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Abstract

Background: Reference intervals (RIs) for patient test results are in standard use across many medical disciplines, allowing
physicians to identify measurements indicating potentially pathological states with relative ease. The process of inferring
cohort-specific RIs is, however, often ignored because of the high costs and cumbersome efforts associated with it. Sophisticated
analysis tools are required to automatically infer relevant and locally specific RIs directly from routine laboratory data. These
tools would effectively connect clinical laboratory databases to physicians and provide personalized target ranges for the respective
cohort population.

Objective: This study aims to describe the BioRef infrastructure, a multicentric governance and IT framework for the estimation
and assessment of patient group–specific RIs from routine clinical laboratory data using an innovative decentralized data-sharing
approach and a sophisticated, clinically oriented graphical user interface for data analysis.

Methods: A common governance agreement and interoperability standards have been established, allowing the harmonization
of multidimensional laboratory measurements from multiple clinical databases into a unified “big data” resource. International
coding systems, such as the International Classification of Diseases, Tenth Revision (ICD-10); unique identifiers for medical
devices from the Global Unique Device Identification Database; type identifiers from the Global Medical Device Nomenclature;
and a universal transfer logic, such as the Resource Description Framework (RDF), are used to align the routine laboratory data
of each data provider for use within the BioRef framework. With a decentralized data-sharing approach, the BioRef data can be
evaluated by end users from each cohort site following a strict “no copy, no move” principle, that is, only data aggregates for the
intercohort analysis of target ranges are exchanged.

Results: The TI4Health distributed and secure analytics system was used to implement the proposed federated and
privacy-preserving approach and comply with the limitations applied to sensitive patient data. Under the BioRef interoperability
consensus, clinical partners enable the computation of RIs via the TI4Health graphical user interface for query without exposing
the underlying raw data. The interface was developed for use by physicians and clinical laboratory specialists and allows intuitive
and interactive data stratification by patient factors (age, sex, and personal medical history) as well as laboratory analysis
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determinants (device, analyzer, and test kit identifier). This consolidated effort enables the creation of extremely detailed and
patient group–specific queries, allowing the generation of individualized, covariate-adjusted RIs on the fly.

Conclusions: With the BioRef-TI4Health infrastructure, a framework for clinical physicians and researchers to define precise
RIs immediately in a convenient, privacy-preserving, and reproducible manner has been implemented, promoting a vital part of
practicing precision medicine while streamlining compliance and avoiding transfers of raw patient data. This new approach can
provide a crucial update on RIs and improve patient care for personalized medicine.

(J Med Internet Res 2023;25:e47254) doi: 10.2196/47254
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Introduction

Reference Intervals in Clinical Diagnostics
The use of blood tests is a cornerstone of disease diagnosis and
health assessment in clinical medicine. When clinicians try to
assess the health status of patients, they heavily rely on
laboratory tests and population-based measures such as the
reference interval (RI). In their core concept, RIs enclose a fixed
range of values from a predefined reference population (eg,
95%), and it has long been established that they are effective
in clinical use as long as they are precise and accurate [1-4].
Clinical laboratories must independently establish and
periodically verify their RIs in use through admissible guidelines
[5]. The widely used guideline EP28-A3c developed by the
Clinical and Laboratory Standards Institute (CLSI) and the
International Federation of Clinical Chemistry (IFCC) states
that RIs should be estimated from cohort-relevant reference
populations, where not only patient group–specific covariates
such as age, biological sex, ethnicity, and region are considered
but also differences in preanalytical factors are accounted for
[6]. The process is cumbersome, costly, and often beyond the
scope and possibilities of many independently operating
laboratories: cohort-specific analyses require stratification by
a specific combination of the above-mentioned covariates.
Therefore, these analyses are frequently limited to small sample
sizes owing to a lack of available data [7,8].

In addition, most studies have been conducted with very lenient
inclusion and exclusion criteria owing to a missing overarching
definition of “health,” covering both the normative aspects
(well-being and functioning) and more descriptive aspects of
health evaluation (test result assessment). This hinders the
comparability of the generated RIs [9]. A common classification
framework to define the health status of the included participants
based on predetermined medical conditions is required. In this
context, the International Classification of Diseases (ICD) is a
commonly used coding system to help represent nuanced
diseases to broader morbidities [10]. Inference of RIs with the
exclusion or inclusion of specific combinations of diseases
(representing the health status of the patient) might enable the
personalization of the diagnostic use and provide target ranges
that allow the interpretation of the results based on the specific
condition of the individual patient [11]. This would essentially
allow the creation of RIs as “expectation ranges” for “digital
twins,” that is, patients who share similarities with the patient
under observation but do not have a specific disease. Particularly

for older patients or patients with multiple morbidities, this
comparison is seemingly more appropriate, as the concept of a
“healthy reference” is inherently unattainable for these
populations [12]. In addition, international efforts, such as that
of the IFCC’s Task Force on Global Reference Interval
Database, aim at generating resources for RIs at a global scale
[13].

