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Abstract

Background: Lyme disease is among the most reported tick-borne diseases worldwide, making it a major ongoing public health
concern. An effective Lyme disease case reporting system depends on timely diagnosis and reporting by health care professionals,
and accurate laboratory testing and interpretation for clinical diagnosis validation. A lack of these can lead to delayed diagnosis
and treatment, which can exacerbate the severity of Lyme disease symptoms. Therefore, there is a need to improve the monitoring
of Lyme disease by using other data sources, such as web-based data.

Objective: We analyzed global Twitter data to understand its potential and limitations as a tool for Lyme disease surveillance.
We propose a transformer-based classification system to identify potential Lyme disease cases using self-reported tweets.

Methods: Our initial sample included 20,000 tweets collected worldwide from a database of over 1.3 million Lyme disease
tweets. After preprocessing and geolocating tweets, tweets in a subset of the initial sample were manually labeled as potential
Lyme disease cases or non-Lyme disease cases using carefully selected keywords. Emojis were converted to sentiment words,
which were then replaced in the tweets. This labeled tweet set was used for the training, validation, and performance testing of
DistilBERT (distilled version of BERT [Bidirectional Encoder Representations from Transformers]), ALBERT (A Lite BERT),
and BERTweet (BERT for English Tweets) classifiers.

Results: The empirical results showed that BERTweet was the best classifier among all evaluated models (average F1-score of
89.3%, classification accuracy of 90.0%, and precision of 97.1%). However, for recall, term frequency-inverse document frequency
and k-nearest neighbors performed better (93.2% and 82.6%, respectively). On using emojis to enrich the tweet embeddings,
BERTweet had an increased recall (8% increase), DistilBERT had an increased F1-score of 93.8% (4% increase) and classification
accuracy of 94.1% (4% increase), and ALBERT had an increased F1-score of 93.1% (5% increase) and classification accuracy
of 93.9% (5% increase). The general awareness of Lyme disease was high in the United States, the United Kingdom, Australia,
and Canada, with self-reported potential cases of Lyme disease from these countries accounting for around 50% (9939/20,000)
of the collected English-language tweets, whereas Lyme disease–related tweets were rare in countries from Africa and Asia. The
most reported Lyme disease–related symptoms in the data were rash, fatigue, fever, and arthritis, while symptoms, such as
lymphadenopathy, palpitations, swollen lymph nodes, neck stiffness, and arrythmia, were uncommon, in accordance with Lyme
disease symptom frequency.
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Conclusions: The study highlights the robustness of BERTweet and DistilBERT as classifiers for potential cases of Lyme
disease from self-reported data. The results demonstrated that emojis are effective for enrichment, thereby improving the accuracy
of tweet embeddings and the performance of classifiers. Specifically, emojis reflecting sadness, empathy, and encouragement
can reduce false negatives.

(J Med Internet Res 2023;25:e47014) doi: 10.2196/47014
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Introduction

Global warming and milder winters are causing the range of
tick vectors to expand, which in turn is contributing to an
increase in the incidence of tick-borne diseases [1-4]. Lyme
disease is one of the most commonly reported tick-borne
diseases worldwide [5]. In North America, Lyme disease is
endemic in the northeastern, upper mid-West, and mid-Atlantic
portions of the United States, and is prevalent in the southern
regions of Canada [6-8]. In Europe, Lyme disease is mainly
found in the central regions of the continent and in Scandinavian
countries, and it is also found in Russia [6,9,10]. The occurrence
of Lyme disease is very recent in Asia and has been reported
in India, Turkey, China, Korea, Nepal, Taiwan, and Japan
[11-16]. Owing to the current wide geographical spread of this
disease, the early detection of potential Lyme disease cases will
remain a public health concern in the forthcoming decades [17].

Lyme disease is caused by spirochetal bacteria that are part of
the Borrelia burgdorferi sensu lato (s.l.) complex [17]. The
Borrelia burgdorferi sensu lato (s.l.) complex contains numerous
genospecies, but only a few can infect humans and cause Lyme
disease. The genospecies that can infect humans have distinct
geographic distributions: Borrelia burgdorferi sensu stricto is
primarily found in North America, whereas Borrelia afzelii and
Borrelia garinii are both prevalent in Asia and Europe [18,19].
Furthermore, the clinical manifestations of Lyme disease vary
depending on the genospecies involved in the infection, and
thus, the symptoms also vary by geographical region. In North
America, B. burgdorferi sensu stricto (s.s.) typically causes
Lyme arthritis and carditis, whereas both B. afzelii and B. garinii
cause neuroborreliosis in Europe and Asia [9,20,21].

The infectious agent is transmitted to humans by several species
of ticks from the Ixodes genus, whose distribution varies
geographically. Ixodes scapularis and Ixodes pacificus are the
most prevalent in North America, Ixodes ricinus is the most
prevalent in Europe, and Ixodes persulcatus is the Lyme disease
vector in Asia [16,18,22-24]. Tick vectors progress through
sequential life stages: egg, larva, nymph, and adult. Ticks feed
on hosts of different sizes throughout their growth stages.
Specifically, nymphs primarily feed on rodents (especially
Peromyscus leucopus, also known as white-footed mice),
whereas adult ticks prefer larger mammals such as white-tailed
deer (Odocoileus virginianus) [25].

