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Abstract

Background: Respiratory distress syndrome (RDS) is a disease that commonly affects premature infants whose lungs are not
fully developed. RDS results from alack of surfactant in the lungs. The more premature the infant is, the greater isthe likelihood
of having RDS. However, even though not all premature infants have RDS, preemptive treatment with artificial pulmonary
surfactant is administered in most cases.

Objective:  We aimed to develop an artificial intelligence model to predict RDS in premature infants to avoid unnecessary
treatment.

Methods: In thisstudy, 13,087 very low birth weight infants who were newborns weighing less than 1500 grams were assessed
in 76 hospitals of the Korean Neonatal Network. To predict RDSin very low birth weight infants, we used basic infant information,
maternity history, pregnancy/birth process, family history, resuscitation procedure, and test results at birth such as blood gas
analysis and Apgar score. The prediction performances of 7 different machine learning models were compared, and a 5-layer
deep neural network was proposed in order to enhance the prediction performance from the selected features. An ensemble
approach combining multiple models from the 5-fold cross-validation was subsequently devel oped.

Results: Our proposed ensemble 5-layer deep neural network consisting of the top 20 features provided high sensitivity (83.03%),
specificity (87.50%), accuracy (84.07%), balanced accuracy (85.26%), and area under the curve (0.9187). Based on the model
that we devel oped, a public web application that enables easy accessfor the prediction of RDSin premature infants was deployed.
Conclusions: Our artificial intelligence model may be useful for preparations for neonatal resuscitation, particularly in cases
involving the delivery of very low birth weight infants, as it can aid in predicting the likelihood of RDS and inform decisions
regarding the administration of surfactant.
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Introduction

Respiratory distress syndrome (RDS), adisease that commonly
affects premature infants, results from insufficient synthesis of
the pulmonary surfactant in the alveoli [1]. The more premature
the infants are, the greater is the likelihood that they will be
affected with RDS; thus, this disease is fundamental in the
setting of premature infants [2]. Patients with RDS can be
effectively treated with artificial pulmonary surfactant, which
prevents collapse of the air sacs of the lungs by reducing surface
tension [3]. However, arecent study reported that use of aless
invasive surfactant administration (LI SA) technique can reduce
the need for mechanical ventilation in infants with RDS and
reduce the composite outcome of death or bronchopulmonary
dysplasia [4,5]. Despite the usefulness of LISA, preemptive
treatment with artificial pulmonary surfactant is currently
administered to most premature infants, regardless of RDS
diagnosis [6]. However, synthetic surfactant treatment of
established RDS may lead to an increasein apneaof prematurity
[7,8]. Thus, because artificial pulmonary surfactant can only be
administered to infants with RDS who require treatment,
accurate prediction of RDS in premature infants at birth is
essential.

The clinical guidelines for the prediction or detection of RDS
are complicated. The diagnosis of RDS is based on a
combination of clinical signs, symptoms, chest radiographic
findings, and arterial blood gas results [1]. Recently, artificial
intelligence (Al) technologies have been addressing these
difficult issuesin diagnosis or prediction that arise from complex
causal relationships[9-11]. Machine learning models based on
large-scale patient data have recently been introduced for the
prediction of RDS [12-16]. Although these machine learning
models showed accurate prediction performance, most of the
datawere obtained from adult patients. Only afew studies have
used machine learning models for the prediction of RDS in
premature infants [17-19]. A study involving training and
evaluation for alogistic regression (LR) model for late-preterm
and full-term infants has been reported [17]; the area under
receiver operating characteristic (AUROC) curve in that study
was 0.760. Although full-term infants were evaluated in that
study [17], the model accuracy was low. Another study [18]
reported on the training and evaluation of a gradient boosting
machine (GBM) for infants born prior to 39 weeksin gestational
age; the AUROC was 0.923, demonstrating the strong potential
of machinelearning modelsin the prediction of RDS. However,
that study [18] consisted of term and preterm infants for whom
Al-driven models were suggested for RDS diagnosis.
Considering that RDS ismainly a preterm birth—based disease,
this heterol ogous and skewed data set consisting of terminfants
caused a large bias in the Al-driven model. Thus, the results
were inconclusive due to small sample sizes and the genera
popul ation-skewed data set. Another study [19] reported on the
training and evaluation of support vector machine (SVM),
random forest (RF), and artificial neural network. The AUROC
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of these machine learning models was also high, ranging from
0.97 to 1.00. However, those results were also inconclusive due
to small sample sizes, and the study did not consider very low
birth weight infants (VLBWIS).

In this study, research on Al, including machine learning
models, was extended by the use of a nationwide large-scale
data set based on the registry network of VLBWIs in South
Korea [20]. The database known as the Korean Neonatal
Network (KNN) was established in April 2013, with enrollment
of 2000 to 3000 VLBWiIs (less than 1500 grams) every year.
As of October 2022, the number of cumulative patients was
approximately 18,246 [20,21]. The 76 member hospitals of
KNN in South Korea have a data management board for the
maintenance of qualified nationwide dataon VLBWIs[22].