Harmonized RIs
The aforementioned limitations can be overcome through
multicenter collaborative RI studies, where standardized
protocols help derive harmonized RIs at a national level by
pooling the appropriate number of patients from multiple cohorts
[14]. Such standardization requires clear classification systems,
for example, for the nomenclature, terminology, units, and
formats used, to ensure the reproducibility of all the steps of
the complete laboratory testing procedure, possibly for
international application [15,16]. This is an ongoing global
process, as laboratories in Europe [17-22], Africa [23-25], North
America [26], Asia [27-29] and Australia [30] aim at deriving
nation-specific RIs through multicenter studies.

The broader introduction of locally inferred RIs from
harmonized data sets has not been observed across the board in
clinical laboratories [31,32]. Endeavors estimating patient
group–specific RIs from electronic health records have shown
successful results yet remain sparse [33]. This is mostly due to
a lack of sophisticated analysis tools connecting laboratory
databases, where multidimensional data are readily available,
to physicians in need of clinically relevant RIs. For each
standardization effort, clinical physicians or laboratory
specialists have to go through significant administrative burden,
as they realign the laboratory data for each RI study individually.

The Need for a Streamlined Research Data-Sharing
Infrastructure
Switzerland has one of the most restrictive laws surrounding
the nature of the collection and sharing of identifying
information and personal data, including health data (all referred
to as sensitive data). Sensitive data require careful governance,
covered by the Swiss Federal Act on Data Protection 1992
(article 3c) [34]. The processing of sensitive data for research
is further referenced in the Human Research Act (Federal law
810.30). Unless clinical research data are anonymized, studies
require the approval of an ethics committee. Owing to these
prerequisites, intercohort data sharing mandates a Data Transfer
and Use Agreement between the data provider and the recipient
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before any sensitive data can be exchanged. Such a practice is
common in many other countries as well and causes significant
administrative overhead, at times rendering potential
stakeholders hesitant to join multiparty research projects. In
Switzerland, a national IT environment for sensitive research
data, the BioMedIT infrastructure, was established to ensure a
backbone for the secure transfer, storage, management, and
processing of confidential data [35]. Despite all the progress
achieved by this streamlined infrastructure, the hurdle for
nationwide data pooling is still relatively high. A recent effort
to establish a Swiss multicohort resource in pharmacogenetics
has been documented to take up to a year for just setting up the
legal and scientific framework [36]. Novel privacy-preserving
data exchange and data processing options or platforms could
alleviate the regulatory burden imposed on multicohort projects.

The BioRef Vision
The need for an intercohort data-sharing infrastructure that
allows a more streamlined process for individual researchers
accessing the relevant reference populations and estimating
applicable RIs is apparent. The BioRef rationale is to establish
an infrastructure that allows the creation of precise RIs from
pooled data based on an interoperable semantic framework.
Instead of placing the responsibility for data interoperability
and aggregation on individual laboratory specialists, establishing
an opportunity for clinical laboratories to conveniently and
reproducibly check whether their standard RIs apply to their
patient populations is important. It should be an essential part
of precision medicine practiced today. Ideally, this involves
web applications with easily accessible graphical user interfaces
(GUIs) that allow the recurrent aggregation of patient data in
an accreditation-proof manner and the transfer of the aggregated
data from all partners to the interested laboratory specialists
(end users). The BioRef initiative relies on a federated and
privacy-preserving approach for secure analytics based on
multiparty homomorphic encryption [37]. Combining the data
of multiple providers broadens a project’s data basis, that is, it
results in higher data coverage. Moreover, it increases the
chances of gaining insights from rare patient profiles. Data from
diverse sources, however, tend to be heterogeneous, which
makes it more difficult to leverage and extract interoperable
insights. Our federated approach is implemented in the software
system TI4Health, the commercial version of its open-source
predecessor Medco, a secure system for privacy-preserving
federated data exploration and analyses based on advanced
privacy-enhancing technologies [38,39]. With this, data remain
on the premises and under the full control of the participating
institutions. Only the aggregated result of the requested
computation is released over the entire distributed virtual
database to an authorized user [40]. As RIs are essentially a
population aggregate, systems using aggregate data, such as
TI4Health, reduce the risk of reidentification of patients owing
to the potentially imperfect deidentification of clinical data.

Methods

BioRef Governance and Semantic Interoperability
The parties involved in the Swiss BioRef project have formed
a multicenter research consortium, the BioRef consortium, which

currently consists of 4 major cohort sources in Switzerland: the
University Hospital Bern (“Inselspital”), the University
Children’s Hospital Zürich (Kinderspital Zürich), Swiss
Paraplegic Research, and the University Hospital Lausanne
(Centre Hospitalier Universitaire Vaudois [“CHUV”]). The
consortium agreement covers multiple aspects of this
collaborative effort, including data governance, data delivery,
and the required network infrastructure. Participating institutions
agreed to contribute their data by making them accessible via
a decentralized platform and transferring them to a centralized
trusted data host for a validation approach.

