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Abstract

Background: An accurate prediction of mortality in end-of-life care is crucial but presents challenges. Existing prognostic tools
demonstrate moderate performance in predicting survival across various time frames, primarily in in-hospital settings and
single-time evaluations. However, these tools may fail to capture the individualized and diverse trajectories of patients. Limited
evidence exists regarding the use of artificial intelligence (AI) and wearable devices, specifically among patients with cancer at
the end of life.

Objective: This study aimed to investigate the potential of using wearable devices and AI to predict death events among patients
with cancer at the end of life. Our hypothesis was that continuous monitoring through smartwatches can offer valuable insights
into the progression of patients at the end of life and enable the prediction of changes in their condition, which could ultimately
enhance personalized care, particularly in outpatient or home care settings.

Methods: This prospective study was conducted at the National Taiwan University Hospital. Patients diagnosed with cancer
and receiving end-of-life care were invited to enroll in wards, outpatient clinics, and home-based care settings. Each participant
was given a smartwatch to collect physiological data, including steps taken, heart rate, sleep time, and blood oxygen saturation.
Clinical assessments were conducted weekly. The participants were followed until the end of life or up to 52 weeks. With these
input features, we evaluated the prediction performance of several machine learning–based classifiers and a deep neural network
in 7-day death events. We used area under the receiver operating characteristic curve (AUROC), F1-score, accuracy, and specificity
as evaluation metrics. A Shapley additive explanations value analysis was performed to further explore the models with good
performance.

Results: From September 2021 to August 2022, overall, 1657 data points were collected from 40 patients with a median survival
time of 34 days, with the detection of 28 death events. Among the proposed models, extreme gradient boost (XGBoost) yielded
the best result, with an AUROC of 96%, F1-score of 78.5%, accuracy of 93%, and specificity of 97% on the testing set. The
Shapley additive explanations value analysis identified the average heart rate as the most important feature. Other important
features included steps taken, appetite, urination status, and clinical care phase.
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Conclusions: We demonstrated the successful prediction of patient deaths within the next 7 days using a combination of wearable
devices and AI. Our findings highlight the potential of integrating AI and wearable technology into clinical end-of-life care,
offering valuable insights and supporting clinical decision-making for personalized patient care. It is important to acknowledge
that our study was conducted in a relatively small cohort; thus, further research is needed to validate our approach and assess its
impact on clinical care.

Trial Registration: ClinicalTrials.gov NCT05054907; https://classic.clinicaltrials.gov/ct2/show/NCT05054907

(J Med Internet Res 2023;25:e47366) doi: 10.2196/47366
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Introduction

Survival Prediction Tools in End-of-Life Care
Survival prediction is a critical aspect of end-of-life care.
Knowing the likely clinical course allows the medical team to
create care plans and avoid the overuse of aggressive care. It
also helps patients and their families in other ways, such as by
allowing the families to fulfill the patients’ final wishes. The
most widely recognized and commonly used tools for survival
prediction in end-of-life care include the Palliative Performance
Scale [1-4], Palliative Prognostic Index [5-8], and Palliative
Prognostic Score [9-12], which had been developed and
validated in the past decades.

These tools typically rely on clinical symptoms, signs, and
functional levels to estimate prognosis. Some tools incorporate
blood tests and clinician predictions to enhance the evaluation
process (see Multimedia Appendix 1 [1-16] for further detail).
Although these tools have shown fair performance in predicting
short-term survival lengths ranging from 7 to 60 days, studies
validating these tools have generally been conducted in inpatient
settings and have usually considered only a single evaluation
upon the patient’s admission [17,18].

The Need for Anticipating and Identifying the Dying
Process in Outpatient Care
End-of-life care encompasses various scenarios and preferences.
Many patients express a desire for home care, seeking a sense
of safety and comfort during their final weeks of life [19-23].
However, this phase can involve a range of potential events,
varying from mild discomfort to urgent medical needs to,
ultimately, the death event.

The existing tools may perform well in predicting survival from
a statistical and population perspective but fail to capture the
diverse trajectories of individual patients. For example, patients
with high prognostic scores may pass away more rapidly than
predicted, whereas those with low scores may survive longer
than expected. Given the emphasis on outpatient and home care
to reduce hospitalization and alleviate the burden on patients
and their families, it is crucial to anticipate and identify
impending changes in advance, including the dying process.
This allows for adequate preparation and support to be provided
promptly.

The Application of Wearable Devices and Artificial
Intelligence in End-of-Life Care
Digital health technology has been widely adopted in end-of-life
care for various purposes, such as education, telemedicine, and
prognosis prediction using electronic health records [24-31].
Although wearable devices have also been demonstrated to help
monitor and predict physical conditions [32-40], there have
been only a few studies on the use of wearable devices in
end-of-life care. One study focused on the feasibility and
acceptability of the devices [41,42], whereas another reported
that a deep learning model could predict future outcomes using
noncommercial actigraphy data in an in-hospital setting [43].
We believe that the prediction of death or emergent events using
wearable devices and artificial intelligence (AI) could enable
the medical team to provide timely and high-quality care.
However, there is currently no research examining the use of
commercial wearable devices in a general setting.