Lyme disease has been called “the great imitator” in the
literature because its clinical spectrum mimics various other
unrelated diseases, making the correct diagnosis of Lyme disease

based solely on clinical manifestations a difficult task, which
can lead to misdiagnosis and mistreatment [26]. Lyme disease
typically presents in 3 stages: early localized stage, early
disseminated stage, and late disseminated stage [27,28]. The
most common and usually first symptom of the early localized
stage is a nonpruritic and painless rash with an erythematous
center called erythema migrans (also known as the “bull’s-eye”)
[27]. This symptom is present in nearly 90% of all Lyme disease
cases and is accompanied by flu-like symptoms, including fever,
headache, fatigue, adenopathy (lymph node), myalgia, and
arthralgia [29]. The second stage is characterized by multiple
skin and organ lesions, occurring months after exposure to the
infected tick bite [26]. The heart, joints, and skin are the most
affected organs [30-32]. The symptoms in the second stage
include carditis (heart block, myocarditis, syncope, palpitations,
dyspnea, and chest pain) and arthritis, which are most common
in North America [31,33]. The late disseminated stage is
manifested predominantly by neurological symptoms
(radiculopathy, neck stiffness, meningitis, facial nerve palsy,
cranial neuropathy, etc) [34,35]. Acrodermatitis chronica
atrophicans and borrelial lymphocytoma are rare cutaneous
manifestations of the third stage, and they are mostly noted in
Europe and Asia [36].

The standard laboratory diagnosis of Lyme disease involves a
2-tier test in which an initial ELISA (enzyme-linked
immunosorbent assay) screening test result is confirmed later
by a western blot or an immunoblot [37]. Lyme disease is
treatable with a short course of antibiotics, but if left untreated,
it may lead to severe neurological, cardiac, and articular
complications [38]. There is currently no vaccine against Lyme
disease, and therefore, the only preventive measures are
self-protection against tick bites and yard management [39].

Surveillance is one of the public health tasks aiming to monitor
trends in disease epidemiology, identify populations at risk, and
report disease cases [40,41]. Surveillance systems are based on
active or passive surveillance approaches. Active surveillance
is a surveillance system based on periodic collection of samples
or case reports from health authorities, whereas passive
surveillance is a system based on reporting of clinical suspect
cases to the health authorities and depends on patient willingness
to seek medical attention [40,42]. In North America (both the
United States and Canada), Lyme disease reporting is
compulsory, and the task falls on busy health care professionals
to do so promptly [43,44]. In comparison, Lyme disease
reporting is not mandatory in all endemic countries in Europe;
however, the European Union recently called to standardize
Lyme disease reporting and make it a notifiable disease
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[41]. Underreporting is a concern in Lyme disease epidemiology
because the traditional surveillance system has failed to track
all cases accurately [45-47]. For example, a recent study
estimated the number of Lyme disease cases in the United States
at over 400,000, while the Centers for Disease Control and
Prevention (CDC) reported only 30,000 cases [45,48]. The
United States is not the only country where underreporting of
Lyme disease cases has been suggested, as this issue has been
pointed out in some European countries as well [49-51].

According to a review conducted previously [26], the traditional
Lyme disease surveillance system is prone to overreporting or
underreporting due to multiple reasons. One reason is that the
system is dependent on the reporting of cases by busy health
care professionals, and therefore, only cases seen and diagnosed
by professionals are reported. Another contributor to the
deficiency of the Lyme disease surveillance system is the lack
of accuracy of serologic tests for Lyme disease diagnosis. The
clinical diagnosis of Lyme disease is based on clinical
manifestations, appropriate serology, and a history of exposure
to tick bites [35]. The interpretation of the results of serologic
tests as positive indicators of Lyme disease is however
problematic since these tests are not very sensitive in the early
stage and can show false-negative results, thereby rendering
treatment ineffective [52,53]. Therefore, some cases tend to get
missed by health care professionals, especially in new areas,
resulting in underreporting of the disease
[37,48,54,55]. Additionally, the heterogeneity of Lyme disease
bacterial strains contributes to the late diagnosis of Lyme disease
cases [56,57]. Moreover, Lyme disease monitoring also depends
on data collected from tick surveillance. Tick data can be
collected through passive surveillance, which can provide
insights about risk areas for tick-borne diseases, such as Lyme
disease, and active tick surveillance can identify regions where
tick populations are established [58,59]. In countries, such as
China, where Lyme disease is not yet endemic and is not a
notifiable disease, active tick surveillance is used to monitor
Lyme disease cases and quantify infection risk [60].

With the extended use of the internet and social media platforms
where health-related information is often shared, researchers
have found an opportunity to improve disease surveillance
systems by leveraging web data [61,62]. This new field of
research is referred to as digital surveillance or infodemiology
[63]. Among all current social media platforms, Twitter is one
of the most popular social media platforms, with over 145
million daily active accounts, and it is the most widely used
data source for digital health owing to certain advantages: its
data can be easily accessed through the Twitter application
programming interface (API), the size of the text (tweets) is
limited to 280 characters (140 characters before 2017), and it
is possible to geolocate the tweets [64]. A recent systematic
review suggested that less than half of existing studies on digital
health surveillance using Twitter data were focused mainly on
prediction, and only a few studies focused on developing tools
for adequate analysis of these types of data [61]. Owing to the
novelty of digital surveillance in public health research, there
is an unevenness in the different methodological approaches
and data sets used [63]. Given the availability and the richness
of text data from Twitter or from other platforms (such as

Reddit), there is a need to develop reliable and accurate
classification methods to process and analyze the data to study
health-related issues [62]. Specifically, the development and
evaluation of methodological machine learning approaches are
often required for data analysis. In addition to a significant time
investment, these activities usually require access to organized,
validated, pretrained, and labeled data sets for various health
problems to facilitate their development.

