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Abstract

Background: Sensitive and interpretable machine learning (ML) models can provide valuable assistance to clinicians in managing
patients with heart failure (HF) at discharge by identifying individual factors associated with a high risk of readmission. In this
cohort study, we delve into the factors driving the potential utility of classification models as decision support tools for predicting
readmissions in patients with HF.

Objective: The primary objective of this study is to assess the trade-off between using deep learning (DL) and traditional ML
models to identify the risk of 100-day readmissions in patients with HF. Additionally, the study aims to provide explanations for
the model predictions by highlighting important features both on a global scale across the patient cohort and on a local level for
individual patients.

Methods: The retrospective data for this study were obtained from the Regional Health Care Information Platform in Region
Halland, Sweden. The study cohort consisted of patients diagnosed with HF who were over 40 years old and had been hospitalized
at least once between 2017 and 2019. Data analysis encompassed the period from January 1, 2017, to December 31, 2019. Two
ML models were developed and validated to predict 100-day readmissions, with a focus on the explainability of the model’s
decisions. These models were built based on decision trees and recurrent neural architecture. Model explainability was obtained
using an ML explainer. The predictive performance of these models was compared against 2 risk assessment tools using multiple
performance metrics.

Results: The retrospective data set included a total of 15,612 admissions, and within these admissions, readmission occurred
in 5597 cases, representing a readmission rate of 35.85%. It is noteworthy that a traditional and explainable model, informed by
clinical knowledge, exhibited performance comparable to the DL model and surpassed conventional scoring methods in predicting
readmission among patients with HF. The evaluation of predictive model performance was based on commonly used metrics,
with an area under the precision-recall curve of 66% for the deep model and 68% for the traditional model on the holdout data
set. Importantly, the explanations provided by the traditional model offer actionable insights that have the potential to enhance
care planning.
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Conclusions: This study found that a widely used deep prediction model did not outperform an explainable ML model when
predicting readmissions among patients with HF. The results suggest that model transparency does not necessarily compromise
performance, which could facilitate the clinical adoption of such models.

(J Med Internet Res 2023;25:e46934) doi: 10.2196/46934
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Introduction

Unscheduled rehospitalization has garnered significant research
attention due to its high cost and its association with unfavorable
patient outcomes [1,2]. In particular, the rehospitalization of
patients with heart failure (HF) has been a focal point of the
investigation, given the alarmingly high unscheduled
readmission rates, which recent studies have reported to be
around 30% within 3 months of hospital discharge [3-6]. In the
context of value-based care, health care providers are actively
working to minimize readmission rates and enhance patient care
outcomes. Reducing readmissions involves implementing
measures both during a patient’s hospital stay and in the
postdischarge phase to ensure adherence to care plans and
optimize treatment [3].

Numerous risk factors have been identified as being related to
high-risk readmissions in patients with HF. Specifically, there
are correlations with serum potassium levels, N-terminal
prohormone of brain natriuretic peptide (NT-proBNP), and
suboptimal medication adherence [2,3,7]. Moreover, HF is
accompanied by several significant comorbidities, including
hypertension, diabetes, chronic kidney disease, and atrial
fibrillation, all of which impact both the management and
prognosis of the condition [2,3].

Machine learning (ML) techniques, especially deep learning
(DL), have proven to be highly effective for readmission
prediction tasks. This is because the data inputs involved are
often intricate and may not be readily discernible by physicians
[8-11]. DL methods, in particular, require substantial amounts
of data and computational power to uncover latent patterns,
eliminating the necessity for domain-specific knowledge.
Nevertheless, DL models are often associated with limited
explainability owing to their sheer complexity [12]. Conversely,
the abundance of variables within electronic health care records
(EHRs) poses a challenge for traditional ML methods, often
referred to as shallow ML techniques. Consequently, the feature
engineering step becomes essential for extracting meaningful
features from raw data, often with the assistance of
domain-specific knowledge.