The key component for creating a sustainable and an expandable
infrastructure is the definition of intercohort concepts regarding
semantic interoperability, availability, dimensionality, and
quality of the data provided by different cohorts. It is vital that
each clinical partner involved is willing to process the data to
adhere to harmonized and interoperable standards for data
encoding, including Logical Observation Identifiers Names and
Codes (LOINC [41]; for analyses); the ICD, Tenth Revision
(ICD-10; for diagnoses); and the Anatomical Therapeutic
Chemical classification system (for medication). As a preferred
semantics and data representation logic of the Swiss
Personalized Health Network (SPHN), the Resource Description
Framework was chosen, with the underlying BioRef ontology
based on the SPHN ontology (release 2021-2) [42].

BioRef Data Recruitment
Data from each contributing cohort consist of quantitative
laboratory test results (“measurements”) from 46 frequent
laboratory variables uniquely defined by LOINC encoding
(Multimedia Appendix 1). Data extraction from the clinical data
warehouses and data deidentification (removal of direct
identifiers) were exclusively carried out locally by the data
scientists of each consortium partner. Data were included only
if the patients provided written consent. Routine clinical
laboratory data of inpatients were included if at least one
LOINC-coded laboratory analysis of interest was performed
during the administrative case (admission) and at least one
diagnosis (ICD-10-German Modification [GM] coded) was
recorded after the administrative case was closed. Notably,
inpatients of Swiss hospitals always have at least one ICD-10
diagnosis assigned for billing purposes. To limit the bias caused
by repeated measurements, only the first measurement of each
LOINC of interest per administrative case was included in each
contributing cohort data set. This first value out of a series of
values is the least influenced by potential therapeutic measures.
Such a practice is in line with previous cohort-specific RI studies
[32,43,44]. Each laboratory measurement is currently enriched
with patient record information from the clinical data
warehouses of the involved hospitals, including age, sex, and
the 5 most relevant previously established diagnoses using the
ICD-10-GM codes [10]. Age is provided in years with a
precision of 3 decimal places for patients aged <18 years and
as whole numbers (integer) for patients aged ≥18 years.
Attributes for sex are assigned from the set “female, male, other,
or unknown,” as predefined in many hospital information
systems. The diagnoses used in the BioRef data set represent
those recorded at the discharge of the patient. The “relevance”
of diagnoses follows the guidelines of the Swiss Federal Office
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of Public Health, that is, diagnoses represent the so-called
«billing diagnoses» used by hospitals for reimbursement from
health insurances. In general, the effort required and severity
of a diagnosis are considered to correlate. This approach is
widely and uniformly used across hospitals. Furthermore,
information on the generation of the measurement (analytical
factors) is included as linked metadata. This specifies the
analyzer and the test kit and reagent used through the unique
identifiers for medical devices from the Global Unique Device
Identification Database [45] as well as the type identifiers from
the Global Medical Device Nomenclature [46]. These additional
metadata help overcome the sparsity of information associated
with LOINCs with respect to the applied method. Data made
available to the project under the consortium agreement span
the time frame from June 2014 to February 2023.

Ethical Considerations
This study received an ethics waiver from the cantonal ethics
committee of Bern (Business Administration System for Ethics
Committees; BASEC-Nr: Req-2020-00630). The platform was
initialized using a bulk data load. It is updated on a regular basis,
although there is no particular pressure for frequent updates.

BioRef-Federated Analytics Approach
On the basis of common data semantics and under a common
contractual architecture, the Swiss BioRef project relies on a
decentralized approach for multicohort data pooling to align
the BioRef data independently of the available IT resources at
each cohort site. Consortium partners compile their data set on
their own accord while maintaining full control over the
data-sharing process.

The decentralized mechanism underpinning the BioRef
infrastructure is based on a privacy-preserving protocol that
uses a multiparty homomorphic encryption scheme and
obfuscation techniques to allow privacy-preserving federated
querying with secure aggregation [37]. It relies on a fully
decentralized peer-to-peer infrastructure with no central node,
enabling the processing of sensitive data under homomorphic
encryption and release of results aggregated across all
participating sites [37]. This federated approach follows a strict
“no copy, no move” principle, where clinical data do not leave
the local site’s database, and only encrypted aggregates are
exchanged and further processed between different nodes,
always under encryption. This information exchange system
requires a minimum of IT components deployed locally. If a
data holder is unable to provide the required infrastructure and
personnel, node instances can also be installed off-premises
within a trusted IT infrastructure.

A proven centralized approach involving a trusted data host
system jointly used by the data providers was also implemented
as a baseline reference for the verification and validation of the
federated approach. This mechanism relies on the existing secure
BioMedIT network set up by the Swiss Institute of
Bioinformatics: data from BioRef consortium partners are locally
collected, encrypted on site with traditional public key
cryptography by the data providers, and subsequently securely
transferred to a highly restricted project space within the
BioMedIT network [47].