This pilot study aimed to combine wearable devices and machine
learning to develop a prediction model for the death event of
patients with cancer at the end of life. We hypothesized that
using a smartwatch for continuous monitoring may provide
greater insight into the progress of patients with terminal cancer
and, with the aid of machine learning techniques, may be able
to predict changes in their conditions.

Methods

Study Design and Participants
This is a prospective observational pilot study conducted at the
National Taiwan University Hospital from September 2021 to
August 2022. Patients who were receiving or going to receive
outpatient or home-based end-of-life care were referred by their
medical staff. The eligibility criteria were (1) age >20 years and
(2) terminal cancer diagnosis (incurable cancer with limited life
expectancy, judged by the physician of the primary team). The
exclusion criterion was the inability to use smartphones because
patients or their caregivers needed to use a smartphone to upload
the wearable device data.

Ethics Approval
The study protocol was approved by the institutional review
board of the National Taiwan University Hospital
(RIND202105097) and registered on ClinicalTrials.gov
(NCT05054907).
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Data Collection
The following data were collected during the study: basic
demographic data, clinical assessment data, and wearable device
data. Basic demographic data were evaluated upon enrollment,
including age, sex, cancer diagnosis, presence of metastasis,
systemic disease, and material use.

Clinical assessments were conducted on a weekly basis,
evaluating consciousness, appetite, symptoms, functional level
(using the Australia-modified Karnofsky Performance Status
[AKPS]) [44], and clinical care phase [45] (Multimedia
Appendix 2 [44,45]). The evaluation was usually performed by
the research assistant face to face or via a phone call, depending
on whether the patient had a clinic visit that week. However,
the patient’s condition was assessed by the inpatient care staff
if they were admitted to the hospital or by the home care team
if they received a home visit that week.

All participants were provided with a smartwatch, Garmin
VivoSmart 4 (Garmin), and asked to wear it all day as long as
they could tolerate it. The wearable device data were collected
continuously. Participants or their caregivers were taught to
operate a smartphone app to synchronize the wearable data on
a regular basis (at least once every 7 days). Physiological data,
including steps walked, heart rate (HR), sleep status, and blood
oxygen saturation (measured during sleep time), were collected.
The data were presented as a total sum or an average value of
1 day.

Most patients who received end-of-life care in Taiwan had a
life expectancy of just a few weeks or months [46]. To ensure
that we could follow most of these patients until the end of their

lives, we set a follow-up duration of up to 52 weeks. We
hypothesized that physiological changes, which can be detected
through wearable device measurements, may occur within a
shorter time frame, ideally less than 2 weeks before the death
event [47]. Consequently, we chose a 7-day prediction interval,
as it is an intuitively manageable time frame that enables
clinicians and caregivers to communicate essential information
to families in advance.

Data Processing
The data set was a combination of basic demographic data,
clinical assessment data, and wearable device data. As shown
in Figure 1, one day corresponded to one data point, which
served as an individual observation for model training. The
label was a recent death event, defined based on whether the
patient died within the next 7 days. As the clinical assessment
was performed once a week, we used forward filling until the
next assessment. For any data point of any case, if some of the
wearable data were missing, we used interpolation to fill in the
missing value. However, days without any wearable device data
uploaded were directly excluded from the analysis.

For cases that received a follow-up period longer than 50 days,
we kept all the data labeled as positive and randomly sampled
the remaining negative data points to bring the total number of
data points to 50 in each case. For cases with a follow-up period
shorter than 50 days, we included all of the data points. The
data set was then divided into testing (25%) and
training-validation (75%) sets, stratified by label and sex. To
improve the model training, we upsampled the positive data
points in the training-validation set. The entire flowchart of the
study is shown in Figure 2.

Figure 1. The combination of wearable device data and clinical assessments. The figure illustrates the process of data combination. Each column
represents 1 data point. Each row represents a different kind of data. Days without any wearable device data uploaded were directly excluded from the
analysis.
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Figure 2. Flowchart of the study. The figure illustrates the flowchart of the entire study from data collection and data processing to the training and
evaluation of machine learning models. CV: cross-validation; ML: machine learning; NTU: National Taiwan University.

Feature Engineering
The original features collected are listed in Textbox 1. To
account for changes in an individual’s condition, we calculated
the differences between the original features and their past
averages in wearable data and clinical data and used these
differences as new features.

For the feature selection, 2 demographic features (sex and age)
were directly included to account for the physical differences
between the individuals. Most wearable device features were

directly included in the model, except for 3. “Sleep duration”
parameters were transformed into the ratio of wakefulness to
sleep. “Stress” parameters were excluded owing to there being
no clear definition of their value. “Resting heart rate” data were
excluded considering the similarity of “resting heart rate” to
“minimal heart rate” and a lack of a clear definition of “resting.”
As for clinical assessment features, we used the SelectKBest
method built into the Scikit-learn package and selected the top
10 potential candidate features using ANOVA on the training
set. A correlation analysis between the selected features was
performed on the training-validation set.
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Textbox 1. All the original features collected in the study.