Recently, shallow ML has exhibited the potential to surpass
state-of-the-art DL techniques when accompanied by effective
feature engineering [7-10]. Consequently, the shallow ML
approach not only requires less training time but also yields
discernible features. Model features would be more
straightforward to grasp, offering greater opportunities to
interpret the outcomes. Nevertheless, it is crucial that the feature
engineering step is performed in collaboration with continuous
feedback from clinical experts, ensuring the selection of

pertinent variables for modeling the prediction task. Clinicians
provide essential guidelines on which data hold clinical
significance and how to classify those data. This clinical
guidance is crucial for making decisions, such as determining
which laboratory values to prioritize and whether transforming
continuous values into categories, such as high, normal, or low,
can enhance the performance of the ML model.

ML has the potential to aid clinicians in the management of
patients with HF at the point of discharge by predicting those
at an elevated risk of readmission [13]. However, a lingering
question is how to quantify the practical utility of these models
in actual clinical practice. Previous studies have demonstrated
the potential applicability of their developed models in achieving
cost savings [14]. Nonetheless, when it comes to integrating a
model into the clinical workflow, it is not just the model’s
discrimination ability that holds significance, but also its
applicability in real clinical scenarios. To instill confidence in
clinicians, it is essential to provide interpretability of the model
results, elucidating the individual variables that influence the
model’s decisions. This enables clinicians to verify the clinical
implications of patient conditions [15].

This study aims to explore the potential of using ML to forecast
the risk of readmission due to HF deterioration within 100 days
after discharge. This investigation involves a comparison
between shallow and deep models applied to real-world health
care data. Furthermore, our objective is to enhance the
interpretability of these models to ensure they are clinically
reliable and actionable.

Methods

Data Source
This study is based on retrospective data from the Regional
Health Care Information Platform in Region Halland, an
integrated care system located in southwestern Sweden [16].
The system includes data from both the primary and secondary
health care levels, including all prescribed medications, clinical
examination results (eg, laboratory assessments and radiological
examinations), and care delivery resources. Diagnoses (including
procedures) and medications were presented according to
standard schemas: International Classification of Diseases,
revision 10, Sweden (ICD-10-SE) and Anatomical Therapeutic
Chemical (ATC) classification system codes, respectively.

Ethics Considerations
The study was approved by the Swedish Ethical Review Board,
Stockholm Department 2 Medicine (registration number
2020-00455). Informed consent was waived because this was
a retrospective study that the Swedish Ethical Review Board
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approved. All the methods in this study were performed in
accordance with relevant guidelines and regulations.

Study Population
The cohort for this study comprised individuals who had been
diagnosed with HF based on ICD-10-SE codes (I11.0, I42, I43,
and I50; see Table S4 in Multimedia Appendix 1), were residents
receiving care within the Region Halland, and met specific
inclusion criteria (ie, aged ≥40 years and had experienced at
least one hospital admission after their HF diagnosis between
January 1, 2017, and December 31, 2019). We considered
all-cause hospitalization. In our study, for each admission within
the cohort, we took into account all of the patient’s prior
admissions within a 5-year period preceding the current
admission (referred to as the lookback period). It is important
to note that these previous admissions were not treated as events
within our study; instead, they were exclusively used as
historical data.

We excluded the following from our analysis: hospitalizations
that occurred before the patient’s initial HF diagnosis,
hospitalizations of patients younger than 40 years of age at the
index admission, hospitalizations in which patients passed away
before discharge, and hospitalizations in which patients passed
away within 100 days following discharge. Additionally,
hospitalizations with a length of stay exceeding 31 days were
excluded, as they exhibited a higher likelihood of being

influenced by multiple coexisting diseases, as well as factors
such as frailty and other medical conditions. The study cohort
consisted of 6040 patients, with 2728 (45.02%) being women.
These patients collectively contributed to a total of 20,598
hospital admissions. However, after implementing our exclusion
criteria, as outlined in Figure S1 in Multimedia Appendix 1, we
considered 15,612 (75.79%) of these admissions for our analysis.