Several studies have used data from search engines and social
media platforms to track Lyme disease [65-67]. For example,
a previous study examined how the content of Lyme disease
videos on YouTube differed depending on data sources and the
people who produced the videos [65]. It was reported that public
health experts did not produce popular videos on YouTube
about Lyme disease. In addition, responsible reporting and
innovative knowledge translation through videos can increase
awareness of Lyme disease. To better forecast the incidence of
Lyme disease in Germany, the authors in a previous study used
digital data such as Google Trends [66]. While the official
reported incidence of Lyme disease correlates well with Google
Trends data, it did not significantly increase the forecasting
accuracy. In another study, the prevalence of Lyme disease and
the frequency with which the term “Lyme” was searched in
Google Trends were examined in southern Ontario, Canada,
between 2015 and 2019, resulting in the identification of a single
hotspot in eastern Ontario [67]. Additionally, there was an
increase in Google Trends for the term “Lyme disease,” which
was associated with a significant increase in Lyme disease risk.
According to previous studies, the number of Lyme disease
searches in search engines was related to seasonal and
geographic patterns of Lyme disease cases [68,69]. However,
there are very few studies focusing on Lyme disease and social
media. For example, a previous study showed that Twitter can
be used to monitor Lyme disease through the use of Twitter
data (tweets) as a proxy for monitoring disease prevalence in
the United Kingdom and the Republic of Ireland [70]. A limited
geographic search strategy was used to discover spatial patterns
and find rare cases of Lyme disease. Another study reported
that Lyme-relevant Twitter data are correlated with official
reports on the disease in the United States [71].

Our study aims to fill the gap on the use of web data to study
Lyme disease in a very useful way. Indeed, our study seeks to
provide an accurate English worldwide tweet data set and
evaluate the performance of some selected natural language
processing (NLP) transformer-based models, including
DistilBERT (distilled version of BERT [Bidirectional Encoder
Representations from Transformers]), ALBERT (A Lite BERT),
and BERTweet (BERT for English Tweets), by integrating
emotional component emojis. We believe that the novelty and
completeness of this data set will assist in the development and
evaluation of digital Lyme disease surveillance systems and
will be a useful resource for public health researchers and
practitioners. It is important to mention that this study is a
continuation of a recent study where a machine learning–based
model has been proposed for predicting Lyme disease cases and
incidence rates in the United States using Twitter [71]. However,
unlike this previous study, our work here provides a worldwide
data set of English tweets and evaluates the performance of the
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selected advanced machine learning transformer–based models
with the integration of emojis, which will lead to new and more
accurate classified data for Lyme-related tweets.

This study has the following objectives:

1. Provide an openly available data set to the scientific
community for its use in a variety of experimental
epidemiological research, at a time when there is an urgent
need to integrate novel web-based data sets related to the
Lyme disease epidemic (such as this classified data set)
with other data sets from other sources for improving risk
prediction.

2.  Analyze the performance of several prominent NLP
classifiers in terms of their ability to predict potential cases
of Lyme disease. 

3. Evaluate the effect of incorporating emojis as enrichment
features to improve the performance of the
transformer-based classifier.

4. Determine whether specific patterns could be identified
regarding the prevalence of Lyme disease for each country
based on the classified tweets.

Methods

Overview
Owing to the nature of Twitter data, the analysis requires
developing and evaluating machine learning–based
methodologies [61,72]. Figure 1 illustrates the methodology
used to classify the tweets. This process consists of the following
2 key elements: (1) collecting and preprocessing self-reported
Lyme-related tweets and (2) identifying potential Lyme-disease
cases.

Figure 1. The 2-stage approach proposed for predicting potential Lyme disease cases. The first stage involves 4 elements: (1) We used standard search
terms to collect tweets via the Twitter application programming interface; (2) We cleaned the tweets by removing hashtags, URL links, HTML markups,
and stop-words; (3) We manually labeled the tweets as Lyme or non-Lyme using a list of precise keywords; and (4) We converted emojis into sentiment
words, which were then substituted for the emojis in the tweets. In the second stage, we used a transformer-based classifier to determine whether a tweet
is a potential Lyme disease case or not. When a new tweet was assigned with the highest probability to the Lyme disease class, we used the GeoPy
library to estimate the tweet’s location. The 3 special tokens were as follows: [CLS], which stood for classification and was typically the first token of
every sequence; [SEP], which described to the pretrained language model which token belongs to which sequence; and [PAD], which was used to fill
the unused token slots to ensure that the maximum token length was met.