Physiological factor

• Steps

• Minimum heart rate (HR)

• Maximum HR

• Average HR

• Resting HR

• Average stress level

• Maximum stress level

• Sleep duration

• Deep sleep duration

• Light sleep duration

• Rapid eye movement (REM) sleep duration

• Awake duration

• SpO2 (expressed in average)

Clinical assessment

• Consciousness

• Appetite

• Urination

• Edema

• Pain score

• Sleep

• Drowsiness

• Nausea

• Constipation

• Diarrhea

• Dyspnea

• Fatigue

• Fever

• Functional level (using Australia-modified Karnofsky Performance Status)

• Care phase

• Pain control change

Basic demographic

• Sex

• Age

• Cancer diagnosis

• Diagnosis time

• Confirmed metastasis

• Past history

• Alcohol use

• Betel nut use

• Cigarette use
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Classification Model
We chose the following machine learning–based classifiers for
supervised learning: logistic regressions, support vector
machine, decision trees, random forests, k-nearest neighbor
(KNN), adaptive boosting (AdaBoost), and extreme gradient
boosting (XGBoost). We proposed a multiperceptron deep
neural network to compare the performance of deep learning
models with that of machine learning models on death
prediction. The models were implemented using the Python
library Scikit-learn.

Model Assessment
Three-fold cross-validation was used in the training-validation
set for hyperparameter tuning. The grid search parameters are

listed in Table 1. Once the optimal hyperparameters were
selected, we trained each model on the full training-validation
set and evaluated its performance on the testing set. We used
the area under the receiver operating characteristic curve
(AUROC), precision, recall (sensitivity), F1-score, specificity,
and accuracy as evaluation metrics. To reduce the impact of
randomness on the algorithms, we repeated the training process
100 times for each model and reported the average values of
the evaluation metrics. To investigate the impact of clinical
assessment on prediction, we also trained and evaluated the
models using only wearable device parameters, sex, and age as
input features.

Table 1. Grid search parameters in hyperparameter tuning.

Selected valueParameters_gridClassifiera

LogisticRegression •• Penalty=“11”Penalty: [“l1,” “l2,” “elasticnet,” “none”]
• •C: {1, 0.1, 0.01} C=0.1

•• Solver=“liblinear”Solver: [“lbfgs,” “newton-cg,” “liblinear,” “sag,” “saga”]

SVMb (kernel = “rbf,” degree = 3) •• C=1C: [0.1, 1, 10, 100]
• •Gamma: [1, 0.1, 0.01, 0.001] Gamma=1

DecisionTree •• Criterion=“entropy”criterion: [“gini,” “entropy”]
• •max_depth: [None, 4, 5, 6, 7, 8] Max_depth=None

•• Min_samples_split=2min_samples_split: {2, 4, 8, 10, 20, 30, 40}

RandomForest •• n_estimators=100n_estimators: {30, 100, 200}
• •max_depth: {4, 5, 6, 7, 8} Max_depth=8

•• Min_samples_split=2min_samples_split: {2, 4, 6, 8}
• •min_samples_leaf: {1, 2, 3} Min_samples_leaf=1

KNeighborsClassifier •• n_neighbors=5n_neighbors: {5, 10, 15, 20, 30}
• •weights: [“uniform,” “distance”] weight=“distance”

•• metric=“manhattan”metric: [“minkowski,” “euclidean,” “manhattan”]

AdaBoostClassifier •• n_estimator=500n_estimators: {5, 10, 30, 50, 100, 500}
• •learning_rate: [0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 1.0] learning_rate=1.0

•• algorithm=“SAMME.R”algorithm: [“SAMME,” “SAMME.R”]

XGBClassifier (eval_metric = “aucpr,”
n_estimators = 100, booster = “gbtree,”
colsample_bytree = 1, learning_rate =
0.3)

•• min_child_weight=0eta: [0.01, 0.05, 0.1, 0.15, 0.2, 0.3]
• •gamma: {0, 1, 5} max_depth=5

•• gamma=0max_depth: {5, 6, 8, 10}
• •min_child_weight: {0, 1, 2, 5, 10} eta=0.2

MLPClassifier (hidden_layer_sizes =
(64, 64, 64), activation = “relu”)

•• Solver=“lbfgs”solver: [“adam,” “lbfgs”]
• •alpha: [0.0001, 0.001, 0.01, 0.05, 0.1] Alpha=0.1

•• Learning_rate=“constant”learning_rate: [“constant,” “adaptive”]
•• Batch_size=150learning_rate_init: [0.01, 0.005, 0.001]

• •batch_size: {150, 300, 500} Learning_rate_init=0.01

aThe algorithms were performed using the Python package Scikit-learn 0.24.2, and all other parameters not shown in this table were set to their default
values.
bSVM: support vector machine.

Model Explanation
To explore the machine learning model more deeply, a Shapley
additive explanations (SHAP) algorithm was applied [48,49].
The impact of the feature values on each prediction of a recent
death event in the testing set was obtained.