Patient Variables and Data Definitions
We collected variables from the Regional Health Care
Information Platform that can have a significant influence on
readmission prediction as shown in Tables 1-4. The variables
considered were patient demographics, comorbidities,
medications, and laboratory results. The choice of variables was
made through a collaborative process involving both clinical
expertise and data science knowledge. For example, we selected
comorbidities including hypertension, chronic kidney disease,
and atrial fibrillation. We also applied the Charlson Comorbidity
Index (CCI) to compute a score associated with different medical
comorbid conditions, such as liver disease, diabetes, and
obstructive pulmonary disease [17,18]. These comorbidity
variables consider the complete patient history, including all
visits documented in the EHR system, encompassing specialist
and primary care visits. We used ICD-10-SE codes to calculate
these comorbidity features, and additional information can be
found in Table S2 in Multimedia Appendix 1.

Table 1. Baseline demographics and comorbidities.

P valueReadmitted (n=5597)Not readmitted
(n=10,015)

Total (N=15,612)Variables

Demographics at index

.342433 (43.47)4472 (44.65)6905 (44.23)Sex: Female, n (%)

.1379.3 (10.3)79 (10.5)79.1 (10.4)Age (years), mean (SD)

<.0011179.9 (1043.5)1133.2 (1032.3)1149.9 (1036.6)Duration of heart failure when admitted (days), mean
(SD)

Comorbidities, n (%)

.114729 (84.49)8219 (82.07)12,948 (82.94)Hypertension

<.0013143 (56.16)5132 (51.24)8275 (53.00)Ischemic heart disease

.0021481 (26.46)2397 (23.93)3878 (24.84)Cerebrovascular insult

<.0011740 (31.09)2563 (25.59)4303 (27.56)Valvular heart disease

<.001607 (10.85)863 (8.62)1470 (9.42)Peripheral artery disease

<.0013954 (70.64)6047 (60.38)10,001 (64.06)Atrial fibrillation

<.0011884 (33.66)2944 (29.40)4828 (30.92)Diabetes mellitus

<.0011639 (29.28)2088 (20.85)3727 (23.87)Chronic obstructive pulmonary disease

<.0012578 (46.06)3429 (34.24)6007 (38.48)Chronic kidney disease

<.0013.5 (1.8)2.7 (1.9)3.0 (1.9)Charlson Comorbidity Index, mean (SD)
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Table 2. Clinical characteristicsa.

P valueReadmitted (n=5597)Not readmitted
(n=10,015)

Total (N=15,612)Variables

N-terminal prohormone of brain natriuretic peptide, n (%)

<.0011945 (34.75)2494 (24.90)4439 (28.43)HFb likely

.08422 (7.54)839 (8.38)1261 (8.08)Gray zone for HF

<.00153 (0.95)169 (1.69)222 (1.42)HF unlikely

Sodium, n (%)

<.001169 (3.02)190 (1.90)359 (2.30)High (value>145)

.173191 (57.01)5539 (55.31)8730 (55.92)Normal (137≤value≤145)

<.001874 (15.62)1297 (12.95)2171 (13.91)Low (<137)

Potassiumc (mmol/L), n (%)

<.001391 (6.99)549 (5.48)940 (6.02)High (value>4.7)

.184299 (76.81)7497 (74.86)11,796 (75.56)Normal (3.5≤value≤4.7)

.24463 (8.27)773 (7.72)1236 (7.92)Low (value<3.5)

Ferritin <100 ng/mL, n (%)

<.001257 (4.59)349 (3.48)606 (3.88)Abnormal

.007441 (7.88)668 (6.67)1109 (7.10)Normal

Estimated glomerular filtration rate, n (%)

<.0011132 (20.23)1305 (13.03)2437 (15.61)Extreme (value<30)

.772502 (44.70)4444 (44.37)6946 (44.49)Abnormal (30≤value<60)

<.0011421 (25.39)2937 (29.33)4358 (27.91)Normal (60≤value)

aUnreported laboratory values were not included in the statistics presented.
bHF: heart failure.
cSome cases during 2017 were evaluated with 3.2 as the starting range to have a normal value. This applies to the low range as well.
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Table 3. Heart failure treatment.a

P valueReadmitted (n=5597)Not readmitted (n=10,015)Total (N=15,612)Variables

Medication
history with-
in 1 year

DischargeMedication
history with-
in 1 year

DischargeMedication
history with-
in 1 year

DischargeMedication
history within
1 year

Discharge

.20<.0013308 (59.10)2687 (48.01)5755 (57.46)5228
(52.20)

9063 (58.05)7915 (50.70)β-blockers, n (%)