Data Collection and Preprocessing
Using an academic research account with Twitter’s API and
search terms like “#Lyme” and “#Lyme disease,” about 20,000
English tweets were collected between 2010 and 2022. Tweets
were cleaned to reduce text noise and redundancy by deleting
hashtags, URL links, HTML markups, stop-words, username
mentions, and retweets. Accurate keywords or search terms are
required to properly label extracted information from social

media. Keywords used to label the collected data are important
as they will impact the results and the quality of surveillance.
Many studies have attempted to improve the relevance of
disease-related keywords by examining word frequency using
a corpus of tweet text and labeling approaches [72,73]. As such,
we compiled a list of precise keywords that are often associated
with Lyme disease. These keywords were used as the basis of
regular expression that was applied to the cleaned tweets to
manually determine whether they were relevant to Lyme disease.
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A label “1” was assigned to potential Lyme disease–related
tweets, while “0” was assigned to those that were not related.
As mentioned in a previous report [71], we used 2 methods to
specify keywords in regular expression. The first method
entailed investigating the content of the cleaned tweets to
determine the relative frequency of common colloquial Lyme
disease words such as have Lyme, had Lyme, having Lyme, has
Lyme, get Lyme, gets Lyme, got Lyme, getting Lyme hiking,
hike, forest, tick, ticks, bite, deer, deertick, and tickborne. By
using this method of keyword selection, Twitter posts like “She
is terribly unwell, we suspect it's Lyme” were labeled as
potential Lyme disease cases. The second method of keyword
selection involved considering the most frequent Lyme disease
symptoms, transmission channels, or scientific terms, such as
erythema migrans, carditis, fever, rash, headache, fatigue, chills,
nausea, vomiting, dizziness, sleepiness, hallucinations,
depression, numbness, tingling, facial paralysis, palpitations,
borrelial lymphocytoma, anxiety, memory loss, joint aches,
muscle aches, swollen lymph nodes, neck stiffness, nerve pain,
arthritis, shortness of breath, irregular heartbeat, shooting
pains, skin redness, tick bite, and acrodermatitis chronica
atrophicans.

Therefore, tweets, such as “I suffered from Lyme symptoms
four years ago” and “My sister is developing fever after a tick
bite,” were also labeled as potential Lyme disease cases. It is
important to note that this manual approach aims to ensure fair
and accurate labeling of the data set. This is because
automatically labeling tweets with off-the-shelf Python regular
expression libraries does not always provide correctly labeled
tweets. It could also be argued that there are differences between
the 2 keyword selection methods we used to manually label the
tweets. However, the rationale here was based on the fact that
the use of “Lyme disease” keywords in search engines has been
demonstrated to improve results [68]. Therefore, the first method
of keyword selection can be viewed as a naive general way to
label any Lyme disease data collected from web-based sources,
whereas the second method is a more specific and accurate way
to confidently label tweets as related to Lyme disease. We would
like to point out that, due to a lack of resources, each manually
labeled tweet was only reviewed by 1 person. However, all
reviewers agreed on a guideline, and several examples were
provided to simplify understanding of the categories and reduce
misclassification.

The labeled data set of 20,000 cleaned tweets was split into 3
disjoint data sets. Initially, a training data set (n=12,000) was
compiled by randomly selecting exactly 1000 tweets from each
year between 2010 and 2022. All tweets were distributed
between 2 classes based on prior manual classification: potential
Lyme disease cases (n=6000) and non-Lyme disease cases
(n=6000). The remaining tweets (n=8000) were then separated
into 2 equal parts: a validation data set (n=4000) and a testing
data set (n=4000).

Detecting Lyme Disease Tweets Using
Transformer-Based Classifiers
The training and validation data sets were used to fine-tune a
set of pretrained transformer-based classifiers so that they could
identify whether a new unknown tweet is a potential Lyme

disease case. Recently, transformer-based models have been
highly efficient in various NLP applications. Specifically, the
BERT model [74], which was developed by Google AI
Language in 2018, was an advancement in the transformer
paradigm as it allows for the learning of token representations
in both left-to-right and right-to-left directions. BERT
pretraining incorporates a masked language model and
next-sentence prediction, with the ability to adjust or fine-tune
its parameters on other relevant data sets. 