User Feedback on Wearable Devices
To evaluate the feasibility of wearable devices in the population
with terminal cancer, we surveyed the participants during weekly
follow-ups to assess any difficulties or discomfort they
experienced while using the wearable device. At the end of the
study, we also solicited feedback from the family or main
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caregivers of the participants who had passed away about their
experience with the wearable device and their willingness to
use similar devices in the future.

Results

Patient Demographics
Between September 2021 and August 2022, a total of 45 patients
were enrolled. Data from 11% (5/45) of patients were
unavailable; therefore, these patients were excluded from the
data analysis: 4% (2/45) left the study early owing to personal
reasons, 4% (2/45) died soon after the enrollment, and 2% (1/45)

did not use the wearable device owing to a personal reason. In
all, 89% (40/45) of patients were included in the analysis.

Table 2 illustrates the demographics of the study participants,
with approximately one-third (12/45, 27%) being diagnosed
with lung cancer. The median age of the patients was 70.5 years.
At the time of enrollment, most participants had limited function,
as determined by the AKPS assessment. The median care
duration was 34 days, ranging from a minimum of 6 days to a
maximum of 271 days. Except for 5% (2/45) of patients who
withdrew from the study for personal reasons, most patients
were followed until their death, at which point their care time
was equal to their survival period.
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Table 2. Basic demographics of the participants (n=40).

Participant, n (%)Characteristic

Age group (years)

1 (2)≤40

12 (30)41-65

15 (38)65-80

12 (30)≥80

Sex

17 (42)Male

23 (58)Female

Cancer diagnosis

12 (30)Lung

6 (15)Colorectal

5 (12)Head and neck

4 (10)Pancreas

3 (8)Liver

2 (5)Breast

2 (5)Prostate

6 (15)Other

AKPSa score on initial assessment

12 (30)≤20

20 (50)30-50

7 (18)60-70

1 (2)≥80

Follow-up time or survival lengthb

2 (5)<7 days

14 (35)8-30 days

15 (38)1-2 months

5 (12)2-3 months

4 (10)>3 months

Wearable device use (%)

3 (8)<25

3 (8)25-50

6 (15)50-75

9 (22)75-90

19 (48)>90

38 (95)Mortality during follow-up timeb

28 (70)Participants whose wearable device data were collected until at least 7 days
before their death events

aAKPS: Australia-modified Karnofsky Performance Status.
bOverall, 2 (5%) patients left the study for personal reasons. Most patients were followed until their death, for whom the follow-up time represented
their survival period.
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Completeness of Data
The wearable devices were worn, on average, for 77.42%
(n=1657) of the total 2140 study days. Of the 40 participants,
34 (85%) wore the devices for more than half of their study
days. Moreover, 28 (70%) out of 40 participants wore the
devices until at least 7 days before their deaths. Sleeping-related
parameters were missing for approximately 14.67% (243/1657)
of the collected data points, which indicates that the devices
were not worn at night on those days.

Figure 2 shows the study flowchart and data processing. A total
of 1657 data points were collected, of which 177 (10.68%) were
labeled as positive. After a downsampling of the participants
with follow-up time longer than 50 days, a total of 1135 (68.5%)
out of 1657 data points were included, with 177 (15.59%)
positive labels. One-fourth of the data (284/1135, 25.02% data
points) were randomly assigned to the testing set, and the
remaining were assigned to the training set. Random upsampling

of the positive data points resulted in a total of 1436 data points
in the training-validation set, with an equal number of positive
and negative data points.

7-Day Death Event Prediction Model
A total of 24 features were included in the model (Table 3). The
correlation matrix of all the selected features in the
training-validation set is shown in Figure 3.

Figure 4 and Table 4 show the performance of the machine
learning models in terms of the AUROC and other evaluation
metrics. Among all the models, XGBoost yielded the best result,
with an AUROC of 96%, an F1-score of 78.5%, an accuracy of
93%, and a specificity of 97% on the testing set, whereas deep
neural network achieved an AUROC of 93.3%, an F1-score of
76.8%, an accuracy of 92.7%, and a specificity of
96.2%.Random forests and KNN also yielded fair performances.
The result of the models without any clinical assessment features
is shown in Table 5.

Table 3. Selected features in the models.

Featurea

Basic demographic • “sex”
• “age”

Clinical assessments • “consciousness”
• “consciousness_to_mean”
• “appetite”
• “appetite_to_mean”
• “urination”
• “urination_to_mean”
• “AKPS”
• “fatigue_to_mean”
• “care_phase”
• “care_phase_to_mean”

Wearable device parameters • “steps”
• “steps_to_mean”
• “maxheartrateinbeatsperminute”
• “maxheartrateinbeatsperminute_to_mean”
• “averageheartrateinbeatsperminute”
• “averageheartrateinbeatsperminute_to_mean”
• “minheartrateinbeatsperminute”
• “minheartrateinbeatsperminute_to_mean”
• “spo2_average”b

• “spo2_average_to_mean”
• “awake_sleep_ratio”
• “awake_sleep_ratio_to_mean”

aFeatures with name ending with “_to_mean” represent the calculated difference between the original feature and past-4-week average in clinical
assessment and between the original feature and past-7-day average in wearable device data.
b“Spo2_average” represents the average blood oxygen saturation measured during the nighttime.
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Figure 3. The correlation matrix of the selected features on the training-validation set. Features with name ending with “_to_mean” represent the
calculated difference between the original feature and past 4 week average in clinical assessment and between the original feature and past 7 day average
in wearable device data. AKPS: Australia-modified Karnofsky Performance Status.