Statistical Analysis

Data Preprocessing
The BioRef platform allows the user to interactively design a
cohort for querying an underlying “big data” source. To tidy
up the input data, a preliminary data cleaning step was
introduced to remove measurements from the raw data set that
had missing or clearly erroneous entries, including occasional
negative values where an analysis does not allow them or
ICD-10-GM codes not in use as of May 2022. Furthermore,
outlier detection was introduced as the first step of the
interactive RI inference algorithms to limit the influence of
extreme values (outliers) on the statistical inference. An outlier
is informally defined as a data point that significantly deviates
from most of the available data [48]. A 3-sigma range (based
on the query sample’s mean and SD) was identified to generally
detect data points from the harmonized multicohort data set that
most likely stemmed from the patient population under
consideration. Values outside this 3-sigma range were flagged
and removed.

RI Calculation Methods
The gold standard for inferring the RI has long been direct
methodology, where test results are sampled from a
homogeneous and presumably healthy reference population,
and the 2.5th and 97.5th percentiles of the obtained sample are
determined [49]. Owing to cohort-specific definitions of health,
it is often difficult to harmonize RIs across different patient
groups. Indirect methods of RI estimation offer a way to address
this limitation [50]. Indirect methods sample and weight test
results from a mixed clinical population, including both
physiological and pathological test results from routine patient
care (general admission to the hospital) [51]. In the context of
BioRef, both direct and indirect RI inference methods (with
parametric and nonparametric estimations) were adjusted to be
fully automated. Following the official recommendation, the
standard nonparametric quantile estimation method was
implemented [6]. Various factors influence the precision and
consistency of the inferred RIs, such as measurement variability;
sample size; and, in general, the underlying reference value
distribution. For skewed reference distributions exhibiting a
single peak, an adaptation of the robust quantile estimator
method was implemented [52]. This method contains a
parametric Box-Cox transformation step and uses a biweight
quantile estimator to calculate the appropriate ranks [53,54].
For analyte distributions that exhibit multiple peaks, an iterative
method was proposed to resolve the Gaussian main mode from
the distribution mixture [55]. This involves iteratively trimming
the overall distribution, assuming a Gaussian distribution in the
central region, and subsequently readjusting the SD to account
for the trimmed data until convergence. Alternatively, a
modified and fully automated Bhattacharya procedure was
implemented, where binned data are used to decompose a
distribution into Gaussian subcomponents [56]. The developed
methods underwent internal testing to ensure their robustness
toward outliers and ability to handle varying degrees of
skewness. Using bootstrapping techniques, it is possible to
estimate the precision of all the implemented methods by
generating 90% CIs for the RI boundaries. These CIs
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simultaneously reflect the precision of the pulled analyte data
aggregate and the suitability of the RI methodology in the light
of the overall estimation.

Power
The BioRef analytics platform does not estimate new RIs for
reference samples of <120 patients, thereby considering the
general statistical limitations of RI estimation in accordance
with the CLSI guidelines [6]. This means that cohorts of interest
with >120 individuals are sufficiently represented. An option
for validating the existing RIs with population sizes <120
patients in line with the CLSI validation guidelines is planned
for a future release.

Privacy Protection
With the underlying “big data” source, it is necessary to
implement mechanisms that ensure end-to-end privacy
protection when allowing end users to highly stratify the patient
population. The values from a patient query for each cohort are
securely aggregated under multiparty homomorphic encryption
across all cohorts in a joint frequency table (for histogram
building), which can be decrypted only by authorized users.
Thus, both patient-level information and local aggregates are
protected. Whereas the former never leaves the data holder
infrastructure, the latter is always processed under encryption.
With the limitation of a minimum of 120 patients and a rounded
bin size width, the potential for individual reidentification of
patients from the decrypted frequency table can be hindered.

When patient-level data are centralized into the BioRef secure
project space on the BioMedIT infrastructure for validation
purposes, further deidentification measures are implemented to
minimize reidentification risks due to potential data leakages.
Particularly, linkages between patients, administrative cases,
and measurements had to be removed by the contributing cohorts
after local data extraction (“local deidentification”).
Measurements in the centralized BioRef data set for validation
are, therefore, not linked at any level.

Results

BioRef Architecture and Data Contributions
Currently, the BioRef analytics platform is deployed with
harmonized and interoperable data contributions from all BioRef
consortium members. The use of the TI4Health architecture
allows patient-level data to stay on site at each participating
institution regardless of its location, and aggregated frequency
tables are computed under multiparty homomorphic encryption,
thus ensuring end-to-end data protection (Figure 1). This enables
the aggregation of clinical data in a unified manner to create a
comprehensive database. User-requested patient queries initiated
via the GUI are relayed to the TI4Health instances, which
constitute a distributed network for federated confidential
computing. Homomorphically encrypted local data aggregates
are then exchanged among the network partners to form the
global data aggregate. RI computation is carried out by the front
end of Swiss BioRef TI4Health, which returns the global
aggregate result to the user (Figure 1). Notably, the raw data of
the data providers are never shared (the “no copy, no move”
principle).