.32<.0011507 (26.93)973 (17.38)2784 (27.80)2297
(22.94)

4291 (27.49)3270 (20.95)Angiotensin-converting en-
zyme inhibitors, n (%)

.08<.001980 (17.51)587 (10.49)1877 (18.74)1392
(13.90)

2857 (18.30)1979 (12.68)Angiotensin receptor block-
ers, n (%)

.33.22149 (2.66)98 (1.75)241 (2.41)204 (2.04)390 (2.50)302 (1.93)Angiotensin receptor
neprilysin inhibitors, n (%)

<.001.641864 (33.30)1363 (24.35)2544 (25.40)2401
(23.97)

4408 (28.23)3764 (24.11)Mineralocorticoid receptor
antagonists, n (%)

<.001.083331 (59.51)2676 (47.81)5080 (50.72)4588
(45.81)

8411 (53.88)7264 (46.53)Loop diuretics, n (%)

.003.19590 (10.54)377 (6.74)901 (9.00)733 (7.32)1491 (9.55)1110 (7.11)Digoxin, n (%)

.008<.00148 (0.86)25 (0.45)134 (1.34)102 (1.02)182 (1.17)127 (0.81)SGLT-2b, n (%)

aThe statistics are based on prescriptions documented in the system. There is a possibility that patients already have the medication and have no need
to get new prescriptions at discharge (ie, medication history within 1 year>discharge).
bSGLT-2: sodium-glucose cotransporter-2.

Table 4. Administration features and hospitalization type.

P valueReadmitted (n=5597)Not readmitted
(n=10,015)

Total (N=15,612)Variables

Administration features (lookback period=5 years)

<.0018.1 (10.3)4.4 (5.5)5.7 (7.8)Number of all-cause hospitalizations, mean (SD)

<.0013.1 (3.0)1.9 (1.8)2.3 (2.3)Number of emergency visits (in the last 6 months), mean
(SD)

.022.3 (2.6)2.4 (2.7)2.3 (2.7)Number of procedures per admission, mean (SD)

<.00136.8 (41.6)20.0 (24.5)26.0 (32.7)Total length of stay during the lookback period per patient
(days), mean (SD)

Hospitalization type (index admission)

<.0015.5 (5.2)5.0 (5.1)5.2 (5.2)Length of stay for index admission, mean (SD)

We collected the most recent results of specific laboratory tests
conducted before discharge, including NT-proBNP [19], sodium,
potassium, ferritin, and estimated glomerular filtration rate.
Notably, NT-proBNP values were categorized into normal, gray
zone, and elevated ranges [17]. The rest of the laboratory values
were categorized into normal and abnormal ranges according
to international clinical recommendations (eg, extreme, low,
and high), focusing on extracting the correlations between
abnormal laboratory values and readmission risk. For the
missing laboratory values, we adopted the assumption that they
were within the normal range, a methodology consistent with
previous studies [20,21]. Furthermore, we gathered information
about medications prescribed at the time of discharge, including
β-blockers, renin-angiotensin-aldosterone system inhibitors,
mineralocorticoid receptor antagonists, loop diuretics, and
sodium-glucose cotransporter-2 (SGLT-2) inhibitors. Detailed
specifications and ATC codes can be found in Table S3 in

Multimedia Appendix 1. In addition, we considered the patient’s
medication history by introducing variables to indicate whether
each medication had been prescribed at discharge within the
previous year for each admission.

We also incorporated a few administrative features related to
hospital utilization during the lookback period. These included
the total length of stay for inpatient care, the count of outpatient
visits (including hospital-associated and primary health care
visits), and the number of all-cause hospitalizations. Tables 1-4
display the baseline characteristics of the HF cohort and the
engineered features used for training the ML models. It is worth
noting that the same patient cohort has been previously
investigated, and the clinical variables used in this study have
been identified as being linked to the estimation of 100-day
readmission risk [22].
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The target label, termed “readmission risk,” is defined as a
binary variable. A default value of 0 signifies low risk. However,
this label is set to 1 if a patient experiences an unplanned
admission within 100 days following their discharge. It is
important to note that cases in which patients were discharged
to another health care facility or in-hospital transfers were not
regarded as unplanned readmissions.