Figure 4. Area under the receiver operating characteristic curve (AUROC) of each model on the testing set. AdaBoost: adaptive boosting; DNN: deep
neural network; DT: decision tree; KNN: k-nearest neighbor; LR: logistic regression; RF: random forest; SVM: support vector machine; XGBoost:
extreme gradient boost.
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Table 4. Model performances (based on evaluation metrics) on the testing set.

AUROCaSpecificityF1-scoreRecallPrecisionAccuracyModel name

0.8320.7500.5400.7200.3600.750LRb

0.9201.0000.5650.1301.0000.860SVMc

0.9380.9100.7850.9100.6600.910KNNd

0.7670.9300.6150.6050.6240.877Decision tree

0.9620.9590.7550.7330.7770.923Random forest

0.9600.9700.7850.7200.8500.930XGBooste

0.9000.9500.6750.6500.7000.900AdaBoostf

0.9330.9620.7680.7460.7900.927DNNg

aAUROC: area under the receiver operating characteristic curve.
bLR: logistic regression.
cSVM: support vector machine.
dKNN: k-nearest neighbor.
eXGBoost: extreme gradient boost.
fAdaBoost: adaptive boosting.
gDNN: deep neural network.

Table 5. Model performance without the clinical assessment features.

AUROCaSpecificityF1-scoreRecallPrecisionAccuracyModel name

0.8140.6900.6100.8700.3500.720LRb

0.8240.9900.3350.0700.6000.840SVMc

0.8210.8200.5650.7000.4300.800KNNd

0.7120.8940.5120.5300.4940.835Decision tree

0.8930.9380.5560.5010.6100.868Random forest

0.8680.9600.6100.5000.7200.890XGBooste

0.8150.8800.5200.5700.4700.830AdaBoostf

0.8990.9440.6600.6320.6870.893DNNg

aAUROC: area under the receiver operating characteristic curve.
bLR: logistic regression.
cSVM: support vector machine.
dKNN: k-nearest neighbor.
eXGBoost: extreme gradient boost.
fAdaBoost: adaptive boosting.
gDNN: deep neural network.

Explainable AI
Figure 5 and Table 6 show the results of the SHAP value
analysis for the top-performing model, XGBoost, on the testing
set. We also analyzed the SHAP values for the random forest,
KNN, and deep learning models, which demonstrated similar
performance levels (the results are shown in Multimedia
Appendix 3). Among these models, the feature “average heart
rate” consistently had the highest impact on prediction. Other

features that were ranked in the top 5 by at least 2 of the models
included “care_phase,” “urination,” “appetite,” “sex,” and
“steps.”

For the best performing model, XGBoost, the distribution of
the testing set data points in terms of “time before death events”
and the prediction results is shown in Figure 6. A few samples
of the SHAP analysis in the wrong prediction cases are shown
in Figure 7.
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Figure 5. The Shapley additive explanations (SHAP) value of the extreme gradient boosting model on the testing set. The summary plot illustrates the
feature values and the SHAP values of individual points. Features with name ending in “_to_mean” represent the calculated difference between the
original feature and past 4 week average in clinical assessment and between the original feature and past 7 day average in wearable device data. AKPS:
Australia-modified Karnofsky Performance Status.
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Table 6. The mean absolute Shapley additive explanations (SHAP) value of the extreme gradient boosting model on the testing set.