Data from the contributing cohorts consisted of quantitative
results from >40 frequently requested key laboratory tests,
including analyses from clinical chemistry, hematology,
point-of-care testing, and coagulation. These pooled
standardized data (approximately 9 million measurements)
constituted the multicohort database available on the BioRef
platform (Table 1). It currently entails not only data from 2
university hospitals (Inselspital and CHUV) reflecting a broad
variety of patients from the general population but also more
specific data of patient groups in need of particular care,
specifically children (University Children’s Hospital Zürich)
and patients with physical disabilities (Swiss Paraplegic
Research). Together, this multifaceted, highly standardized data
set represents a rich “big data” source ready for further analyses,
including end user–driven patient query stratification for the
definition of specific RIs.
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Figure 1. Illustration of the BioRef federated analytics infrastructure. In the decentralized approach, data is de-identified on site by the individual data
providers of the consortium (hospital A, hospital B, ...) and uploaded to the on-premise TI4Health instance. Data are analyzed via the federated confidential
computing network without any raw data of the consortium members being revealed.

Table 1. Data contributions of the individual data providers for the BioRef infrastructure as of the time of publication.

TotalCHUVbSwiss Paraplegic
Research

KiSpiaInselspital

8,991,8171,708,45435,271454,1556,793,937Measurements, n

N/Ac56,80988717,179205,437Unique patients, n

Patient sex, n (%)d

N/A30,739 (54.1)278 (31.3)7695 (44.8)100,612 (49)Female

N/A26,070 (45.9)609 (68.7)9484 (55.2)104,825 (51)Male

N/A58 (39-73)58 (42-71)4.51 (0.76-10.97)57 (32-73)Patient age (years), median (IQR)

525,531132,34488728,393363,912Administrative casese

4623333739Unique LOINCf

N/AJanuary 2020 to
December 2022

Up to March 2022April 2014 to May
2022

June 2014 to
February 2023

Time spang

aKiSpi: “Kinderspital Zürich,” University Children’s Hospital Zurich.
bCHUV: “Centre Hospitalier Universitaire Vaudois,” University Hospital Lausanne.
cN/A: not applicable.
dNo nonbinary patients were reported at the time of publication.
eAdmissions.
fLOINC: Logical Observation Identifiers Names and Codes.
gTime span during which the measurements were collected.
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BioRef-Federated Analytics Platform
The decentralized privacy-preserving approach was built on the
TI4Health operational system (“Swiss BioRef TI4Health”;
Figure 2). The extended TI4Health system in the context of the
BioRef platform contains (1) the Informatics for Integrating
Biology and the Bedside (i2b2) common data model, which is
one of the most widely used data models for storing
observational longitudinal clinical data and related metadata
and is currently implemented in >300 hospitals worldwide and
used by most of the Swiss university hospitals, running in a
Postgres database [53]; (2) the TI4Health distributed backend;
(3) a RESTful application programming interface; and (4) a
customized TI4Health web client front end (Figure 2).

On the backend, TI4Health is built via a separate but modular
approach, in which the front end query system never directly
accesses the unencrypted data stored in the i2b2 data model but
communicates only with the backend through the RESTful
application programming interface. Once a request is received,
the TI4Health backend module forwards it to an i2b2 connector
for local data preprocessing and then starts the secure multiparty
homomorphic encryption–based distributed aggregation protocol

that involves all the other nodes in the network. The encryption
protocols used in TI4Health are based on the Lattigo
homomorphic encryption library [57]. The data were translated
from the Resource Description Framework to the i2b2 format
using a data converter module, which was developed during the
course of the project [53].

On the front end, the TI4Health web client is the user-facing
web application based on Glowing Bear, an open-source
web-based GUI for cohort selection and analysis [58]. For
BioRef, the Glowing Bear interface was tailored to allow the
generation and visualization of precise RIs using an IFCC- and
a CLSI-suggested method for nonparametric RI estimation.
More specifically, the BioRef GUI allows for interactively
setting and executing patient queries based on the covariates
and running the statistical inference method on the returned
measurements from the client side (Figure 2). It allows setting
the patient’s “age” and “sex” as possible stratification variables
and including not only diseases or risk factors, such as high
blood pressure and diabetes (using the respective ICD-10 code)
but also analysis-specific metainformation such as analyzer,
test kit, and vendor information.

Figure 2. Graphical user interface of the Swiss BioRef TI4Health webclient. The web application shows the estimates for reference intervals and an
accompanying histogram for “chloride in serum or plasma” (LOINC 2075-0) for a female patient cohort aged 55 to 60 years as an exemplary query.

Centralized Validation Platform
A separate central validation platform (Swiss BioRef Central)
was set up on the secure BioMedIT infrastructure for method
development, benchmarking, and ensuring the correctness of
multicohort federated and encrypted analyses (Figure 3). Such

a platform enables performance and usability comparisons
between decentralized and centralized approaches and the testing
of the accuracy of the statistical methods in inferring precise
RIs from multicohort resources. The platform offers both direct
(IFCC and CLSI approved) and indirect (using newer data
mining techniques) methods for the inference of RIs.