Modeling Strategies
We conducted a comparison between the 2 modeling
approaches. Our initial model was constructed using CatBoost
(Yandex), representing a shallow model developed through
traditional ML techniques. CatBoost uses gradient boosting
decision trees, renowned for their capacity to handle both
categorical and continuous features [23]. The CatBoost model
generates predictions by using a series of decision trees,
rendering it a more explainable model. By contrast, deep models,
specifically recurrent neural networks such as long short-term
memory (LSTM) networks [24], have garnered significant
attention due to their ability to model the sequential nature
inherent in EHRs [7,10,21]. Hence, our second model is
constructed as an LSTM network, as depicted in Figure S2 in
Multimedia Appendix 1. The LSTM model is designed to learn
intricate nonlinear associations between the model variables
and outcomes, necessitating the establishment of a surrogate

model for providing explanations. In this research, we opted
for the LSTM network architecture for DL. Nonetheless, it is
worth noting that sequential information regarding patient visits
can also be effectively modeled using other recurrent neural
network architectures [7].

Figure 1 illustrates the various levels of analysis conducted in
this study. As we used 2 distinct data modeling strategies, we
organized the data into 2 different formats. For the shallow
model, the input data were structured as a single record
containing a list of engineered features, computed based on
predefined variables outlined in Tables 1-4. Conversely, the
input for the DL model comprised raw structured EHR-based
data for a sequence of 5 admissions, consisting of the index
admission and the 4 prior ones. For each of these admissions,
we treated the associated diagnoses as a list of ICD-10-SE codes.
Similarly, we regarded procedures, medications, and abnormal
laboratory test results as lists in the DL model. However, the
shallow model involved an additional preliminary step, the
feature engineering phase, in which we computed the values of
engineered features. The primary objective of this phase is to
convert raw data into a collection of computed features, which
are utilized as input for the CatBoost model. Subsequently, we
progress through the next 3 phases for both models: input
provision, model calibration, and the extraction of explanations
for model decisions.

Figure 1. Data preparation and modeling strategies. The 2 modeling pipelines adopted for (A) the shallow model and (B) the deep learning model. We
have 4 phases of analysis: (1) features engineered to prepare values of important variables to be used for the shallow model; (2) preparing input for
different models, a set of numeric values named engineered features for the shallow model, or a sequence of 5 visits as used for the deep model represented
as a mix of codes (ICD or ATC) and numeric values; (3) model calibration for training the different models; and (4) providing explanations for model
decisions. ATC: Anatomical Therapeutic Chemical; CCI: Charlson Comorbidity Index; EHR: electronic health record; ICD: International Classification
of Diseases; LSTM: long short-term memory; TLOS: total length of stay; NT-proBNP: N-terminal prohormone of brain natriuretic peptide; XAI:
Explainable Artificial Intelligence.
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Apart from the models we developed, we also assessed the
LACE (Length of stay, Acuity of index admission, CCI, and
number of emergency department [ED] visits in the last 6
months) index as an evaluation tool. The LACE index is a tool
used for predicting unscheduled readmission, utilizing readily
available clinical predictors that can be calculated before a
patient’s discharge [25]. The LACE index is formulated using
4 variables to estimate the risk of either death or non-elective
readmission following a patient’s discharge from the hospital.
These variables are the length of stay, acuity of the index
admission, the CCI, and the count of ED visits within the last
6 months [26].

Model Explainability
We used the Shapley Additive Explanations (SHAP) technique
to offer insights into model decisions by revealing the most
important features for readmission prediction. The SHAP
functions as a model-agnostic explanation tool, providing both
local and global explanations. The SHAP uses coalitional game
theory and offers a model-agnostic approach for computing
both the overall behavior of the model and local explanations
for specific readmissions [27]. The global explanations furnish
a roster of critical features that either contribute to or detract
from the risk of readmission. The technique also assigns a score
to each prediction through the calculation of additive feature
importance. This score can highlight the risk factors that are
either positively or negatively influencing the readmission risk
for a specific admission. Additionally, clinicians evaluated the
explanations offered by each model from a clinical perspective.
In particular, clinicians provided feedback on the most critical
features identified by SHAP in the context of their clinical
assessment of patient conditions. They assessed whether these
features could serve as indicators or warnings of undesirable
outcomes.

