep clinic and
did not reflect the prevalence of OSA in the overall population.
Crucial measures to assess diagnostic capabilities, such as

sensitivity, specificity, and AUC, have often not been reported.
Nearly all digital tools were tested in a controlled laboratory
setting, and given the potential use of these devices as an
accessible and less expensive method to screen for OSA, it is
paramount to invest in further research to test their performance
at the home level, where multiple factors might reduce the
accuracy of such technologies. Moreover, most studies have
developed and tested these devices, but external validation is
still lacking. Given the paucity of studies with a comparison
with formal in-laboratory polysomnography, additional studies
should also be performed in an attempt to validate such digital
clinical tools.

Nevertheless, after analyzing the Joanna Briggs Institute
checklist results, we believe that we face an overall considerably
low risk of bias in both domains. The most common reason for
a high risk of bias was the lack of an OSA definition or cutoff
for which the discrimination measures were calculated (Q5).
However, most studies that did not present the definition did
not report the discrimination measures of interest. In addition,
a considerable number of studies selected different cutoff values
from those described in the guidelines, which makes it difficult
to compare the results with similar studies. Another reason was
that several designs were faltered in Q3: “Did the study avoid
inappropriate exclusions?” This is mostly because of an
imprecise description of the reasons that led to those exclusions,
as in one study where patients with back pain were excluded
because this would make the use of the mattress sensor more
difficult, which can overestimate the applicability of this type
of tool [47]. Moreover, several studies did not include the results
for all selected patients (P10), stating that it was attributable to
a lack of space [29] or unreturned devices [54]. Even so, it is
important to mention that we used a low threshold to consider
the answer to the questions as “no” or “unclear.”

Conclusions
Sleep medicine is a prime field for the use of digital tools and
novel unobtrusive technologies. Although they hold great
promise, they are still in an early stage of development. This
systematic review sheds light on the potential of such devices
for the screening or diagnosis of OSA, as they are probably the
future of research and development in this field. Although they
cannot replace the gold standard of polysomnography, they can
greatly assist in large-scale screening and increase the
accessibility of the general population to sleep studies. Despite
the promising results, this study also highlights the need for
future high-quality studies, more robust clinical data, and
strategies for care implementation, with the validation of the
developed tools in external populations and home environments
before they can be used and recommended in a clinical setting.
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