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Abstract

Background: Life-threatening ventricular arrhythmias (LTVAs) are main causes of sudden cardiac arrest and are highly
associated with an increased risk of mortality. A prediction model that enables early identification of the high-risk individuals is
still lacking.

Objective: We aimed to build machine learning (ML)–based models to predict in-hospital mortality in patients with LTVA.

Methods: A total of 3140 patients with LTVA were randomly divided into training (n=2512, 80%) and internal validation
(n=628, 20%) sets. Moreover, data of 2851 patients from another database were collected as the external validation set. The
primary output was the probability of in-hospital mortality. The discriminatory ability was evaluated by the area under the receiver
operating characteristic curve (AUC). The prediction performances of 5 ML algorithms were compared with 2 conventional
scoring systems, namely, the simplified acute physiology score (SAPS-II) and the logistic organ dysfunction system (LODS).

Results: The prediction performance of the 5 ML algorithms significantly outperformed the traditional models in predicting
in-hospital mortality. CatBoost showed the highest AUC of 90.5% (95% CI 87.5%-93.5%), followed by LightGBM with an AUC
of 90.1% (95% CI 86.8%-93.4%). Conversely, the predictive values of SAPS-II and LODS were unsatisfactory, with AUCs of
78.0% (95% CI 71.7%-84.3%) and 74.9% (95% CI 67.2%-82.6%), respectively. The superiority of ML-based models was also
shown in the external validation set.

Conclusions: ML-based models could improve the predictive values of in-hospital mortality prediction for patients with LTVA
compared with traditional scoring systems.

(J Med Internet Res 2023;25:e47664) doi: 10.2196/47664
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Introduction

Sudden cardiac arrest (SCA) is associated with unacceptable
high mortality rates worldwide [1-3]. It is estimated that 275,000
people in Europe present with SCA treated by emergency
medical services (EMSs) each year, only 29,000 of whom

survive to hospital discharge [4]. Moreover, the EMS-treated
SCA incidences in the United States, Canada, and China were
about 64.4, 54.7, and 71.2 per 100,000 person years, respectively
[5,6]. Life-threatening ventricular arrhythmias (LTVAs), which
occur with severely depressed ventricular function and an
unstable hemodynamics state, are the main causes of SCA [7].
The high morbidity and mortality of LTVA cause a substantial
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economic burden and a serious health burden for EMSs [8,9].
Risk stratification and mortality assessment for patients with
LTVA provide not only essential strategies for clinical
decision-making but also practical information for health policy
and insurance services [10,11].

Because patients with LTVA have a poor prognosis, early
recognition of high-risk individuals is critical for timely
interventions as well as intensive care and monitoring. The
simplified acute physiology score (SAPS-II) [12] and the logistic
organ dysfunction system (LODS) [13] are traditional severity
assessment systems that can predict the risk of death in general
patients who received EMS. The LODS and SAPS-II models
are comprehensive scoring systems used to evaluate the general
conditions of patients and are limited by weak specificity.
Moreover, several specific risk scores have been developed to
perform SCA prediction in patients with hypertrophic
cardiomyopathy [14] and arrhythmogenic cardiomyopathy [15].
However, a prediction model assessing the prognosis in patients
with LTVA is still lacking.

Recently, machine learning (ML) algorithms have been used
to build prediction models in clinical medicine and have been
demonstrated to have more favorable predictive performance
than traditional models [16-18]. In this study, we aimed to
develop and validate ML-based models to predict in-hospital
mortality in critically ill patients with LTVA. Additionally, the
comparisons of the ML models and the traditional severity
assessment systems SAPS-II and LODS were performed to
further demonstrate the predictive value of ML algorithms.

Methods

Source of Data
Patients’ data collected from the Medical Information Mart for
Intensive Care IV (MIMIC-IV, version 2.0) database were used
to perform model training. The MIMIC-IV is a large critical
care database that contains data from more than 200,000
individuals who were admitted to various intensive care units
(ICUs) at the Beth Israel Deaconess Medical Center between
2008 and 2019 [19]. In addition, data from the eICU
Collaborative Research Database (eICU, version 2.0), which is
a multicenter critical care database with high granularity data
for over 200,000 admissions to ICUs [20], were used to conduct
the external validation.