Mean absolute SHAP value (SD)Feature

0.1454 (0.088)averageheartrateinbeatsperminute

0.0600 (0.040)care_phase

0.0533 (0.054)steps

0.0356 (0.032)urination

0.0328 (0.025)appetite

0.0307 (0.023)consciousness_to_mean

0.0273 (0.025)steps_to_mean

0.0269 (0.028)minheartrateinbeatsperminute

0.0268 (0.034)age

0.0265 (0.017)averageheartrateinbeatsperminute_to_mean

0.0248 (0.026)awake_sleep_ratio_to_mean

0.0231 (0.023)care_phase_to_mean

0.0218 (0.016)AKPSa

0.0217 (0.023)sex

0.0193 (0.017)fatigue_to_mean

0.0175 (0.033)appetite_to_mean

0.0163 (0.018)spo2_average

0.0157 (0.016)awake_sleep_ratio

0.0143 (0.017)spo2_average_to_mean

0.0140 (0.013)minheartrateinbeatsperminute_to_mean

0.0134 (0.021)urination_to_mean

0.0119 (0.012)consciousness

0.0077 (0.010)maxheartrateinbeatsperminute

0.0077 (0.008)maxheartrateinbeatsperminute_to_mean

aAKPS: Australia-modified Karnofsky Performance Status.
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Figure 6. Testing data distribution based on time before death (extreme gradient boosting). This figure illustrates a bar plot depicting the distribution
of data based on the time before death. The x-axis represents the time before death events in days, whereas the y-axis represents the count of specific
prediction results. Within the 7-day range, the data points were labeled as positive, resulting in either true-positive or false-negative outcomes. Conversely,
data points occurring >8 days before death were labeled as either true-negative or false-positive outcomes. Therefore, the pink and red bars in the figure
represent the distributions of false-negative and false-positive cases, respectively, as predicted by extreme gradient boosting.

Figure 7. The Shapley additive explanations (SHAP) value analysis of 4 wrong prediction cases. This figure shows the SHAP value analysis of 4 wrong
prediction cases. The upper 2 cases demonstrate the substantial impact of the average heart rate on the prediction, resulting in false-negative or
false-positive outcomes. By contrast, the lower 2 cases exhibit the minimal or negligible effects of the average heart rate, with other factors dominating
the prediction results. Note: features with name ending in “_to_m” represent the calculated difference between the original feature and past 4 week
average in clinical assessment and between the original feature and past 7 day average in wearable device data. HR: heart rate.
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User Feedback on Wearable Devices
User feedback was collected when the patient left the study,
mostly owing to death. All the participants relied on their
caregivers to update the data from the wearable device and
charge the device. The demographics of the caregivers and
feedback details are presented in Table 7 and Textbox 2. Overall,
30% (12/40) of the caregivers were aged ≥65 years, and only

32% (13/40) had experience in using wearable devices. Most
of the caregivers could operate the device well after being
instructed, and 70% (28/40) of the participants expressed
willingness to participate in a similar study in the future. The
most frequently reported problem was forgetting to charge the
wearable device, which needed to be done once every 5 days
in our study. Redness and itchiness of the skin were the main
side effects reported, but only in a few patients (2/40, 5%).

Table 7. Demographics of the caregivers (n=40) and feedback on wearable device use.

Participants, n (%)Characteristic

Age group (years)

3 (8)<35

8 (20)35-50

17 (42)50-65

10 (25)65-80

2 (5)>80

Educational level

6 (15)Elementary school

4 (10)Junior high school

9 (22)Senior high school

20 (50)College or university

1 (2)Unclear

Previous experience in using wearable devices

13 (32)Yes

27 (68)No

Cooperation with wearable device and smartphone use

30 (75)No problem with manipulating the device or apps

8 (20)Need some help but generally fine

2 (5)Need a lot of help or completely unable to cooperate

Willing to participate in a similar study in the future (answer from the caregiver or wearable device user)

28 (70)Yes

12 (30)No

Problem when using the device

6 (15)Forget to charge the device

2 (5)Discomfort (itch or redness) on the skin

2 (5)Forget to wear

Textbox 2. Opinions and feedback regarding the wearable device and the study.

• “Want a larger monitor on the watch.”

• “Want to directly manipulate and see data on the watch.”

• “Hope more detailed description on the parameter, and thus to help the user understand its meaning.”

• “Patient felt bothered by the vibration of watch.”

• “Not wearing the device since the patient is in delirium and kept scratching the wristband unconsciously.”

• “Not wearing due to admission and wrist was inserted with IV catheter.”

• “Not wearing due to admission and there is only foreign caregiver at bedside. Families could not help charge the watch or update the data.”
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Discussion

Principal Findings
Although we are not the first to explore the use of wearable
devices in end-of-life care, we are unique in our approach. Pavic
et al [41,42] demonstrated the feasibility of wearable devices
and compared the data of patients with readmission with those
of patients without readmission. Yang et al [43] used actigraphy
along with deep learning to predict the prognosis of patients
who were hospitalized. However, actigraphy recorded only wrist
movements, and their study was confined to a hospital setting.
Our study extends this area of research by developing prediction
models using data from commercially available wearable devices
in a broader, general end-of-life care setting. In addition, we
demonstrated the potential of AI in predicting death events
among patients with cancer at the end of life.

Wearable Device Parameters in Death Event Prediction
Our study has proved that the physiological data measured by
a wearable device can be used in clinical prediction models.
The SHAP values further provide explanations for the
predictions of the models. Among all the parameters in our
study, “average heart rate” was identified as the most important
feature in predicting a recent death event. This is consistent
with previous studies, as an increased HR was noticed before
an emergency visit to a hospital or in the last days of patients
with a terminal illness [41,47].