Most BERT classifier variants were typically trained to
understand tweet semantic content and context to generate word
embedding representations. They are language models that
require a sequence of tokens as input. Thus, the cleaned tweets
were fed into word-piece tokenizers, which converted them into
a sequence of lemmatized tokens peppered with 3 special tokens:
[CLS], which stood for classification and was typically the first
token of every sequence; [SEP], which described to the
pretrained language model which token belongs to which
sequence; and [PAD], which was used to fill the unused token
slots to ensure that the maximum token length was met [75].
When a token sequence exceeded the maximum length, it was
truncated. Several variants of BERT classifiers have been
proposed, but only the 3 most efficient ones were considered
in this study: ALBERT, DistilBERT, and BERTweet [76], a
light variant of the BERT architecture that enhances training
efficiency by factorizing embedding and sharing cross-layer
parameters. We used the Albert-xlarge-v2 model, which has 12
repeated layers (called transformer blocks), 4096 hidden
dimensions, a 128 embedding size, and 64 attention heads with
235 million trainable parameters. The AlBertTokenizer, which
is associated with ALBERT, was used to tokenize each tweet
into a sequence of tokens. These tokens were then synchronously
fed into ALBERT’s layers, where each layer used self-attention
and transmitted its intermediate encoding via a feed-forward
network before passing it on to the next transformer encoder
block. For each token, the ALBERT model generated an
embedding vector. DistilBERT [77] is a small and
computationally efficient form of BERT. It is 60% faster than
the BERTbase model but 40% smaller owing to knowledge
distillation during pretraining, all while achieving 97% of its
language understanding efficiency. Compared with BERT, the
number of layers in its student architecture has been trimmed
in half, and token-type embeddings have been eliminated. We
used the DistilBERT-base-uncased model, which has 6 layers,
768 hidden nodes, and 66 million unique parameters in total.
Furthermore, because DistilBERT does not require token type
IDs, it is not necessary to specify which token belongs to which
segment. To tokenize the input sentences of the tweets into
token sequences, we used the DistilBertTokenizer equipped
with the model. The DistilBERT model then outputs an
embedding vector for each token. Finally, BERTweet [78] is a
recent large-scale artificial intelligence model specifically for
English tweets based on BERT. BERTweet was trained on an
80 GB uncompressed corpus containing 850 million tweets
streamed from January 2012 to August 2019, and 5 million
tweets related to the COVID-19 pandemic, with each tweet
containing at least 10 and no more than 64 word tokens. We
specifically used the BERTweet-base model, which has 12
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layers (transformer blocks) with a hidden size of 768 and a total
of 110 million unique parameters. The model’s creators
produced BertweetTokenizer, which was used to tokenize the
tweets’ input texts into sequences of tokens. The BERTweet
model also generates an embedding vector for each token. On
holy-grail NLP tasks, such as entity resolution and short text
classification, BERTweet outperformed state-of-the-art
baselines, such as RoBERTabase and XLM-Rbase [78].

Embedding Enhancement
Emojis are used to express emotions succinctly and are popular
communication tools on social media. Several potential Lyme
disease patients frequently self-report their symptoms in tweets
that combine word and emoji sequences. Thus, excluding emojis
during preprocessing could lead to the loss of important
information. As a result, we aimed to improve the tweet’s
contextual encoding by including its emoji expressions.
Traditionally, the more efficient way of leveraging emojis to
enrich the feature embedding of a tweet is to use any emoji
package, such as demoji, to convert emoji icons into sentiment
words. The corresponding sentiment words are then substituted
for emoji icons inside the tweets, resulting in tweets consisting
of only word sequences that can be fed as input to the tokenizers
associated with the BERT-based models.

Ethical Considerations
The use of tweets for academic research purposes is provided
for in Twitter’s development policy and the consent form signed
by users [61]. Social media data are publicly accessible data.
However, in accordance with Twitter’s terms of use and to
protect users’ privacy, all personal information and tweets were
deleted. There is no path or link from this paper (or any
supplementary material related to this paper) to any individual
tweets, users, or IDs.

Results

We initially compared the accuracy of the NLP classifier models
(ALBERT, BERTweet, and DistilBERT) for detecting potential
Lyme and non-Lyme disease tweets with the following
state-of-the-art classification models: AdaBoost [79], random
forest (RF) [80], logistic regression (LR) [81], Multilayer
Perceptron Neural Network (MLP) [82], support vector machine
(SVM) [83], k-nearest neighbors (KNN) [84], Quadratic
Discriminant Analysis (QDA) [85], and Naive Bayes (NB) [82].
Using the term frequency-inverse document frequency (TF-IDF)
vectorization method [86], the tweet embeddings were generated
and then fed into the classifiers, except for the 3
transformer-based classifiers associated with their tokenizers.
As reported previously [71], we regularized our classifier models
to avoid overfitting by including extreme penalizing terms in
the objective functions with L1/L2 together with solvers like
liblinear, lbfgs, and saga [62,64]. The learning rate was 0.01,
and the number of estimators was 100. Since Twitter data are
short text data, we chose the Adam algorithm, which has been

shown to better handle potential problems associated with such
data and has low sensitivity to the learning rate [74,87]. In order
to maximize the likelihood estimation, we also evaluated the
loss function by implementing binary cross-entropy [71]. As

mentioned previously [71], we used a learning rate of −2 × 10−5,
a weight decay of 0.001, and a batch size of 64.

To ensure consistent results across evaluations, all the
classification models were built using the same training,
validation, and test data sets. Specifically, after combining the
training and validation data sets, we used 10-fold
cross-validation to train the underlying classification models.
Thus, 9 of the 10 folds were used in the training phase to
iteratively learn the model parameters, and the remaining fold
was used for validation. We used all learned classifiers to predict
tweet labels during the testing phase and then recorded their
confusion matrices on the testing data set to capture the
following quantities: (1) the proportion of actual Lyme disease
tweets correctly classified as potential Lyme disease cases (ie,
true positives); (2) the proportion of actual non-Lyme tweets
correctly classified as unrelated to Lyme disease (ie, true
negatives); (3) the proportion of actual non-Lyme disease tweets
incorrectly classified as belonging to the potential Lyme disease
class (ie, false positives); and (4) the proportion of actual
potential Lyme disease tweets misclassified as non-Lyme disease
tweets (ie, false negatives). We computed several evaluation
metrics based on confusion matrices to assess the accuracy of
all tested classifiers as follows: classification accuracy [88],
which measures the proportion of correct predictions (true
positives and true negatives) among all examined tweets;
average F1-score [89], which quantifies the likelihood of
correctly identifying Lyme-disease tweets; and precision and
recall, which quantify the proportion of correctly identified
tweets that are actual potential Lyme disease cases and vice
versa, respectively. The LR classification was considered to
serve as an effective baseline for comparison.