Statistical Analysis
We divided the data into 2 segments. The first subset, spanning
from January 1, 2017, to August 31, 2019, consisting of
13,800/15,612 admissions (88.39%), was used for model
training. The second, more recent subset, spanning from
September 1, 2019, to December 31, 2019, containing
1812/15,612 admissions (11.61%), was reserved for holdout
testing. We fine-tuned the hyperparameters of each model using
the grid search method, which conducts a thorough exploration
of a predefined set of hyperparameter combinations. To train
the models, we implemented a stratified 10-fold cross-validation
approach, where the training data were subdivided into 10

segments. In each iteration, a fold consisting of randomly chosen
90% (12,420/13,800) admissions of the training data was used
for model training, while the remaining admissions
(1380/13,800, 10%) were used for validation. This process was
repeated 10 times, with a different 10% of the data reserved for
validation in each iteration. We used a sensitivity-based training
strategy to optimize the sensitivity of the trained models, making
them particularly relevant in clinical operations. Of the 10-fold
cross-validation training process, we selected the model that
achieved the highest sensitivity while maintaining a minimum
specificity of 50%.

The assessment of predictive model performance is founded on
widely used performance metrics, including sensitivity,
specificity, F1-score, receiver operating characteristic curves,
the area under the receiver operating characteristic curve (AUC),
and the area under the precision-recall curve, all of which are
reported with 95% CIs. Additionally, we calculated the number
needed to screen, the number needed to diagnose, and the
number needed to predict [28].

Results

Patient Variables and Data Definitions
The features of admissions, encompassing both unscheduled
readmissions and planned admissions within the following 100
days after discharge, are detailed in Tables 1-4. As indicated,
the instances of readmitted patients exhibited a notably higher
prevalence of comorbidities in comparison to those cases that
did not result in readmission.

Model Evaluation
Table 5 presents the performance achieved by the models, with
the characteristics of the training and holdout test cohorts
detailed in Table S1 in Multimedia Appendix 1. It is worth
noting that CatBoost outperformed LSTM in both the validation
and holdout test sets, achieving superior sensitivity and
specificity. The sensitivity-based training approach led to an
increased number of false positives, which are misclassified
admissions labeled as unplanned readmissions, in both models,
consequently resulting in lower specificity. Concerning the
other metrics, the performance of both models is nearly identical.
In both cases, the numbers needed to screen/diagnose/predict
were approximately 4-5. Notably, the models we developed
exhibited superior performance when compared with the LACE
index. We used a threshold of 10 to identify high-risk
readmissions based on the LACE scores index [26].
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Table 5. Validation and testing accuracy reported by different models.a

LACEc scoreShallow (CatBoost) modelDeep (LSTMb) modelMetric

Validationd

0.38 (0.026)0.84 (0.016)0.83 (0.019)Sensitivity, mean (SD)

0.77 (0.017)0.52 (0.025)0.51 (0.022)Specificitye

0.57 (0.015)0.68 (0.014)0.67 (0.008)AUCf

0.42 (0.026)0.62 (0.021)0.61 (0.017)F1-score

0.54 (0.026)0.70 (0.016)0.69 (0.014)AUPRCg

Holdouth

0.35 (0.31-0.38)0.83 (0.79-0.86)0.78 (0.72-0.78)Sensitivity (95% CI)

0.78 (0.76-0.80)0.50 (0.47-0.52)0.53 (0.53-0.58)Specificitye (95% CI)

0.56 (0.54-0.58)0.66 (0.64-0.68)0.65 (0.63-0.67)AUC (95% CI)

0.39 (0.36-0.42)0.60 (0.57-0.63)0.58 (0.55-0.61)F1-score (95% CI)

0.51 (0.48-0.54)0.68 (0.66-0.70)0.66 (0.63-0.68)AUPRC (95% CI)

3.84 (3.27-4.59)4.49 (3.81-5.68)4.33 (3.43-4.95)Number needed to screen (95% CI)

7.90 (5.90-12.14)3.06 (2.77-3.54)3.24 (2.81-3.77)Number needed to diagnose (95% CI)