Using the large-scale data set, we performed a comparison of
the prediction performances of 7 different machine learning
models, namely, GBM, LR, extreme gradient boosting
(XGBoost), adaptive boosting (AdaBoost), light GBM (LGBM),
RF, and SVM. The best classifier was then selected, and an
analysis of featureimportance was performed in order to assess
the contribution of each feature. A 5-layer deep neural network
(DNN) with the selected features derived from the best machine
learning classifier was then proposed in order to enhance the
prediction performance. The most significant contributions of
this study are asfollows:

1. Development and validation of Al modelsfor the prediction
of RDS was based on the large amount of data on Korean
VLBWIs(13,087 newborn infants weighing lessthan 1500
grams).

2. Theprediction performancesof 7 different machinelearning
models, namely, GBM, LR, XGBoost, AdaBoost, LGBM,
RF, and SVM were compared.

3. The best classifier was selected and an analysis of feature
importance was performed in order to assess the
contribution of each feature.

4. A 5-layer DNN modd based on the selected features derived
from the best machine learning classifier was proposed in
order to enhance the prediction performance.

5. Finaly, apublic web application was deployed that enables
easy access and use of our proposed Al models for RDS
prediction [23].

Methods

Ethics Approval

The national KNN registry was approved by the institutional
review boards of al 76 hospitals participating in the KNN
(2022-ER0603-01#) [24]. In addition, the protocol for this study
was approved by the institutional review board of Kyung Hee
University Hospital, Seoul, Korea (KHUH2013-03-103). Written
consent was obtained from the parents or legal guardians of the
infants during enrollment in the KNN. All procedures were
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performed in accordance with the relevant guidelines and
regulations.

Data for the Al Model

Thetraining and evaluation of the Al modelsfor the prediction
of RDSwere based on aprospectively built registry of newborn
infants weighing less than 1500 grams in the KNN between
2013 and 2021. The KNN included 14,519 VLBWIs; of these,
1399 sets of data were missing and data for infants older than
33 weekswere not used dueto the small samplesize. Therefore,
dataon 13,087 VLBWIswere used in thisstudy. Dataregarding
each infant were collected under 6 categories of information:
basic information regarding the infants, maternity,
pregnancy/birth process, family, resuscitation, and test results
at birth. In particular, basic information on the infantsincluded
sex (male/female), birth weight (grams), birth height (cm), birth
head circumference (cm), birthplace (in hospital, transferred
from another hospital after birth, or not in hospital), and body
temperature (°C) at theinitial admission. Information regarding
maternity history included maternal age (years), diabetes
(yes/no), hypertension (yes/no), and gravida (number).
Information regarding the pregnancy/birth process included
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gestational age (weeks), amount of amniotic fluid (normal,
oligohydramnios, or hydramnios), premature rupture membrane
(yes/no), antenatal steroid (yes/no), delivery types (caesarean
section or natural birth), and in vitro fertilization (yes/no).
Information regarding the family history included parity defined
as the number of times that she has given birth to a fetus with
a gestational age of 24 weeks or more, marriage (married,
divorced, single, or unmarried cohabitation), multiple gestation
(singleton, twin, triplet, or more), and birth order (first-, second-,
third-order, or more). Information regarding resuscitation
procedure included resuscitation at birth (yes/no) aswell asthe
treatment types such as oxygen, positive pressure ventilation,
tracheal intubation, cardiac compression, and medical usage.
Thetest resultsat birth included 1-minute Apgar score, 5-minute
Apgar score, blood gas analysis, and blood gas analysis base
excess. Regarding the outcomes (RDS or non-RDS), adiagnosis
of RDS was made by neonatologists according to the clinical
features and chest radiographic findings. A statistical summary
of 30 clinical variablesaccording to RDS and non-RDSisshown
in Table 1. P values were based on a 2-sided t test for means
and achi-squaretest for categorical variables[25,26]. A 2-sided
P value <.05 was considered significant.
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Table 1. Statistical summary of the clinical variablesin the respiratory distress syndrome group and non—respiratory distress syndrome group.

Data RDS? group (n=10,041) Non-RDS group (n=3046) P value”

Basic infant information

Gender, n >.99
Mae 5165 1395
Female 4876 1651
Birth weight (g), mean (SD) 1022.01 (284.26) 1269.24 (198.43) <.001
Birth height (cm), mean (SD) 35.81 (3.64) 38.55 (2.75) 45
Birth head circumference (cm), mean (SD) 25.37 (2.44) 27.62 (1.74) <.001
Birthplace, n .84
In hospital 9871 3009
Transferred from another hospital after birth 161 34
Not in hospital 9 3
Mater nity history, mean (SD)
Body temperature at theinitial admission (°C) 36.14 (0.63) 36.30 (0.48) <.001
Maternal age (years) 33.27 (4.29) 33.20 (4.09) .78
Diabetes, n .005
No diabetes 9041 2761
Gestational diabetes mellitus 857 255
Overdiabetes mellitus 143 30
Hypertension, n <.001
No hypertension 8083 2090
Pregnancy-induced hypertension 1718 896
Chronic hypertension 240 60
Gravida, mean (SD) 1.98(1.22) 1.84(1.14) <.001