J Med Internet Res 2023 | vol. 25 | e47254 | p. 7https://www.jmir.org/2023/1/e47254
(page number not for citation purposes)

Blatter et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


This reference platform was built on R Shiny (R Studio, Inc),
an operative extension of the R programming language into
web application development to allow reactive and interactive
data analyses [56]. It runs fully dockerized on a virtual machine
with full access to the centralized deidentified data stored in
CSV format (Figure 4B). The web traffic of Swiss BioRef

Central was implemented behind a reverse proxy layer in the
application architecture. This hides server traffic and
communication to the front end of the application, which further
reduces the risk of exposing sensitive information to the front
end.

Figure 3. Screenshot of the Swiss BioRef Central interface. Graphical user interface of the Swiss BioRef Central web application. The web applications
show the estimates for reference intervals for “chloride in serum or plasma” (LOINC 2075-0) for a female patient cohort aged 55 to 60 years as an
exemplary query.
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Figure 4. BioRef platform architecture. Side-by-side comparison of (A) the BioRef decentralized privacy-preserving platform using federate confidential
computation and decentralized data linking and (B) the centralized validation platform that enables evaluation from a centralized data pool located
within a trusted data host system. Both infrastructures offer their own web applications capable of inferring highly relevant reference intervals from
their respective linked data sources.

Targeted RIs for Diagnostic Application
Using the BioRef platform, it is possible to infer RIs for
previously underrepresented patient populations in RI studies.
For instance, RIs for “HDL cholesterol” (LOINC 14646-4) in
male and female clinical patients aged 60 to 65 years were
estimated. The resulting RIs (with 90% CIs) and the
accompanying histograms were generated on the fly and visible
in the web applications (Figure 5).

The estimated RIs for female patients are 0.54 (90% CI
0.51-0.56) to 2.47 (90% CI 2.42-2.51) mmol/L and for male
patients are 0.52 (90% CI 0.51-0.53) to 1.92 (90% CI 1.89-1.93)
mmol/L, derived from the local population. These results are

comparable to those from a published RI study that used similar
routine clinical data, the same analytical system (Roche Cobas
8000), and similar laboratory data mining techniques for the
estimation of locally specific RIs (female patients: 0.72, 90%
CI 0.50-0.80, to 2.02, 90% CI 1.83-2.09 mmol/L; male patients:
0.54, 90% CI 0.49-0.65, to 1.30, 90% CI 1.24-1.63 mmol/L)
[59]. Although these RIs do not fully overlap, they are locally
significant and stratified by age, in contrast to other published
RIs. It is established that high-density lipoprotein decreases
with age and addressing this often missing age stratification is
crucial [60,61]. This example highlights the need for adapted
target ranges that take into account the specific condition of the
patient based on their risk and value distribution [11].

Figure 5. Personalized ranges for high-density lipoprotein cholesterol (in mmol/L). Estimated reference intervals for “cholesterol in HDL [moles/volume]
in serum or plasma” (LOINC 14646-4) for female patients (n=1848, left) and male patients (n=5026, right) aged 60 to 65 years.
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User Evaluation
During a follow-up project of Swiss BioRef (“BioRef -
TI4Health”), Inselspital; CHUV; and Tune Insight, which is a
spin-off of the Swiss Federal Institute of Technology Lausanne,
collaborated to deploy and evaluate the TI4Health system.
Reviewers from both the clinical side and clinical data science
were onboarded for a preliminary evaluation of the deployed
platform to assess its variable accessibility, usability, and
performance. Users expressed appreciation for the easy and
streamlined web application GUI that quickly filtered their
population of interest. Maintaining a perfect balance between
a streamlined and intuitively usable GUI and a GUI that entails
a complex query selection process is a challenging task.
Managing this is crucial because the growing and progressively
varying user base will make it even more challenging to
anticipate future requirements. Query execution time has
emerged as a potential issue for federated systems. Notably,
data processing under homomorphic encryption does not cause
delays, but rather the i2b2 format is the bottleneck in terms of
performance. Using other data formats for which TI4Health
offers additional connectors will alleviate this problem.

Discussion

Principal Finding: Federated Analytics Architecture
With the BioRef platform for federated confidential computing,
an interoperable and secure framework for processing distributed
multidimensional laboratory data from various cohorts forming
a “big data” resource of laboratory measurements has been
created and deployed for the first time in an operational setting.
The use of a federated analytics approach allows the indirect
provision of nonanonymized (ie, identifiable) patient data to a
multicentric effort, which is, under the current data protection
act, an almost impossible administrative task to tackle [34]. As
sensitive data themselves are not shared between participating
parties, the BioRef approach is compliant with both national
and international data provision laws (ie, the European Union’s
General Data Protection Regulation [GDPR]) [62]. Notably,
the use of a distributed analytics system as deployed can
significantly reduce the governance overhead for future
multicohort collaborations [36]. It will also facilitate obtaining
permission from ethical boards, as identifying information is
retained only by the respective hospital.