6.79 (5.08-10.65)3.20 (2.89-3.62)3.50 (3.04-4.15)Number needed to predict (95% CI)

aItalicized values represent the best model over that metric.
bLSTM: long short-term memory.
cLACE: Length of stay, Acuity of index admission, CCI (Charlson Comorbidity Index), and number of ED (emergency department) visits in the last 6
months.
dThe mean and SD of different metrics obtained during 10-fold cross-validation training are presented.
eThe reason behind lower specificity ratios for both LSTM and CatBoost models is due to sensitivity-based training; hence a lower specificity (minimum
of 0.50) is accepted to reach higher sensitivity.
fAUC: area under the receiver operating characteristic curve.
gAUPRC: area under the precision-recall curve.
hThe performance on the holdout test cohort for the model that achieved the highest sensitivity with a minimum specificity of 50% after 10-fold
cross-validation training is reported.

As aforementioned, we opted for sensitivity over specificity to
be relevant in clinical operations, thus, our models generate
more false positives than the LACE index. The LACE index is
not trainable compared with the proposed CatBoost and LSTM
models, yet it is commonly used to estimate readmission risks
in general. However, a study on patients with HF showed that
high LACE scores were associated with higher rates of ED
revisits after hospital discharge but they had less accuracy in
predicting readmissions [25].

The lower specificity ratios observed for both LSTM and
CatBoost models are attributed to the sensitivity-based training
approach we used. This approach prioritizes achieving a higher
sensitivity, and as a result, accepting a lower specificity (with
a minimum of 0.50) is part of the strategy to achieve this goal.

Model Explainability
Figure 2 provides an overview of the variables of importance
identified by the CatBoost and LSTM models, categorized into

several main groups. Given that we used 2 distinct input formats
for these models, our interest lies in understanding the
commonalities and disparities in what they have identified. Both
models concurred in identifying the most critical variables for
predicting readmission. These variables included a higher
number of previous readmissions, emergency admissions, longer
lengths of stay, and age. By contrast, the history of medications
was assigned a lower level of importance by both models.
Furthermore, both models highlighted extreme values of
NT-proBNP as an influential variable pushing toward
readmission. Additionally, both models indicated that patients
prescribed loop diuretics at discharge were at a higher risk of
readmission. However, CatBoost identified
angiotensin-converting enzyme inhibitors, mineralocorticoid
receptor antagonists, β-blockers, and angiotensin receptor
neprilysin inhibitor treatments at discharge as factors associated
with a lower risk of readmission.
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Figure 2. Global explanations: list of important variables for the shallow (CatBoost) and deep (LSTM) models. The color reflects the level of importance
of each variable out of 4 levels computed from the SHAP values assigned to variables. The arrows indicate those variables that are pushing against
readmission risk (negatively correlated). ACEi: angiotensin-converting enzyme inhibitor; ARB: angiotensin receptor blocker; CCI: Charlson Comorbidity
Index; ED: emergency department; eGFR: estimated glomerular filtration rate; HF: heart failure; ICD-10-SE: International Classification of Diseases,
revision 10, Sweden; LOS: length of stay in this admission; LSTM: long short-term memory; MRA: mineralocorticoid receptor antagonist; NT-proBNP:
N-terminal prohormone of brain natriuretic peptide; SHAP: Shapley Additive Explanations; TLOS: total length of stay at hospital during the lookback
period. For medication codes and diagnostic ICD-10-SE, full names are available at Tables S3 and S4 in Multimedia Appendix 1, respectively.

For the CatBoost model, the CCI was identified as the most
critical feature. This feature, however, was not available for the
LSTM model. Conversely, the LSTM model placed greater
importance on diagnosis codes compared with other clinical
information such as abnormal laboratory test results and
medication codes. Interestingly, in both models, patient age was
associated with an increased risk of readmission, while the
duration of HF appeared to reduce this risk. You can find the
top 28 features highlighted by both models in Figures S3 and
S4 in Multimedia Appendix 1.