Patient and Data Collection
Patients with LTVA in the hospital were included in this study.
LTVAs were defined as documented sustained ventricular
tachycardia (duration >30 seconds) or ventricular fibrillation.
Patients aged <18 years or without adequate data, including
demographic variables (eg, age, sex) and hospitalization details
(eg, time of stay in the ICU, in-hospital mortality), were
excluded. The data were collected from the database using
Structure Query Language (PostgreSQL version 13.0). The
variables included in this study could be divided into several
categories: (1) demographics, including age, sex, race, height,
and weight; (2) vital signs, including temperature, heart rate,
blood pressure, respiratory rate, Glasgow coma scale (GCS),
and urine output; (3) blood gas test, including pH, partial

pressure of oxygen, partial pressure of carbon dioxide, and other
parameters; (4) laboratory results, including white blood cell
count, red blood cell count (RBC), creatinine, blood urea
nitrogen, and other parameters; (5) comorbidities, including
hypertension, diabetes, acute heart failure, myocardial infarction,
and others; and (6) important interventions, including
mechanical ventilation, renal replacement therapy, inotropic
agents, and antibiotics. For variables with several records (eg,
vital signs and laboratory tests), the minimum and maximum
values within the first 24 hours after ICU admission were
calculated, which may reflect the truly general conditions of
the patients admitted to the ICU.

Several methods were introduced to handle the issues of extreme
and missing data. Variables with >40% missing values were
excluded from this study. Mean imputation was performed to
fill in missing information for variables with <5% missing data.
The multiple imputation was performed using the R multivariate
imputation by chained equation (MICE) package for the
variables with 5%-40% missing data [21].

Outcome Variables and Predictors
The primary outcome of interest was all-cause in-hospital
mortality. The predictor variables considered in this study were
selected based on a feature selection process (Multimedia
Appendix 1).

Model Development and Validation
In this study, the ML-based prediction models were established
using the following steps:

1. Feature selection: we applied CatBoost and LightGBM to
initially evaluate the importance of individual features.
Moreover, least absolute shrinkage and selection operator
(LASSO) analysis was used to select the key predictors.
LASSO is a form of L1 regularization that adds the absolute
magnitude of feature coefficients as the penalty term rather
than the squared magnitude that is typically used [22]. After
LASSO analysis, features with a zero coefficient were
considered redundant and eliminated from the model fitting.
As a result, automatic variable selection while
simultaneously fitting the model could be realized.

2. Algorithm selection and optimization: a total of 5 commonly
used ML algorithms, including CatBoost, LightGBM, back
propagation–neural network, random forest, and logistic
regression, were applied to build the prediction models. We
used the grid search strategy to identify the optimal
combination of hyperparameters of these models to improve
the prediction performance. Ten-fold stratified
cross-validation was performed inside each grid option,
and the optimal hyperparameter set was chosen based on
the model in the grid search with the highest F1 score.

3. Model fitting: before model fitting, a combination of the
synthetic minority oversampling technique and
undersampling was used to overcome the class-imbalance
issue in this study. Qualified data from the MIMIC-IV
database were randomly split into a training set (80% of
the sample) and an internal validation set (20% of the
sample) using the “train_test_split” function provided by
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Scikit-learn. As a result, the ML-based prediction models
were developed.

In this study, the prediction models were validated both
internally and externally. The discriminatory ability of the
prediction model was evaluated by using the area under the
receiver operating characteristic curve (AUC). The calibrated
ability was qualitatively and quantitively assessed by the
calibration curve and the Brier score, respectively. Calibration
reflects the extent to which the predicted probabilities and actual
probabilities agree and is qualitatively and quantitatively
evaluated through the calibration curve and Brier score,
respectively. The Brier score is calculated based on the
Euclidean distance between the actual outcome and the predicted
probability assigned to the outcome for each observation, with
low values being desirable. In addition, decision curve analysis
was used to demonstrate the decision benefit based on the
models.