Besides HR, Pavic et al [41] also found that “heart rate
variation” and “steps speed,” but not “steps count,” were
significantly different between patients with and patients without
emergency visits to hospitals. Contrary to their result, “steps
count” was identified as an indicating parameter in some of our
models. We suspect that the difference came from the relatively
poor functional level of our population. Ideally speaking,
individuals who are ambulatory would be the most suitable
participants for wearable device studies, as certain parameters
such as “steps count,” “steps speed,” and “climbing stairs” could
yield more diverse and enriching data in these populations.
However, to faithfully reflect the demographics that we typically
care for, we did not establish any exclusion criteria based on
the functional level. As a result, most participants in our study
were patients who were not ambulatory, as evidenced by their
AKPS scores upon enrollment—over 80% (32/40) of the patients
scored <50.

Although our findings may have limitations when applied to
individuals with better functional status, we believe that the
results are pertinent and applicable to the patients we typically
care for. Interestingly, even though our patients had limited
functional abilities, we discovered that the ambulatory parameter
“steps” still held predictive value for imminent mortality. This
could indirectly reflect the patient’s status in very basic
activities, such as changing posture, going to the bathroom, and
sitting up. Patients tend to stay in bed more and decrease these
activities when they enter the terminal phase.

The wearable device used in our study can measure blood
oxygen saturation (SpO2), which is an increasingly common
function for new wearable devices in the market. As it has been

reported that saturation decreases in the last days of patients
[47], it is a little surprising that the parameter does not seem to
have a role in any of our models. A reasonable explanation for
this is varied data quality. Until now, there have been no
commercial smartwatches or wristbands that are well validated
for measuring SpO2 [50]. Aside from improving the quality of
hardware measurement, a possible solution is to consider the
change and variation in oxygen saturation on a second or minute
scale, rather than the daily average value. Deep learning models
for high-dimensional time-series data, such as convolutional
neural network and long short-term memory, provide good
performances for this type of data [43,51,52] and will be
considered in our future work.

Clinical Assessments in Death Event Prediction
As our explainable AI models have shown, clinical assessment
features play a role in predicting death events. Among the
models with a good performance, we found that a sign of
reduced urine output, poor appetite, and deteriorating clinical
care phase suspected by the clinical caregiver were ranked as
high-impact features.

To further investigate the impacts, we reran the models using
only wearable device parameters, sex, and age as input features.
This resulted in lower precision and recall in predicting events
while maintaining fair specificity, as shown in Table 5. When
building the data set, we used forward filling in clinical
assessment data to ensure that it reflects the most recent
evaluation of the patient’s condition at that time point. In our
opinion, the clinical assessment features might help the models
determine whether the physiological changes detected by the
wearable device are meaningful indicators of a potential event.
These results suggest that clinical assessment is just as important
as wearable device monitoring.

Wrong Prediction Case Analysis
We further examined the worst case of the XGBoost model
prediction. First, we examined the distribution of “time before
death events” in our testing set and identified that all the wrong
predictions fell within 2 ranges of time: 1 to 7 days (false
negatives) and 7 to 12 days (false positives) before death, as
shown in Figure 6. These results reinforce the high specificity
of our model, as patients who were far from the death event (eg,
20 days or longer before death) were rarely misclassified as
“going to die.” Among the 284 data points in the testing set,
only 6 (2.1%) false-positive predictions occurred, and in all
cases, the patients died within 12 days.

During the review of the SHAP value analysis for incorrect
predictions, 2 main types of explanations emerged, with the key
feature being the “average heart rate.” Among the 6
false-positive predictions, 3 (50%) were primarily influenced
by an elevated average HR, whereas the other 3 (50%) were
driven by factors such as a decreased appetite or deteriorating
care phase. A similar pattern was observed for the false-negative
predictions within 1 to 7 days before death. In approximately
half of the cases, a relatively low average HR played a
significant role in predicting a negative outcome, accompanied
by other parameters, including “care phase,” “appetite,”
“consciousness,” and “steps,” aligning in the same direction.
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In the remaining half of the cases, the average HR had a small
positive impact, whereas the other parameters contributed to a
negative prediction. Some case results are depicted in Figure
7, and a comprehensive analysis of all the incorrect cases can
be found in Multimedia Appendix 4.

Our analysis suggests that the average HR is an important
indicator but not an absolute one in the 7-day death prediction
model. In a vital sign study conducted in a palliative care unit,
an increasing trend in HR was observed up to 2 weeks before
death [47]. An increased HR may indicate a natural dying
process, but it could also signify complications such as occult
infection or sepsis. However, this trend was not observed in all
patients. Conversely, certain causes of death, such as cardiac
death, may be very acute events and not exhibit signs days
before death. Different causes of death may contribute to the
model’s false predictions.

Unknown Interactions Between Parameters and
Models
It is interesting to investigate whether age plays a role in the
prediction. We observed that the average HR had more positive
impacts on the prediction results in the younger patient group
(aged <65 years). When reviewing the wrong predictions made
for the data points belonging to younger patients, especially for
the false-negative cases, we found that the average HR increased
in all cases, leading to a small positive impact on the prediction
of death events. As for the false-negative cases from patients
aged >80 years, only 1 (25%) out of the 4 cases showed a small
positive impact from the average HR, whereas the other 3 (75%)
cases had a strong negative impact from it. This finding aligns
with the well-known concept that the maximal HR and HR
stress response decrease with age [53,54]. However, the model
still ranked the average HR as the most important feature in
both the aged 65-80 years and aged >80 years patient groups.
It remains unclear whether there are more relationships between
age and other parameters. Our analysis regarding different age
groups is shown in Multimedia Appendix 5.