Pregnancy/birth process

Gestational age (weeks), mean (SD) 27.56 (2.53) 31.54 (2.36) <.001
Amount of amniotic fluid, n .93
Normal 8415 2553
Oligohydramnios 1452 492
Hydramnios 174 30
Premature rupture of membrane, n 3713 789 .38
Antenatal steroid, n 8764 2567 77
Delivery type (caesarean section), n 7950 2510 <.001
Invitro fertilization, n 2455 769 .07
Family history
Parity, mean (SD) 0.49 (0.73) 0.40 (0.67) <.001
Marriage, n .07
Married 9862 3006
Divorced 6 3
Single 62 21
Unmarried cohabitation 111 16
Multiple gestation, n <.001
Singleton 6534 1756
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Data RDS? group (n=10,041) Non-RDS group (n=3046) P value?
Twin 3168 1070
Triplet 332 207
Quadruplet or more 7 13
Birth order of multiple gestation, n <.001
First order 1585 505
Second order 3612 1406
Third order 366 231
Fourth order or more 4 20
Resuscitation procedure, n
Resuscitation at birth 9634 2029 <.001
Oxygen usage 8854 1897 42
Positive pressure ventilation usage 8830 1323 <.001
Tracheal intubation 7384 391 .02
Cardiac compression 523 32 .02
Medication usage 386 23 32
Test resultsat birth, mean (SD)
1-min Apgar score 4.32 (1.97) 6.14 (1.79) <.001
5-min Apgar score 6.56 (1.86) 8.02 (1.38) <.001
Blood gas analysis (pH) 7.26 (0.12) 7.27 (0.09) <.001
Blood gas analysis base excess —5.39 (4.40) -4.30(3.41) <.001

8RDS: respiratory distress syndrome.

bP values are based on the 2-sided t test for means and achi-square test for categorical variables. A 2-sided P value <.05 was considered significant.

Preprocessing, Data Split, Data Balancing, and
Cross-Validation

Among the 30 variables summarized in Table 1, we applied
one-hot encoding to 6 categorical variables, that is, the amount
of amniotic fluid, marriage, multiple gestation, diabetes,
hypertension, and birthplace. One-hot encoding is used for
variables where order does not matter, and it creates dummy
variables. Each dummy variable has a value of 0 or 1. For the
amount of amniotic fluid variable, we created 3 dummy
variables, namely, normal, oligohydramnios, and hydramnios.
For the marriage variable, we created 4 dummy variables,
namely, marriage, divorced, single, and unmarried cohabitation.
For the multiple gestation, we created 4 dummy variables,
namely, singleton, twin, triplet, and quadruplet. In a similar
way, diabetes was assigned with 3 dummy variables, namely,
no diabetes, gestational diabetes mellitus, and overdiabetes
mellitus. Hypertension was assigned with 3 dummy variables,
namely, no hypertension, pregnancy-induced hypertension, and
chronic hypertension. Birthplace was assigned with 3 dummy
variables, namely, in-hospital , transferred from another hospital
after birth, and not in a hospital.

A total of 47 inputs or features were then applied for the Al
model inputs. For training and testing the model, data on 13,087
infants were divided into training (n=10,469) and testing data
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(n=2618) in aratio of 8:2 in astratified manner. Then, training
and testing data include the same ratio of RDS (training data,
8032/10,469, 76.72%; testing data, 2009/2618, 76.72%) and
non-RDS (training data, 2437/10,469, 23.28%; testing data,
609/2618, 23.28%). A summary of thedatasetsfor training and
testing is shown in Table 2. We used the testing set for
performance evaluation only as independent data of the Al
model that we developed [27]. For training the model, a 5-fold
cross-validation was performed using the training datain order
to confirm the generalization ability of the model. First, random
shuffling of thetraining datawas performed; it wasthen divided
into 5 equal groupsin astratified manner. Each of 5 groupsalso
includes the same ratio of RDS and non-RDS. One group was
subsequently used for internal validation, and other 4 groups
were used for internal validation. We repeated this process by
shifting theinternal validation group. In addition, dueto amuch
higher amount of RDS data (training data, 8032/10,469, 76.72%,;
testing data, 2009/2618, 76.72%) compared with non-RDS data
(training data, 2437/10,469, 23.28%; testing data, 609/2618,
23.28%), the numbers of data from the 2 classes of RDS and
non-RDS were balanced. In order to balance the classes,
upsampling of the non-RDS data was performed using the
Synthetic Minority Over-sampling Technique with Tomek links
during update of the model [28]. We were able to minimize the
model bias, particularly toward a majority of groups, by
balancing the 2 classes.
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Table 2. Summary of the training and testing data sets.

Jang et al

RDS?(n=10,041), n

Non-RDS (n=3046), n

Training data (n=10,469)
Testing data (n=2618)

8032
2009

2437
609

8RDS: respiratory distress syndrome.