Several commonly used indices, including the AUC, sensitivity,
specificity, and F1 score, were introduced to quantitively
evaluate the predictive values of the models. To further
demonstrate the favorable prediction performances of the
ML-based models, the ML models and traditional severity
assessment systems SAPS-II and LODS were compared in this
study.

Model Interpretation
The black box characteristic of ML models makes it difficult
to interpret how an ML algorithm could perform accurate
prediction in clinical medicine settings. Accordingly, the
Shapley additive explanations (SHAP) value was introduced in
this study. SHAP was used to interpret the results from a
predictive model. The interpretation was based on the SHAP
value for each feature, representing the contribution of a feature
to the predicted risk of the event. A positive SHAP value
indicated that the corresponding feature contributed to a higher
risk of the event, whereas a negative SHAP value indicated that
the corresponding feature led to a lower risk of the event. The
magnitude of SHAP values represented the contribution of that
feature toward prediction performance [23]. The SHAP
summary plot was constructed to interpret and rank the
significance of input features based on the mean absolute SHAP
values of each feature. The SHAP dependency plot was used

to understand how a single feature could affect the output of
the prediction models.

Statistical Analysis
The Kolmogorov-Smirnov test was used to evaluate the normal
distribution of the data. Continuous variables were expressed
as the mean (SD) or median (IQR) depending on the distribution
of the data. Categorical data were summarized as frequencies
and percentages. Baseline clinical characteristics were compared
between the survival and nonsurvival groups using a t test or
Welch t test for continuous variables and the chi-square test for
dichotomous variables. The prediction performances of the
different models were compared using a Delong test. All
statistical tests were 2-sided, and P<.05 was considered
statistically significant. Statistical analyses were performed in
R (version 4.0.4, R Foundation for Statistical Computing).
Python (version 3.9.0, Python Software Foundation) was used
to conduct the ML-relevant processes.

Ethics Approval
This study was an analysis of a third-party, anonymized, publicly
available database with pre-existing institutional review board
approval, and informed consent from our institution was
exempted. Data usage was approved by the review board of
PhysioNet (authorization code: 35965741). The study was
reported according to the recommendations of the TRIPOD
(Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis) statement [24].

Results

Baseline Characteristics
We included 3140 critically ill patients with LTVA from the
MIMIC-IV database, of whom 632 (20.1%) individuals died
during hospitalization (Figure 1). Compared with the survival
group, nonsurvival patients were older (nonsurvival: mean 71.0,
SD 14.2 years; survival: mean 67.9, SD 14.9 years; P<.001)
and had lower GCS scores (nonsurvival: mean 10.4, SD 4.8;
survival: mean 13.0, SD 3.2: P<.001). Moreover, nonsurvival
patients were prone to having unstable vital signs. Furthermore,
the data of 2851 patients from another database were used to
perform the external validation. The baseline characteristics of
the 2 cohorts are shown in Multimedia Appendix 1.
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Figure 1. Flowchart. LTVA: life-threatening ventricular arrhythmias; MIMIC-IV: Medical Information Mart for Intensive Care IV.

Model Development and Validation
A total of 94 features were initially selected as the potential
predictors (Multimedia Appendix 2). Feature importance,
evaluated using the CatBoost and LightGBM models, is shown
in Figure 2. We found that the GCS score, maximum RBC
(RBC_max), and length of stay (LOS) in hospital prior to LTVA

were the most predictive features in both the CatBoost and
LightGBM models, indicating the certain stability. In the
LASSO analysis, the coefficients of 54 variables were shrunk
to zero (Multimedia Appendix 3). Consequently, we retained
40 key features for the remaining analyses (Multimedia
Appendix 4).