Harmonizing Data Resources
The differing data management systems and formats at
individual clinical data warehouses are a limiting factor for
smooth data provision; significant efforts are required to
harmonize the data contribution of all data providers and ensure
interoperability before the entry of the data into the BioRef
infrastructure. For example, the implementation of LOINC on
a national level has advanced notably over the last few years
but still requires serious effort to provide high-quality metadata
and quality control for laboratory analyses [63]. However, these
standardization efforts are not only beneficial for the scope of
this project but are also essential for the ongoing digital
transformation of laboratory medicine, especially in the age of
machine learning and artificial intelligence [64]. Clearly coded,
high-dimensional laboratory data can essentially contribute to

clinical research in the age of personalization [65]. With
increasing data sizes made available for clinical research
projects, clear ethical guidelines for “big data” research need
to be established [66].

Targeted RIs for Precision Medicine
Standard RIs are inferred under the assumption that an
appropriate reference population can be defined as representing
a “general” health status, either through a priori or a posteriori
selection [67]. It is assumed that the only observed variation in
the selected reference values stems from biological
interindividual variation [68]. The use of newer methodologies
allows the indirect estimation of RIs from real-world data that
are considered a mixture of “pathological” and
“nonpathological” values via various resolution techniques [69].
However, in the clinical context, where a variety of patient
factors are considered during the physician’s anamnesis, RIs
estimated from generally “non-pathological” reference
individuals are seemingly not the most appropriate reference to
compare patients’ blood test results with [12]. Especially in
older patients, the differentiation between “disease” and the
aging process is difficult; a functional decline observed in old
age can originate both from a disease or the aging process itself.
The differentiation can be made using peptide biomarkers (eg,
N-terminal pro-B-type natriuretic peptide [70,71]), hormones
(eg, thyroid-stimulating hormone [72,73]), and lipids
(high-density lipoprotein cholesterol [60,61]). Age-related health
concerns become prominent in aging populations, and
appropriate “reference values” should comprise both values
reflecting physiological changes and an increasing fraction of
values that would generally be considered pathological to reflect
the patient population [73]. Rather than trying to create RIs as
“normal ranges” for aging populations, these “expectations
ranges” help evaluate the specific patient’s test result in the
appropriate context of similar patients (“digital twins”). The
possibility to include and exclude specific diagnoses allows the
adjustment and fine-tuning of these expected ranges to a variety
of multimorbid complexes (eg, diabetes, hyperlipidemia,
coronary heart disease, or renal impairment). Here, we suggest
that being able to map additional patient parameters such as age
and sex as well as individual combinations of multiple
morbidities on the analysis of locally derived RIs can essentially
provide personalized target ranges fit for application in
precision medicine. With the interactive GUI of the web client,
these targeted RIs can be generated on the fly, which can then
be effectively used when paired with established RIs. Although
these are not “personalized” RIs per se, that is, referring to a
single patient of interest, they provide second-level information
regarding the particularities of a patient group of interest [74].
In cases where there are no RIs established locally for a
particular age and sex group, these personalized target ranges
can serve as a useful substitute.

Strengths and Limitations
Despite the many benefits that a decentralized data-sharing
system offers, a stringent quality control step of centralized data
alignment is missing. Therefore, local quality control at all
participating sites following a standardized protocol, as well as
establishing trust among collaborating partners for the
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continuation of data provision to the system, is a must. The
basis for the overall BioRef data set is the local population, and
a broad spectrum of diagnoses is covered in the data set. Very
specific diagnoses (eg, psychiatric disorders) or complex
combinations of diagnoses may still be underrepresented or
even missing; however, this may be overcome in the future
through the inclusion of specialized hospitals, broadening the
data basis. Mutually beneficial collaborations between additional
national and international hospitals and data providers are,
therefore, encouraged. Although a centralized approach ensures
easily verifiable results for testing and validation (each data
holder has full access to the underlying data set), a federated
approach allows the onboarding of institutions that are not
willing to share data in a centralized setting. This allows for
insights from more data than each individual data provider holds.
The motivation and deployment conditions for federated and
centralized approaches are slightly different, and their
applicability depends on the context of the project. An in-depth
comparison, scalability in a multinational context, and
applicability in the clinical context will need to be addressed in
a follow-up study, as these are beyond the scope of this pilot
project presenting the first federated setup for RI estimation.

Another challenge for any international network is mirroring
the ethnic diversity found in patients across countries, which
can influence RIs [33]. The data should include information on
the ethnic background of a patient, which needs to be gathered
by hospitals. However, this information may not be routinely
collected. Preanalytics, for example, sample collection or
handling, are another factor that may vary between countries
and may hamper data interoperability. Providing additional
metainformation on the preanalytics akin to the implemented
information on analyzer and reagent may be the way forward,
for example, using Standard PREanalytical Codes [75].