Machine L earning M odels

Anillustration of our proposed overall network architecturefor
training and testing data is shown in Figure 1. Firs,
preprocessing of the 47 features was performed for
normalization of data. The preprocessed datawerethenfedinto
7 different machine learning models: XGBoost [29,30],
AdaBoost [31,32], GBM [33,34], LGBM [35], RF [36], LR
[37],and SVM [38]. Asillustrated in Figure 1A, for each model,
the objective is to identify the optimized hyperparameters as
follows:

argming [Li(6)] (1)

where i represents each of 7 models, L;(-) represents the cost

function for each model i, and 6 represents the hyperparameter
set. More specifically, the optimized hyperparameters 6, for

each model i were determined using 5-fold cross-validation.

Two evaluation indicators were used in the vaidation to
determine the optimized hyperparameters. balanced accuracy
and AUROC from internal validation data. The balanced
accuracy was cal culated by averaging sensitivity and specificity.
The AUROC was cal cul ated by finding the area of ROC curves.
In particular, considering the imbalance between the RDS and
non-RDS group, balanced accuracy was used as the main
evaluation indicator. Note that the use of Synthetic Minority
Over-sampling Technique with Tomek links was not applied
to internal validation data and testing data. After determining
the optimized hyperparameters 6, for each model i, the best
model was selected as follows:

argmax; [A(6)] (2)

where A(6,) represents the balanced accuracy of internal
validation data from each model i.

Figure 1. Ensemble approach for the classification of testing data. AdaBoost: adaptive boosting; DNN: deep neural network; GBM: gradient boosting
machine; KNN: Korean neonatal network; LGBM: light gradient boosting machine; LR: logistic regression; ML: machine learning; RDS: respiratory
distress syndrome; RF: random forest; SVM: support vector machine; XGBoost: extreme gradient boosting.
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Feature Importance Analysis

An analysisof featureimportance was performed using the best
model from the machine learning models, which ranks the
featuresinthe order of importance. For adecision tree approach
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reaching the node divided by the total number of samples. The
node impurity was based on the Gini index, which measures
the degree of a particular variable being incorrectly classified
when it israndomly chosen. However, for acoefficient approach
such as SVM and LR, the feature importance values were
calculated by the absolute value of the coefficients or weights.
The values measure how much amarginal changein thefeature
value would affect the outcomes.

DNN Based on Top n-FeaturesWith Feature Selection

The optimized DNN models were determined for each set of
top n-features, asillustrated in Figure 1B. For the DNN model
inputs, wefirst ranked the features based on the resultant feature
importance values from the best classifier by using machine
learning models. Then, we used top n-features as the model
input, where n was changed from 1 to 47: n representsthe model
input set from top 1 feature to top 47 features. For each DNN
model, we identified the optimized hyperparameters such as
layer depth and width as

argming [CH(@)] (3)

where @ represents the hyperparameter set. All combinations
of layer depth and width were considered by changing the
number of hidden layers from 1 to 5 and the number of nodes
(width) from 1 to the number of previouslayer nodes. Cn(q) is
the cross-entropy cost of binary classification defined by

Tk log (pq,,n(ﬁ)) + (1= y) -log (1 = pyn (yAk)) @, where y, denotes

thetruelabel (Oor 1), Pyn(Vk) denotesthe softmax probability
corresponding to y, for top n-feature input given the optimized
hyper-parameter set @.

The best cross-validation accuracy was determined for each set
of top n-features by using the 2 metrics of balanced accuracy
and AUROC. The 2 metrics were used to evaluate each model
performance because of the imbalanced classes between the
RDS and non-RDS group. As a result, an optimized 5-layer
DNN wasidentified using the top 20 features as the best model
for the prediction of RDS. We have shown the effects of the
number of selected top n-features (1 to 47) in the Results section.
The 5-layer DNN consisted of an input layer for the top 20
features, 3 fully connected layers, and an output layer. The 3
fully connected layers consisted of 32, 64, and 16 nodes. The
last fully connected layer was fed into a sigmoid layer for
predicting the probability of RDS. Batch normalization and
dropout with adropout rate of 0.5 were applied before each of
the fully connected layers in our proposed DNN model. An
adaptive moment estimation optimizer with a batch size of 32
and binary cross-entropy loss function with a learning rate of
0.0001 on an NVIDIA GeForce GTX 1080 Ti GPU were used
for training the models. For the analysis, training, and evaluation
of machine learning and deep learning models, we used the
following packages: Python (version 3.9) with TensorFlow
(version 2.8.0), Pandas (version 1.3.4), Matplotlib (version
3.4.3), Keras (version 2.8.0), NumPy (version 1.20.3), and
Scikit-learn (version 1.0.2).
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Final Al Model: Ensemble DNN for Testing

An ensemble approach combining the 5 models derived from
the 5-fold cross-validation was adopted for the final DNN-based
Al model. An illustration of the ensemble model is shown in
Figure 1C. The average of balanced accuracies can be denoted
from theinternal validation data set in the m-th cross-validation
model by A, wherem={1, 2, ..., 5}. In addition, the estimated
probability of RDS can be denoted from the testing data set in
the mrth cross-validation model by p,,. The weighted probability

Pm-Am

was then calculated as Frsemie =Zna il O Wwhere Parmple
denotes the final probability in an ensemble approach by
applying the weight value of A, to the probability value of p,,
Thus, 5 probabilities were weighted according to the average
values for balanced accuracy, which is aweighted soft voting.
Evaluation of the prediction performance based on the ensemble
DNN model was performed using the independent testing data
set (n=2618).