Although explainable models can provide high-impact features
and, therefore, seem to be more reliable for clinical use, there
have been debates over the use of explainable AI in health care
[55]. One issue with these models is that they may not always
provide accurate or clinically reasonable interpretations of data.
For instance, in our deep learning model, the feature “sex” was
ranked as having a high impact, and male data points had a
higher SHAP value. However, this does not necessarily mean
that male patients are more likely to die within 7 days, as our
data were stratified by sex. There may be interactions between
the “sex” feature and other features that contribute to the
model’s prediction, but we lack the means to adequately explore
this. Current explanation methods are approximations of a
model’s decision-making process and may not accurately reflect
the true underlying logic. Therefore, it is important to interpret
the SHAP values and other explanations from explainable AI
models with caution.

Feasibility of Wearable Devices and AI in End-of-Life
Care
Based on the feedback from our users, caregivers play a crucial
role in the operation of these devices, as many of our patients
were too weak to operate the devices as their illness progressed.
However, to our surprise, many of them had no difficulty using
the devices and expressed willingness to participate in similar
studies in the future. Despite this, the results showed that, in
the 38 patients who passed away during their follow-up time,
only 28 (74%) out of wore their devices until 7 days before their
death. This suggests that there are still many situations in which
wearable devices become a burden for patients at the end of
their lives. For example, patients may continuously try to remove
the devices when they are in a delirium state. Another scenario
is that when patients need to be admitted to the hospital, their
family caregivers may not be able to stay with them and help
charge the device or update the data. In 1 instance, although
uncommon in end-of-life care, a caregiver reported having to
remove the device because the patient had intravenous catheters
on both hands while in the hospital. These issues highlight the
limitations of the device hardware for these patients, but we
expect these limitations to decrease as wearable technology
continues to advance in size, form, and function.

Potentials of Environmental Factors in Predicting the
End-of-Life Status
In addition to the clinical conditions and personal physiological
changes detectable through wearable device data, environmental
factors have been shown to benefit the models in predicting the
disease status [32]. It is intriguing to explore whether external
environmental variations, such as temperature or air quality,
can impact the condition of patients at the end of life,
particularly in the face of the current challenges posed by
climate change. We obtained temperature data for Northern
Taiwan from a public data set as a new input feature and
examined their effect on model performance [56]. However,
owing to limitations in interpretation and the fact that this feature
was not originally included in our study design, we have
included the analysis results in Multimedia Appendix 6.
Nevertheless, we believe that the inclusion of environmental
factors in prediction models holds promise, provided that it is
done within the framework of a well-designed study and a larger
cohort in the future.

Limitations
Our study is subject to several limitations that should be
acknowledged. First, there was a large variation in survival time
among the patients, resulting in data imbalances within our data
set. We attempted to mitigate this issue by performing
downsampling on individuals with longer survival times.
Second, the nature of our study resulted in a class imbalance
between the positive and negative labels. We intentionally did
not perform any processing on the testing set to maintain the
real-world distribution of the data. We believe that the
performance of the models can be adequately evaluated using
precision, recall, and F1-score. Third, it is important to note that
our study was conducted on a relatively small cohort. Therefore,
further validation is necessary to ensure the robustness of the
prediction models.
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Future Scope of Wearable Devices and AI in
End-of-Life Care
Many patients with terminal cancer expressed a preference for
living and dying at home, as it provides comfort, autonomy,
security, and social interaction [19-22,57]. High-quality
home-based and outpatient end-of-life care relies on timely
medical and emotional support from the care team and good
preparedness for death [23,58]. This study presents a prototype
that demonstrates the potential of combining wearable devices
and machine learning models to perform noninvasive, real-time
monitoring of physical conditions and provide an early warning
system for impending death events. To further advance this
field, we propose three key directions for future research:

1. External validation: validate the robustness of prediction
models in different health care facilities and among diverse
populations, including patients at the end of life without a
cancer diagnosis, to ensure the generalizability of the
models.

2. Prediction of other important events: explore the prediction
of crucial events other than death in end-of-life care, such

as emergent medical needs that require timely intervention.
These predictions can significantly impact the quality of
care provided to home-based patients.

3. Real-world application: assess the benefits of integrating
wearable devices and AI into real-world end-of-life care
settings. For example, determine whether AI-powered
predictions can help reduce emergency department visits
or whether wearable devices enhance patients’ sense of
safety during home care. Further research is needed to
examine the practical application of wearable devices and
AI in end-of-life care, with a focus on improving the overall
quality of the care provided.

Conclusions
The findings of this study suggest that it is possible to predict
death events among patients with terminal cancer using wearable
devices and machine learning techniques. Although our
prototype demonstrates the potential of these approaches in
end-of-life care, further research is needed to confirm the
robustness of the models and their effectiveness in real-world
settings.
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