Comparison With Prior Work
Multicenter studies operating under a common and centralized
standardization effort have already aimed at estimating
country-specific RIs [31,76], and previous studies have
leveraged routine laboratory data to assess population-specific
RIs to some extent [32,33]; however, to our knowledge, a
federated query system has not been implemented so far.
Although the Canadian Laboratory Initiative on Pediatric
Reference Intervals and the Pediatric Reference Intervals
Initiative in Germany provide RIs for laboratory analytes in
pediatrics via interactive web applications, they both rely on
the centralization of the data source [31,76]. The clear advantage
of a federated approach, such as BioRef-TI4Health, is that
hospitals can contribute data to evaluation without actually
sharing them. In the era of “big data,” where an increasing
amount of health data is available, this is especially useful, as
full anonymization of sensitive data (ie, health data) can be
difficult to attain [77].

The use of homomorphic encryption in addition to data
aggregation adds an additional layer of security: several
publications have shown that aggregated data have the potential
to reveal information about individuals (eg, membership in a
sensitive cohort and undisclosed private or sensitive attributes)
through statistical inference even if the data themselves do not

directly identify specific persons [78-80]. Users can only decrypt
and see the result of the aggregation of each individual site’s
response to the query. Unencrypted setups for remote federated
analysis [81,82] cannot fulfill these requirements. In addition,
the use of homomorphic encryption to protect site-level
aggregated data helps comply with the “data minimization”
principle (GDPR article 5) by revealing only the information
that is needed for the user’s purposes. Moreover, it satisfies the
“privacy by design” principle (GDPR article 25) by minimizing
the risk that arises from personal data breaches by making
personal information unintelligible to anyone not authorized to
access it.

Several different approaches for federated analytics have been
implemented and applied to medicine, starting from off-the-shelf
federated learning to advanced alternatives such as swarm
learning [83-89]. However, most of the time, these approaches
were limited to project-specific demonstrations and are not yet
implemented in clinical operational settings through scalable
and sustainable infrastructures. Examples of successful
infrastructure implementations are the Accrual to Clinical Trials
Network, TriNetx, and Clinerion [90-92]. However, none of
them are particularly focused on laboratory medicine, and
BioRef-TI4Health stands out by using state-of-the-art, advanced,
and privacy-enhancing technologies to protect data and patient
privacy. It will be interesting to compare published RIs on a
broad scale with our cohort-specific target ranges in a follow-up
study.

Conclusions and Outlook
Within the scope of the Swiss BioRef project, a
privacy-preserving federated computing network accessible via
a web-based GUI has been established. With BioRef, the SPHN’s
long-term goal of transforming medicine toward precision and
personalization has reached one of its first manifestations [93].
It allows physicians and clinical researchers to map the
individual complexity of their patients to a rich multicohort data
pool and permits a substantiated statistical analysis to infer
precise and highly relevant RIs. The federated nature of the
approach together with the implemented cryptographic
mechanisms helps release the brakes which legislation and local
data-sharing policies may at times represent to research and
related ambitious projects. The federated setup will also facilitate
a potential extension of the network, potentially on an
international level.

Long-term sustainability is a widespread problem in academic
projects, as the costs of both infrastructure operation and
maintenance must be addressed. Here, the open architecture
and simplified onboarding process of the BioRef platform offer
a chance to include academic partners, professional clinical
medicine societies, and the diagnostics industry. Tune Insight
maintains the Swiss BioRef TI4Health codebase, provides
support, and performs further customization for the future of
BioRef.

Collaboration with a broad spectrum of stakeholders is
fundamental to the continuation of the Swiss BioRef project. It
is important not only to showcase the relative ease of use of the
proposed platform to both health professionals and clinical
researchers who could be potential new end users but also to
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establish trust regarding the novelty of the developed
infrastructure of multicohort data sharing. A stakeholder
dialogue could inform novel guidelines for specific health
conditions that have applications in the clinical context, which
could benefit the harmonization of both the estimation and use
of RIs across multiple cohorts. Collaboration with the
international Task Force on Global Reference Interval Database

of the IFCC is currently being promoted to implement an
international system for RI estimation [13].

Given the modularity of both the BioRef consortium and the
BioRef-TI4Health system architecture (future national and
international partners can join with relative ease) as well as the
applications (extendable for additional types of statistical
analyses or variables), we see a bright future for personalized
target ranges in Switzerland and beyond.
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CHUV: Centre Hospitalier Universitaire Vaudois
CLSI: Clinical and Laboratory Standards Institute
GDPR: General Data Protection Regulation
GM: German Modification
GUI: graphical user interface
i2b2: Informatics for Integrating Biology and the Bedside
ICD: International Classification of Diseases
IFCC: International Federation of Clinical Chemistry
LOINC: Logical Observation Identifiers Names and Codes
RI: reference interval
SPHN: Swiss Personalized Health Network
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