Al-Driven Web Application

Our proposed ensemble DNN model including the top 20
features was deployed on our own public website [23], so that
RDS can be predicted if information on the selected 20 features
from VLBWI is available. After accessing the website,
information regarding the features is entered by the user and
then encoded to the website server for immediate prediction of
RDS. Other than theinformation regarding features, thereisno
need for entering any information that would be regarded as
private, and the information that is entered is immediately
deleted upon generation of the prediction result, so that there
is no risk of exposing information. The code is aso available
at [39].

Results

Feature Importance Analysis

A summary of the results of cross-validation from 7 different
machine learning algorithms, that is, XGBoost, AdaBoost,
GBM, LGBM, RF, LR, and SVM, is shown in Table 3.
According to theresults, the SVM model wasthe best classifier
for the prediction of RDS in newborn VLBW!Is weighing less
than 1500 grams. The accuracy value for the SVM model was
0.84, with abalanced accuracy of 0.84, and an AUROC of 0.92,
which were higher than those for other machinelearning models.
Next, an analysis of feature importance was performed using
the best model, that is, SVM. The results showing the ranked
feature importance using SVM indicated that gestational age
showed the highest importance value, followed by blood gas
analysis, 5-minute Apgar score, blood gas analysis base excess,
and the fourth or more birth order of multiple gestation (Figure
2). Theseresults are consistent with findings from recent studies
demonstrating the useful ness of gestational age, results of blood
gas analysis, and Apgar score in the early detection of RDS
[40,41]. The results of feature importance analysis from other
6 machine learning models are shown in Figures S1-S6 of
Multimedia Appendix 1. Compared to SVM, the other 6 models
were observed to be biased toward specific features.
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Table 3. Mean (SD) data of the cross-validation results.

Jang et al

Model Sensitivity Specificity Accuracy Balanced accuracy AUROC?

XGBoost” 0.8662 (0.006) 0.7655 (0.014) 0.8498 (0.004) 0.8309 (0.006) 0.9061 (0.005)
AdaBoost® 0.8546 (0.005) 0.8206 (0.012) 0.8467 (0.005) 0.8377 (0.006) 0.9076 (0.006)
cBM¢ 0.9110 (0.005) 0.7215 (0.001) 0.8669 (0.002) 0.8162 (0.004) 0.9114 (0.002)
LGBM® 0.8927 (0.007) 0.7462 (0.014) 0.8587 (0.002) 0.8194 (0.003) 0.083 (0.004)
REf 0.8992 (0.006) 0.7490 (0.011) 0.8643 (0.003) 0.8241 (0.004) 0.9097 (0.002)
LRY 0.8551 (0.009) 0.8171 (0.005) 0.8259 (0.002) 0.8361 (0.003) 0.9089 (0.004)
symh 0.8370 (0.003) 0.8456 (0.002) 0.8390 (0.004) 0.8413 (0.009) 0.9172 (0.004)

8AUROC: area under receiver operating characteristic.

bX GBoost: extreme gradient boosting.
CAdaBoost: adaptive boosting.

dGBM: gradient boosting machine.

€L GBM: light gradient boosting machine.
'RF: random forest.

9LR: logistic regression.

hsvM: support vector machine.

Figure 2. Results of feature importance analysis by support vector machine.
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Positive pressure ventilation usage at the initial resuscitation
Triplet gestation

Chronic hypertension

Birth weight

Feature name

Quadruplet or more gestation

Hospital as place of birth

Transferred after birth

Antenatal steroid

Gravida

Delivery type

Amount of amniotic fluid {hBydramnios]

irth height

Premature rupture of membrane

Marital status (unmarried cohabitation)

No diabetes

Overt diabetes mellitus

Oxygen usage at the initial resuscitation
Pregnancy induced hypertension

Mo hypertension

Marital status (marriage)

1-min Apgar score:

Amount of amniotic fluid (oligohydramnios
Amount of amniotic fluid (normal

Gender

Cardiac compression at the initial resuscitation
Parity

Maternal age’