As shown in Table 1, the BERTweet model was the best among
all the NLP models included in our study. This model had the
highest classification accuracy of 90.0%, average F1-score of
89.3%, precision of 97.1%, and recall of 82.6%. DistilBERT
was close to BERTweet and was slightly more accurate than
ALBERT. LR performed adequately in classifying tweets about
Lyme disease but was significantly less accurate than ALBERT,
with a classification accuracy of 76.6% and an F1-score of
76.7%. The classification accuracy scores of the QDA, RF, and
AdaBoost models were comparable to those of the LR model,
with both RF and AdaBoost having slightly more false negatives
and fewer false positives than LR. A false negative was
identified with a recall score as low as 62.7%, while a false
positive was identified with a precision score as high as 96.5%.
AdaBoost was slightly ahead of MLP but comparable to RF, as
both AdaBoost and RF had a classification accuracy of 76.2%
and an F1-score of 76%. SVM and the baseline LR performed
similarly, with roughly the same scores.
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Table 1. Classification accuracy, average F1-score, precision, and recall for all classification models on the test data set.

Recall (%)Precision (%)F1-score (%)Accuracy (%)Model

62.796.576.076.6TF-IDFa and AdaBoost

62.796.576.076.6TF-IDF and random forest

65.093.476.776.6TF-IDF and logistic regression

62.3b96.975.976.5TF-IDF and Multilayer Perceptron Neural Network

64.893.476.576.5TF-IDF and support vector machine

93.2c69.4b79.671.8bTF-IDF and k-nearest neighbors

64.893.576.676.6TF-IDF and Quadratic Discriminant Analysis

68.983.775.6b73.7TF-IDF and Naive Bayes

81.096.888.289.2DistilBERTd

79.796.687.388.4ALBERTe

82.697.1c89.3c90.0cBERTweetf

aTF-IDF: term frequency-inverse document frequency.
bLowest score value.
cHighest score value.
dDistilBERT: distilled version of Bidirectional Encoder Representations from Transformers.
eALBERT: A Lite Bidirectional Encoder Representations from Transformers.
fBERTweet: Bidirectional Encoder Representations from Transformers for English Tweets.

Notably, KNN had the lowest precision score of 69.4%,
producing significantly more false positives than any of the
other classifiers tested. However, it also had the highest recall
score of 93.2%, providing significantly fewer false negatives.
When compared with the QDA, SVM, LR, and AdaBoost
models, the NB classifier recall score of 68.9% showed slightly
fewer true negatives, and its precision score of 83.7%
demonstrated significantly more false positives. Overall, and
apart from the transformer-based classifiers, QDA had the most
consistent performance when all metrics were considered at
once, with a classification accuracy of 76.5%, F1-score of
76.5%, precision of 93.4%, and recall of 64.8%.

Second, we investigated whether the inclusion of emojis
improves the contextual encoding and classification of tweets.
As described in the Methods section, we first used the demoji
library to extract emoji icons and convert them into words to

enrich the tweet embeddings. We then repeated the previous
procedure to classify the tweets. Overall, BERTweet still
outperformed the other tested variants of the BERT classification
model, with the highest classification accuracy of 95.2%,
average F1-score of 94.9%, precision of 98.8%, and recall of
91.2%. DistilBERT followed BERTweet and was slightly more
accurate than ALBERT. The recall score for BERTweet with
emojis was 8% higher than its recall score without emojis, and
DistilBERT and ALBERT with emojis had recall scores that
were at least 9% higher than their recall scores without emojis.
The 3 classifiers were also able to reduce the produced false
positives by at least 5% when emojis were used. As a result,
DistilBERT had a significantly higher F1-score of 93.8% and
accuracy of 94.1%, while ALBERT had a higher F1-score of
93% and accuracy of 93.9%. These results are summarized in
Table 2.

Table 2. Classification accuracy, average F1-score, precision, and recall for the transformer-based classification models on the test data set after
including emojis.

Recall (%)Precision (%)F1-score (%)Accuracy (%)Model

91.298.894.995.2BERTweeta

89.297.393.193.9ALBERTb

90.497.593.894.1DistilBERTc

aBERTweet: Bidirectional Encoder Representations from Transformers for English Tweets.
bALBERT: A Lite Bidirectional Encoder Representations from Transformers.
cDistilBERT: distilled version of Bidirectional Encoder Representations from Transformers.

Finally, we explored the collected tweets to determine if we
could identify certain patterns. After geolocating the tweets, we
found that they originated from 46 countries all over the world.