Figure 2. Feature importance evaluated using the (A) CatBoost model or (B) LightGBM model.
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As we mentioned above, 5 widely used ML algorithms were
used to build the prediction models with the grid search strategy
to optimize the ML-based models. Multimedia Appendix 5
summarizes the characteristics of the 5 ML algorithms. The
ML-based models showed favorable discriminatory ability, with
AUCs of 90.5% (95% CI 87.5%-93.5%), 89.7% (95% CI
86.0%-93.4%), 90.1 (95% CI 86.8%-93.4%), 89.1% (95% CI
85.7%-92.5%), and 89.5% (95% CI 86.2%-92.8%) for the
CatBoost, back propagation–neural network, LightGBM,

random forest, and logistic regression models, respectively.
Conversely, the traditional models presented with ordinary
prediction performance, with AUCs of 74.9% (95% CI
67.2%-82.6%) and 78.0% (95% CI 71.7%-84.3%) for LODS
and SAPS-II, respectively (Figure 3A). The detailed prediction
results for each model are shown in Table 1. We found that the
AUCs of the 5 ML algorithms were all significantly higher than
those of the SAPS-II and LODS models (all P<.001; Multimedia
Appendix 6).

Figure 3. Model evaluation. (A) The receiver operating characteristic curves of the different models. (B) Calibration curves and Brier scores of the
different models. The x-axis is the predicted probability of outcomes, and the y-axis is the true probability of outcomes. In the case of perfect calibration,
all groups of predicted probabilities fit close to the dotted diagonal line corresponding to an intercept of 0 and a slope of 1 for the calibration plot. (C)
Decision curve analysis of the different models. The x-axis is the threshold probability, which refers to the point at which a patient considers the benefit
of treatment for an intermediate- to high-risk event equivalent to the harm of overtreatment for a low-risk event and thus reflects how the patient weighs
the benefits and harms associated with this decision. The y-axis is the net benefit, which is defined as the minimum probability of event at which further
intervention would be warranted (net benefit = true positive rate – [false positive rate × weighting factor]). AUC: area under the receiver operating
characteristic curve; BP-NN: back propagated-neural network; LODS: logistic organ dysfunction system; LR: logistic regression; RF: random forest;
SAPS-II: simplified acute physiology score.

J Med Internet Res 2023 | vol. 25 | e47664 | p. 5https://www.jmir.org/2023/1/e47664
(page number not for citation purposes)

Li et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Prediction performances of the different models.