Pregnancy pracess

Twin gestation

Gestational diabetes mellitus

Tracheal intubation at the initial resuscitation

0.0 0.2 04 0.6 08 1.0
Feature importance based on the coefficients

K-Fold Cross-Validation Results

We evaluated the values of balanced accuracy and AUROC
based on our 5-layer DNN according to thetop n-features, where
n={1, 2, ..., 47}. The influence of each top n-feature set on
AUROC and balanced accuracy isshownin Figure 3. According
totheresults, the valuesfor both balanced accuracy and AUROC
were saturated when the number of features for the input
increased to more than 20. The top 20 features in our 5-layer
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DNN were selected from the results, yielding a sensitivity of
83.60%, specificity of 85.63%, accuracy of 84.07%, balanced
accuracy of 84.62%, and AUROC of 0.9201. Note that similar
accuracy metricswere obtained when all 47 featureswere used:
sensitivity of 85.47%, specificity of 82.96%, accuracy of
84.88%, balanced accuracy of 84.21%, and AUROC of 0.9182.
A summary of the comparison resultsisshownin Table 4. Also
note that clinicians provisionally diagnosed al VLBWIs with
RDS and provided them with artificial pulmonary surfactant
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treatment. We have included the prediction performance in
Table 4. According to the results, both models including the
top 20 ranked features (Table 5) and all 47 features showed
similar prediction performance. Therefore, considering the
complexity of the model, our 5-layer DNN including the top

Jang et al

20 features can be regarded as a better solution. In addition,
note that the DNN shows higher accuracy in RDS prediction
than SVM and other machine learning models, as shown in
Tables 3 and 4.

Figure 3. Theinfluence of each top n-feature set on cross-validation. AUROC: area under receiver operating characteristic.
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Table 4. Cross-validation results of deep neural network (mean [SD]) with selected features.
Model Sensitivity Specificity Accuracy Balanced accuracy AUROC?
Provisional diagnosis 1.000 0.000 0.7675 0.5000 N/AP
(clinicians)
DNNE with all 47 0.8547 (0.010) 0.8296 (0.016) 0.8488 (0.005) 0.8421 (0.004) 0.9182 (0.005)
features
DNN with thetop 20  0.8360 (0.011) 0.8563 (0.010) 0.8407 (0.008) 0.8462 (0.005) 0.9201 (0.008)

features

8AUROC: area under receiver operating characteristic.
BN/A: not applicable.
°DNN: deep neural network.
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Table 5. Thetop 20 ranked features in the models.

Jang et al

Feature rank Feature name

1 Gestational age

2 Blood gas analysis within first hour of life
3 5-min Apgar score

4 Blood gas analysis base excess within first hour of life
5 Fourth order or more of multiple gestation
6 Body temperature at the initial admission

7 Third order of multiple gestation

8 Birth head circumference

9 Second order of multiple gestation

10 Medication usage at the initial resuscitation
11 Singleton

12 First order of multiple gestation

13 Marital status (divorced)

14 Birthplace not a hospital

15 Marital status (single)

16 Resuscitation at birth

17 Positive pressure ventilation usage at the initial resuscitation
18 Triplet gestation

19 Chronic hypertension

20 Birth weight

Testing Data Results

An ensemble approach combining the 5 models derived from
the 5-fold cross-validation was used for the final DNN model.
Testing of our 5-layer DNN based on the ensemble approach
was performed using the isolated testing data set (n=2618). A
summary of the testing data results from comparison is shown
in Table 6.

First, according to the results, our ensemble-based DNN model
also showed accurate prediction performance on the isolated
testing data: specificity of 86.78%, sensitivity of 83.24%,
accuracy of 84%, balanced accuracy of 85.01%, and AUC of
0.9216. A comparison with the 5-fold cross-validation showed

https://www.jmir.org/2023/1/e47612

similar accuracy metrics, indicating that overfitting or
underfitting was minimal. Indeed, dightly higher accuracy
metrics were obtained since p,,, was combined from multiple
models using 5-fold cross-validation by applying the weighted
vaueof A, to p,,,. The highest valuesfor both balanced accuracy
and AUROC were obtained using our ensemble-based 5-layer
DNN using the top 20 features, followed by ensemble-based
DNN using all 47 features and all machine learning models.
The cross-validation and the comparison showed similar
prediction performances. Also notethat clinicians provisionally
diagnosed all VLBWIs with RDS and provided them with
artificial pulmonary surfactant treatment. We haveincluded the
prediction performance in Table 6.
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Table 6. Testing dataresults.

Jang et al

Model Sensitivity Specificity Accuracy Balanced accuracy  pAyROC?
Ensemble-based DNNP with top 20 features  0-8324 0.8678 0.8400 0.8501 0.9216
Ensemble-based DNN with all 47 features  0.8160 0.8792 0.8307 0.8476 0.9211
DNN single model with top 20 features 0.8313 0.8662 0.8394 0.8488 0.9198
DNN single model with al 47 features 0.8345 0.8559 0.8395 0.8452 0.9184
SVME 0.8359 0.8564 0.8407 0.8461 0.9204
LR 0.8398 0.8482 0.8418 0.8440 0.9208
RF® 0.8463 0.8401 0.8448 0.8432 0.9187
LeMmf 0.8359 0.8531 0.8399 0.8445 0.9178
GBMY 0.8329 0.8548 0.8380 0.8438 0.9073
AdaBoost” 0.8393 0.8417 0.8399 0.8405 0.9169
XGBoost 0.8373 0.8482 0.8399 0.8428 09172
Provisional diagnosis (clinicians) 1.000 0.000 0.7673 0.5000 N/Al

8AUROC: area under receiver operating characteristic.
PDNN: deep neura network.