The United States, the United Kingdom, Canada, and Australia
had the highest number of potential Lyme disease–related tweets
and non-Lyme disease tweets, accounting for 97.1%
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(19,418/20,000) of the total. Remarkably, there were observed
spikes in both Lyme disease and non-Lyme disease tweet counts
for the United States, as the United States is a hotspot country
for Lyme disease. Overall, the greatest proportion of potential
Lyme disease–related tweets were from the United States
(9827/20,000, 49.1%), whereas 0.2% (43/20,000) were reported
from Canada, 0.03% (6/20,000) from Mexico, and 0.01%
(2/20,000) from some Caribbean countries, such as Haiti and
Jamaica. A total of 0.03% (6/20,000) of the potential Lyme
disease–related tweets were reported from some South American
countries, including Argentina and Venezuela. Potential Lyme
disease cases reported in Europe were from Belgium, Denmark,
Estonia, France, Ireland, Luxembourg, Norway, Poland, Sweden,
and Switzerland, and represented 0.7% (143/20,000) of all
tweets, while 0.3% (55/20,000) were from the United Kingdom.

Potential Lyme disease cases reported in Asia were from
Indonesia, Iran, the Philippines, South Korea, Taiwan, Thailand,
and Vietnam, and represented 0.08% (15/20,000) of the data
set. Potential Lyme disease cases from Africa represented
0.005% (1/20,000) of the data set and came from a single
country, Sudan. Finally, New Zealand and Australia had 0.09%
(18/20,000) of the total potential Lyme disease cases on Twitter,
each accounting for 0.02% (4/20,000) and 0.07% (14/20,000),
respectively.

Table 3 presents the number of medical symptoms of Lyme
disease reported in tweets. Rash, fatigue, tick bite, fever, and
arthritis were the most commonly reported symptoms. In
contrast, symptoms, such as neck stiffness, numbness, and
lymph nodes, were rarely reported. The classified data are
available in the GitHub repository of this study [90].

Table 3. Top medical symptoms of Lyme disease reported in tweets.

Lyme disease–related tweet countMedical symptoms

167Rash

165Fatigue

130Tick bite

109Fever

103Arthritis

78Sleepy

48Migraine

48Depression

47Headaches

25Carditis

20Joint pain

11Memory loss

8Erythema migrans

6Nausea

6Nerve pain

5Dizziness

4Vomiting

3Tingling

3Palpitation

3Chills

3Numbness

3Lymph nodes

2Irregular heartbeat

1Neck stiffness

1Borrelial lymphocytoma

Discussion

Principal Findings
The empirical results of this study highlight the improved
performance of transformer-based classifiers (ie, BERTweet,

DistilBERT, and ALBERT), which we attribute to the following
reasons. First, the tweet word embeddings produced by their
associated tokenizers were more accurate than those generated
by context-independent embedding techniques such as TF-IDF.
This is because transformer-based classifiers are based on
language models and can better understand the semantic content
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of short texts such as tweets in different contexts. Unlike
TF-IDF, the tokenizers also consider the position and order of
words in tweets, which improves their ability to understand the
different meanings of individual words. Second, unlike
AdaBoost, KNN, and RF, transformer-based classifiers are less
affected by noise and redundant words in tweets. Third,
transformer-based classifiers can learn nonlinear relationships
and complex patterns in tweets because their neural network
architecture does not assume linearity between dependent and
independent features (unlike LR and SVM), and nonlinearity
between the features is often the case in extracted tweets.
Finally, transformer-based classifiers differ from both MLP and
KNN because they can efficiently handle feature scaling and
frequently converge to the global optimum rather than getting
stuck in the local minima. This is due to the optimization of the
cross-entropy loss function, which is often convex for most
weights.

The results also showed that emojis are effective enrichment
features to improve the accuracy of tweet embedding. The
performance of transformer-based classifiers can be further
improved by considering the sentimental semantics of emojis.
Since the texts of non-Lyme disease and Lyme disease–related
tweets can be similar in some cases, emojis can play important
roles in better identifying Lyme disease–related tweets. When
emojis are removed during the text cleaning process, some
potential Lyme disease–related tweets could be misidentified
as non-Lyme ones, resulting in more false negatives. This
implies that the inclusion of sentimental or emotional words
representing sadness, empathy, and encouragement emojis could
significantly assist transformer-based classifiers in distinguishing
potential Lyme disease–related tweets from non-Lyme disease
tweets.

The classification of the 20,000 tweets used in this study showed
a high volume of potential Lyme disease–related tweets in the
United States, the United Kingdom, and Canada. This may be
due to 2 reasons. First, Lyme disease is spreading, and second,
a focus solely on English tweets may limit the collection of
tweets from non-English speaking countries. Furthermore, in
the case of symptoms, borrelial lymphocytoma, palpitations,
tingling, nausea, and neck stiffness are rarely reported. In fact,
there are differences in the clinical manifestations seen in North
America and in European countries. For example, Lyme arthritis
and carditis are mainly found in North America, while borrelial
lymphocytoma and neurological symptoms (neck stiffness,
numbness, etc) are found in European countries. Erythema
migrans, which is the most common clinical symptom, is not
among the most common symptoms reported on Twitter because
the general population tends to refer to this symptom as a rash.
These findings correlate with the geographic distribution of the
clinical manifestations of Lyme disease throughout the literature
[46,47,91].

Lyme disease is endemic in both the United States and Europe.
Although CDC surveillance has reported over 30,000 cases
annually, other studies have estimated 476,000 cases yearly in
the United States [10,47,48]. In Europe, over 200,000 cases of
Lyme disease are being reported yearly [92,93]. The results of
our study are in line with the literature since Lyme
disease–related tweets originate mainly from the United States.