F1 score, % (95% CI)SPECc, % (95% CI)SENSb, % (95% CI)AUCa, % (95% CI)Model

Internal validation

77.5 (70.5-84.5)93.8 (92.2-95.4)73.3 (65.4-81.3)90.5 (87.5-93.5)CatBoost

76.4 (69.2-83.6)94.3 (92.4-96.2)72.4 (68.1-76.7)90.1 (86.8-93.4)LightGBM

75.7 (68.5-82.9)97.6 (96.0-99.2)64.8 (56.7-73.0)89.1 (85.7-92.5)RFd

75.1 (66.5-82.0)95.1 (93.5-96.8)67.6 (60.0-75.3)89.5 (86.2-92.8)LRe

77.7 (71.2-84.1)96.5 (94.5-98.5)69.3 (61.9-76.7)89.7 (86.0-93.4)BP-NNf

68.3 (58.9-77.7)96.3 (93.6-99.0)55.5 (45.5-65.5)74.9 (72.3-80.5)LODSg

69.0 (60.0-78.1)93.9 (91.7-96.2)58.8 (50.3-67.1)78.0 (71.4-79.0)SAPS-IIh

External validation

71.8 (67.7-75.9)96.6 (95.0-98.2)60.7 (54.9-66.5)87.2 (83.6-90.8)CatBoost

73.9 (70.1-77.7)94.2 (92.4-96.0)67.1 (60.6-73.6)84.9 (81.9-87.9)LightGBM

70.1 (65.8-74.4)96.8 (95.6-98.0)58.2 (52.5-63.9)86.0 (83.4-88.6)RF

76.4 (69.2-83.6)94.3 (93.1-95.5)57.2 (51.5-62.9)81.1 (77.5-84.7)LR

65.8 (61.4-70.1)94.8 (93.0-96.6)64.3 (57.8-70.8)85.6 (82.8-88.4)BP-NN

64.8 (57.4-72.2)96.6 (94.4-98.8)51.0 (36.1-65.9)73.7 (68.8-77.6)LODS

55.8 (46.2-65.4)92.3 (88.9-95.7)46.3 (37.2-55.4)71.9 (63.8-80.0)SAPS-II

aAUC: area under the receiver operating characteristic curve.
bSENS: sensitivity.
cSPEC: specificity.
dRF: random forest.
eLR: logistic regression.
fBP-NN: back propagated–neural network.
gLODS: logistic organ dysfunction system.
hSAPS-II: simplified acute physiology score.

The 5 ML-based models showed excellent fit, with all Brier
scores <0.1. However, the SAPS-II and LODS models largely
deviated from the true events (Figure 3B). In the decision curve
analysis, the net benefits of all ML-based models outperformed
the traditional models when the threshold probability was
between 0.2 and 0.7, and the CatBoost model showed the best
decision benefit compared with the others (Figure 3C).

In the external validation set, prediction performances of the 5
ML-based models were also significantly superior to the
SAPS-II and LODS models. The AUCs of the SAPS-II and
LODS models were only 73.7% (95% CI 68.8%-77.6%) and
71.9% (95% CI 63.8%-80.0%), respectively (Multimedia
Appendix 7 and Table 1). Accordingly, we suggest that the
performance of the ML models is significantly superior to that
of the traditional prognosis assessment systems for critically ill
patients with LTVA.

Model Interpretation
To interpret the ML-based models, the SHAP method was used
in this study. Specifically, we calculated the absolute mean
SHAP values for each variable based on the CatBoost model
applied to the internal validation set. For instance, with
decreasing GCS scores and RBC_max values, the risk of
in-hospital mortality of patients with LTVA increased.
Moreover, the probability of in-hospital mortality increased
with age and maximum central venous pressure values (Figure
4A). Additionally, the SHAP dependency plot showed how
different values of each feature affect the SHAP value and
influence the output of the prediction models (Figure 4B and
C). SHAP values for specific features exceeding zero represent
an increased risk of in-hospital mortality.
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Figure 4. Model interpretation based on the SHAP value. (A) SHAP summary plot. A dot is created for each feature attribution value for the model of
each patient, and thus one patient is allocated one dot on the line for each feature. Dots are colored according to the values of features for the respective
patient and accumulate vertically to depict density. The blue to red color of the y-axis represents the feature value (red: high; blue: low). The x-axis
measures the impacts on the model output (right: positive; left: negative); the higher the SHAP value of a feature, the higher the probability of in-hospital
mortality development. (B, C) SHAP dependency plots. SHAP values for specific features exceed zero, representing an increased risk of in-hospital
mortality. RBC_max: the maximum red blood cell count; SHAP: Shapley additive explanation.

Discussion

The primary finding of this study demonstrates that ML
algorithms significantly enhance the prognosis prediction
performance for patients with LTVA. Compared with traditional
scoring systems, including SAPS-II and LODS, the ML-based
models enabled better prediction of in-hospital mortality in
critically ill patients with LTVA.

LTVAs are the main cause of SCA and are highly related to an
increased risk of in-hospital mortality. Several prediction models
have been developed to predict SCA. O’Mahony et al [25]
established a model that provided accurate individualized
estimates for the probability of SCA in patients with
hypertrophic myocardiopathy using 8 commonly used clinical
parameters, with a C-statistic of 0.70. Adabag and Langsetmo
[26] built a SCA risk prediction model that could accurately
predict SCA events in heart failure with preserved ejection
fraction, with a C-statistic of 0.74. However, a model to predict
outcomes in patients with LTVA is still lacking. The application
value of ML algorithms in improving the mortality prediction
performance for patients with LTVA remains unclear. Thus,

we developed and validated ML-based models to precisely
predict in-hospital mortality in patients with LTVA.