€SVM: support vector machine.

IR logistic regression.

€RF: random forest.

fLeBM: light gradient boosting machine.

9GBM: gradient boosting machine.

hAdaBoost: adaptive boosting.

'X GBoost: extreme gradient boosting.

IN/A: not applicable.

RDS Incidence Rates

RDS, a significant disease affecting premature infants [42], is
caused by a deficiency in the amount of pulmonary surfactant
[43]. It is attributed to the presence of immature type 2
pneumocytesin the pulmonary alveoli; therefore, RDSincidence

https://www.jmir.org/2023/1/e47612
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is greater with lower gestational age [42]. According to the
KNN database utilized in this study, the incidence of RDS was
39.2% (302/770) at 32 weeks, 69% (1044/1513) at 30 weeks,
92.51% (1557/1683) at 28 weeks, and 98.1% (953/971) at 25
weeks. A summary of the incidence rates of RDS according to
the gestational weeksis shown in Table 7.
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Table 7. Respiratory distress syndrome occurrence rate.

Gestational week Non—respiratory distress Respiratory distresssyndrome  Total (N=13,087), n Respiratory distress syndrome
syndrome (n=3046), n (n=10,041), n rate (%) (total=76.72%)

22 3 124 127 97.63

23 7 457 464 98.49

24 15 740 755 98.01

25 18 953 971 98.14

26 34 1160 1194 97.15

27 72 1301 1373 94.75

28 126 1557 1683 92.51

29 245 1550 1795 86.35

30 469 1044 1513 69

31 497 619 1116 55.46

32 468 302 770 39.22

33 413 125 538 23.23

34 370 66 436 15.13

35 222 32 254 12.59

36 87 11 98 11.22

. . entering information on the 20 features of VLBW!I by auser is
Al-Driven Web Application o _ shown in Figure 4A. After entering the information in the web
Our proposed Al model for the prediction of RDSin VLBWIs  gpplication, a user can immediately obtain the results for the
was successfully deployed on our own public website[23]. The  prediction of RDS, asshownin Figure 4B. The prediction results

deployed web application, which provides results for the g soincludethe probability of RDS.
prediction of RDS, is shown in Figure 4. The web interface for

Figure 4. Deployed artificia intelligence—driven web application. (A) Web application before uploading patients’ information. (B) Web application
after uploading patients’ information. RDS: respiratory distress syndrome.

A Home A Home @ back to RDS

RDS Prediction RDS Prediction Results

Fill out patient’s information The infant is likely to be Non-RDS: RDS probability 31.19%.

Patient information (unit), (range of values) Input values Patiant o wiabicn Input values

Gestational age (weeks), (22-42)

Gestational age 27
Blood gas analysis within first hour of life (pH), (6.8-7.5) R o

Blood gas analysis within first hour of life (pH) 7.26
Smin Apgar score (0-10)

5min Apgar score 8
Blood gas analysis base excess within first hour of life
(mmol/L), (-14-10) Blood gas analysis base excess within first hour of life 18
Fourth order or more of multiple gestation > Fourth order or more of multiple gestation No
Body temperature at the initial admission (°C), (33.0-39.0) Body temperature at the initial admission ("C) 34.5
Third order of multiple pestation Third order of multiple gestation No
Birth head circumference (cm), (13.0-38.0) . 2

Birth head circumference (cm) 235
Second order of multiple gestation

Second order of multiple gestation No
Medication usage at the initial resuscitation v

Medication usage at the initial resuscitation No
Singleton

Singleton No
First order of multiple gestation N v

First order of multiple gestation No
Marital status (divorced)

Marital status (divorced) No
Not hospital as place of birth ¥ > el status (divorced)
Marital status (single) M = Not hospital as place of birth No
Resuscitation at birth M v Marital status (single) No
Positive pressure ventilation usage at the initial resuscitation o v Resuscitation at birth No
Triplet gestation " > Positive pressure ventilation usage at the initial resuscitation No
Chronic hypertension L. - Triplet gestation No
Birth weight (g), (300-1500) Chronic hypertension Yes