However, it is difficult to compare these results, given that only
English-language tweets were used in this study and that the
distribution of Twitter users is related to geographical location.
Our study is the first to provide a pretrained, organized, and
labeled Lyme disease–related data set with an emoji component,
which can be used to quantify and compare the performance of
different methodological approaches in future Lyme
disease–related work. This will allow for consistency in future
research and improve digital surveillance of Lyme disease. For
example, a sudden increase in Lyme disease–related activity on
Twitter or other social media platforms may indicate the
beginning of an increase in cases, which could justify the
promotion of tick bite prevention measures in the indicated
geographical area. For example, we found studies reporting
erythema migrans in combination with Borrelia burgdorferi
sensu lato antibodies after tick bite in some patients from regions
in the Caribbean, who do not have any travel history to Lyme
disease–endemic regions [94,95]. Despite the controversy
surrounding the presence of Lyme disease vectors in the
Caribbean [94], these findings agree with our study results that
showed some Lyme disease–related tweets in the region,
suggesting a need for further investigation on the presence of
Lyme disease vectors in the Caribbean. Finally, to be able to
compare our results to other early warning systems, we extracted
Lyme disease reports on ProMED (which is the largest early
warning system for emerging diseases in the world). A
comparison of the Lyme disease cases identified in these reports
with our data revealed some similar results. In fact, the majority
of ProMED Lyme disease reports came from the United States
(57%); Canada (25%); the United Kingdom (7%); and some
European countries, such as Finland, Belgium, and Austria
(9%). These results are in line with our findings, with some
disparities in terms of ranking. Indeed, in our results, the United
Kingdom ranks second for potential Lyme disease cases, while
Canada ranks third. However, the trend holds for the United
States and other European countries.

Limitations
Our study has several limitations. First, the collection of Twitter
data through the Twitter API is suggested to have a selection
bias, since only 1% of the data are accessible. Furthermore,
because the data collected are randomly generated, the data may
not reflect the reality of Lyme disease conversations on twitter.
This study aimed to limit this bias by collecting data over a long
period of time. Additionally, social media data are highly
susceptible to media coverage, so tweets about Lyme disease
may be driven by media coverage rather than disease incidence.

While we provided a pretrained Lyme disease–related tweet
data set, our results only reflected Lyme disease–related English
tweets. As we excluded tweets published in languages other
than English from our data set, we were not able to access all
potentially relevant Twitter discussions about Lyme disease
from non-English speaking countries where Lyme disease is
endemic.

Although emojis have general meanings, their usage mainly
depends on other factors, such as cultural background, linguistic
factors, and gender [96]. Since our study only focused on the
sentimental semantics of emojis, our model may have
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erroneously assigned a certain meaning to emojis different from
what the tweet author intended. Therefore, our results should
be interpreted with some caution. However, since our model
was trained with labeled tweets, we believe that the mislabeling
of some emojis did not significantly affect the performance of
our model.

While we were able to geolocate the tweets, users may not
register with their exact location or may register with a wrong
location due to safety concerns [97]. To reduce such bias, we
did not map granular tweet-specific locations, but rather
expanded the spatial distribution to the country level to reduce
the risk of location errors.

One common limitation of using social media data is that
tweeting does not necessarily equate to the occurrence of Lyme
disease [63,98,99]. Thus, our model may have included tweets
about Lyme disease but not actual cases of Lyme disease.
However, we believe that the model has been well-trained with
various keywords related to Lyme disease, therefore improving
the performance of BERT transformer models.

Additionally, according to Marques and other collaborators,
Ixodes ticks can carry two or more pathogens and are capable
of transmitting them in a single bite, thereby resulting in
co-infection [4,10,100]. Given the increased public awareness
of Lyme disease compared to that of other tick-borne diseases,
the public use of Lyme disease as an umbrella term to describe
any tick-borne disease may confound the results of this study.
Specifically, Lyme disease–related Twitter discussions in
endemic tick-borne disease regions may not actually be solely
associated with potential Lyme disease cases when there is a
risk of infection by non-Lyme disease–related pathogens [26].

Therefore, when interpreting the results of our study, these
limitations should be considered.

Conclusions
The early detection of potential Lyme disease cases is essential
to limit its increase and improve the efficiency of medical care.
Given the growing importance of social media as a source of
information about infected cases, platforms, such as Twitter,
can provide simultaneous updates on the Lyme disease epidemic.
This makes the use of such novel data for Lyme disease
prediction and surveillance an important but underexplored
challenge in the field of health informatics. In this work, we
propose a Lyme disease detection system that is primarily a
transformer-based classifier that uses data from self-reported
tweets to identify potential cases of Lyme disease. While Twitter
data were the focus of this work, the proposed system can be
easily adapted to other social media text–based platforms like
Reddit. We suggest that future research should focus on
collecting social media data from both English and non-English
texts to improve the knowledge of potential Lyme disease cases,
as some of the countries with the highest incidence of Lyme
disease are non-English speaking countries. Additionally, as
our model was able to identify some Lyme disease–related
tweets from regions that typically have a low reported incidence
of Lyme disease (ie, African countries and the Caribbean), we
believe that the results are valuable for informing emerging
Lyme disease surveillance activities in these geographical areas.
Despite these limitations, our study provides a steady
performance model with publicly available data for researchers
and policymakers to identify trends in Lyme disease discussions
on social media.
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