There are several severity assessment systems that could be
used to predict outcomes of patients who are critically ill. The
application values of SAPS-II and LODS in predicting the
prognosis in patients who received EMS have been demonstrated
in previous studies [27-29]. ML-based models could further
improve the prediction performance to predict the mortality in
certain subsets [30,31]. The ML algorithms also exhibited
superiority over the SAPS-II and LODS models in this study.
SAPS-II incorporates 12 physiological variables, age, type of
admission, and 3 underlying disease variables, while LODS
identifies levels of organ dysfunction for 6 organ systems (ie,
neurologic, cardiovascular, renal, pulmonary, hematologic, and
hepatic). In contrast, our developed models included additional
important features, such as GCS score, RBC, and central venous
pressure, which may have contributed to our improved
prediction performance. Therefore, the enhanced performance
of the ML models in our study may be attributed to their ability
to effectively capture intricate relationships and patterns within
a more extensive set of variables.
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Of the 40 selected variables, we found that GCS score,
RBC_max, and LOS in hospital were the most important
predictors. The GCS score includes assessments of motor,
verbal, and eye responses, which could reflect the level of
consciousness. A previous study reported that the GCS score
could be used to predict mortality in patients who are critically
ill [32], which is consistent with our findings. Anemia on
admission is also associated with an increased mortality in
critical care patients [33]. We also found there was an inverse
relationship between RBC and in-hospital mortality. Moreover,
LOS was a key variable for predicting mortality, as expected.
Other predictors included vital signs, hepatic and renal function
tests, and relevant comorbidities. Although abnormal potassium
levels and the use of macrolide antibiotics are known risk factors
for LTVA and may increase the risk of mortality [34,35], we
observed weak contributions of these features to our predictive
models. This could be attributed to the complex interplay
between multiple factors in the development of arrhythmias and
the limitations imposed by the sample size of our study.

In addition, the ML-based models in this study had certain
interpretability. Many of the features used to perform mortality
risk prediction in this study were tangible, and some of them
had been proven intimately correlated with mortality in patients
who are critically ill. The SHAP method, which could provide
a visual interpretation of the ML-based models at the global
and local levels, was introduced in this study. Specifically, the
SHAP summary plot, which interpreted and ranked the
significance of input features, and the SHAP dependency plot,
which explained how a single feature affected the output of the
ML-based models, were presented in this study.

The prediction models in this study enable early and accurate
selection of patients at high risk of in-hospital death, which may
be conducive to risk stratification, clinical decision-making,
and the improvement of prognosis in patients with LTVA. On
the other hand, our prediction models were developed based on
critical care cohorts. Essentially, sicker patients with more
multisystem derangements are anticipated to have poorer
prognosis. Considering their satisfactory specificities, our
prediction models may help to identify subgroups of patients
with LTVA treated with EMSs who are not anticipated to have
an adverse prognosis. It is useful to avoid wasting medical
services, such as through unnecessary intensive monitoring and
aggressive therapies in the ICU.

Although we demonstrated the predictive value of ML
algorithms in predicting mortality in critical patients with LTVA,
some limitations should be acknowledged. First, all data
involved in this study were retrospectively collected from public
databases, and further prospective studies are needed to confirm
the findings. Second, some important variables, such as cardiac
troponin and ejection fraction, were excluded from this study
due to unacceptably high rates of missing values, which may
be a potential source of bias. Third, the prediction models were
developed based on critical care cohorts, which may affect
application to the general population.

In summary, the presented ML-based models exhibited better
predictive values than did traditional severity assessment
systems, such as SAPS-II and LODS, in predicting the mortality
of critical patients with LTVA. Our findings indicate that ML
algorithms could be used to improve model performance for
predicting outcomes of patients with LTVA. Future prospective
studies are needed to confirm the findings.
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