ot s
(A) (B)
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Discussion

Principal Findings

Once a timely diagnosis has been made after birth, treatment
entailsadministration of artificial pulmonary surfactant through
the trachea [44]. Survival of extremely premature infants has
shown recent improvement, and various methods have been
adopted for the administration of surfactant. The surfactant is
usually administered through an intubated endotracheal tube,
followed by administration of mechanical ventilation. The use
of the intubation-surfactant-extubation method involves early
extubation of the endotracheal tube, immediately after the
administration of the surfactant, in order to avoid the use of
consecutive mechanical ventilation and unnecessary positive
pressure [45]. A steady increase in the use of LISA among
practices has recently been reported [46]. Although LISA does
not require the use of an intubation tube with a large bore, it
requires the placement of athin catheter in the trachea for the
ingtillation of surfactant in patients who demonstrate
self-respiration in noninvasive ventilation such as nasal
continuous positive airway pressure. Regarding the problem of
who should receive treatment or when treatment should be
administered, wide, uniform administration of prophylactic
treatment in premature infants younger than a certain gestational
age such as 30 weeksis considered customary [47]. Thispolicy
does not consider premature infants who do not have RDS.
Early rescue therapy has been established as one of the
guidelines, meaning that the selection of patients should be
based on worsening of the condition under a certain level of
oxygen support and continuous positive airway pressure [6].
These various methods have been developed as a result of the
effort to administer treatment for RDS while avoiding
unnecessary trauma resulting from positive pressure caused by
the procedure [6]. However, the decision to differentiate
non-RDS infants in advance is not concrete, particularly in the
hustle and bustle of the delivery room, because physicians
working in such settings are prone to act in haste, with
administration of surfactants and concluding the procedure.
Therefore, the use of our Al-driven predicting tool would be
helpful in the effort to make more prudent decisions.

According to the dataon 13,087 infants wei ghing less than 1500
grams who were included in our study, RDS was diagnosed in
10,041 (76.72%) infants, however, 3046 (23.28%) infants did
not have RDS, indicating that the surfactant was administered
unnecessarily in 23.28% (3046/13,087) of the infants who did
not have RDS, and these infants suffered from barotrauma as
well. Prenatal and perinatal information were selected from the
KNN database for use as input data for our Al model so that
the tool for prediction of RDS was derived from machine
learning and DNN models. Theweb application of our Al model
can enable the preparation of more stable administration of
resuscitation. Our Al-driven tool is open on [23]. We believe
that allowing public access to the Al model will facilitate the
validation and improvement of the model.

Limitations and Future Works

Regarding the overfitting issue, we confirmed that the issue was
minimal because the cross-validation results and the isolated

https://www.jmir.org/2023/1/e47612
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testing data results were almost overlapping. Nevertheless, the
potential overfitting issue still remained. First of all, as
summarized in Table 6, the gestational age of the VLBWIswas
generaly distributed between 26 and 32 weeks. Therefore, our
developed model may be biased toward the gestational week
range of 26 to 32 weeks. Indeed, our recent study showed that
data skewed toward 1 gender can also lead to model bias [48].
Thus, in the future work, we need to update our model based
on amore balanced gestational week data.

Multiple gestations, maternal age, nulliparous, assisted
reproductive technology, mode of delivery, gender of newborn,
and birth weight are well-known risk factors for RDS [49].
Considering therisk factors, integrated scoring was mainly used
to determinetherisk for infants. Our Al tool used 47 input data
sets encompassing most of the known risk factorsfor RDS. As
shown in Figure 3, a border was observed until the 20th input
factor rendered maximum power and was attenuated thereafter.
The gestational age was confirmed as the most powerful factor,
as shown in Figure 2. Of particular interest, new findings were
observed on the graph of feature importance, rather than
classical risk factors such as antenatal steroid (24th highest
contributor), type of delivery (26th highest contributor),
premature rupture of membrane (29th highest contributor),
maternal diabetes (30th highest contributor), and birth weight
(20th highest contributor). Interestingly, our model used thetop
20 features, which do not contain most of the risk factors
mentioned above: only the birth weight was used in our final
model input with the least contribution. Nevertheless, we have
not considered the effects of asphyxia, second-born twin, chronic
intrauterine growth restriction, and prolonged labor, which are
also well-known risk factors. In addition, genetic information,
environmental data, maternal nutritional  status, and
smoking/al cohol habits may also influence the development of
RDS. We believe that those factors can make an important
contribution to RDS predictionin VLBWIs. Thus, in the future
work, we plan to suggest that the KNN registry adds additional
risk factors and update our prediction model.

Furthermore, we will use our developed web application to
acquire additional data and validate the model. Currently, the
deployed application does not store any information entered by
users to protect personal data. However, we plan to store
information entered by the users upon agreement to improve
the Al model viaareal-timelearning process. Last, in this study,
we did not consider postnatal factors because we aimed to
develop an Al model that predicts the outcome of VLBWIs at
thetime of their birth. In the future work, we will also consider
postnatal factors to enhance the prediction performance.

Conclusions

The strength of our study is that it utilized the first Al-driven
model for the prediction of RDS in VLBWIs, based on quality
datafrom the KNN. The Korean Disease Control and Prevention
Agency providesfunding and supervision for the KNN registry;
therefore, the dataare well-qualified. The sample size of 13,087
is large, considering the weight of national data on VLBWIs.
The guidelines for the management of RDS have been
established, and therelatively large amount of data supportsthe
strength of our study. Our Al tool is open to the public on the
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website for application by physicians in the clinical setting. In  resuscitation, including instillation of surfactant in the setting
conclusion, our Al-driventool for the prediction of RDSshowed of VLBWI delivery. We suggest to conduct further research to
balanced accuracy of 85.26% and AUROC of 0.9187. Because expand to international cohorts, including diverse racia
our Al-driven tool can be used in the prediction of RDS, backgrounds, to generalize our Al model.

neonatal teamswill find it helpful in the preparation of neonatal
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