Local explanations are valuable for enabling health care
professionals to comprehend the rationale behind model

predictions and make informed decisions. In Figure 3, local
explanations are provided for a particular admission where both
models correctly classified it as a high-risk readmission. In the
case presented, the 2 most important features were identical in
both models: the number of previous unscheduled readmissions
and the number of ED visits. Additionally, both models found
that the presence of chronic kidney disease and abnormal
laboratory test values of NT-proBNP (indicative of HF)
contributed to an increased risk of readmission. Conversely, a
short length of stay, specifically 1 day in this instance, exerted
a negative impact on the risk of readmission. Additional
examples, where the models disagree on the target label, can
be found in Figures S5 and S6 in Multimedia Appendix 1.
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Figure 3. Local explanations for a correctly classified “Readmitted” case. (A) CatBoost (shallow model) and (b) LSTM (deep model). The red values
indicate the importance of that feature toward readmission risk and the blue ones against it. CCI: Charlson Comorbidity Index; eGFR: estimated
glomerular filtration rate; HF: heart failure; ICD-10-SE: International Classification of Diseases, revision 10, Sweden; LOS: length of stay; LSTM: long
short-term memory; NT-proBNP: N-terminal prohormone of brain natriuretic peptide; TLOS: total length of stay.

Discussion

Principal Findings
Our primary motivation for this study is to develop models that
can effectively adapt to patterns within patients with HF data.
Given the absence of prior research demonstrating that ML

models can substantially reduce readmission, our study focuses
on the comparison of shallow and DL models in the context of
patients with HF data. This study encompassed a large HF
cohort, with a readmission rate of 5597/15,612 (35.85%) per
year, which aligns with findings from comparative studies
[3,6,22]. Notably, the more interpretable shallow model
exhibited superior performance compared with the deep model,
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and both models significantly outperformed conventional scores
in terms of the numbers needed to screen for identifying
readmission within 100 days. Consequently, this study does not
suggest that achieving enhanced prediction performance
necessitates sacrificing model transparency.

The results indicate that the shallow model, while more
interpretable, performs as effectively as the deep model.
However, it is important to note that the shallow model
necessitates a feature engineering process to derive useful
features from raw EHR data. By contrast, the input to the deep
model closely resembles the original EHR data, enabling a
comparison of the patterns learned from raw data against those
generated by engineered features calculated with the guidance
of expert knowledge. Interestingly, the explainability results
reveal that there is an overlap in the most critical features
identified by both models.

Good explanations can serve as an advantage in building trust
among clinicians and guiding interventions. Understanding the
features that influenced the prediction is crucial, as previous
reports have emphasized the importance of comprehending the
models to establish trust in them [14,15]. The selection of
variables used for model training was made to support
generalizability and the potential transfer of the model to new
settings. ICD-10-SE codes, ATC codes, and standard laboratory
values are expected to be available in most acute care venues,
enhancing the applicability of the model.

Model Explainability and Clinical Insights
In addition to clinically informative variables, administrative
features exhibit significant importance in both models, consistent
with findings from prior studies [8,11,29]. It appears that a
history of previous hospital admissions, readmissions, and visits
to the ED are associated with an elevated risk of readmission.
Both models underscore the connection between patients with
frequent inpatient episodes, often indicative of a high disease
burden, and features that are not easily altered, such as age and
comorbidity. Nevertheless, these features serve as crucial
warning signals that should be considered when planning
hospital discharge. As a result, the feature engineering process
in this study was continually refined to encompass additional
clinically relevant features. Given that previous readmissions
and ED visits are robust indicators of potential new events, the
factors contributing to past unplanned health care encounters
could serve as key targets for action. Consequently, further
investigation into these factors, with an emphasis on causal
inference, is warranted to improve patient outcomes and reduce
readmission rates.

Previous studies have demonstrated the positive impact of HF
medication in preventing readmission [6]. In addition to medical
treatment, factors such as continuity and availability of care are
valuable tools for these patients. Insights revealing weak
associations, such as the finding that guideline-compliant
pharmaceutical treatment is only weakly linked to readmission
risk, should emphasize the importance of focusing on
nonmedical strategies to prevent readmissions alongside
optimizing drug regimens, with an emphasis on drugs known
to reduce readmission rates [30-32]. We should also not
overlook previous findings that sodium and potassium levels,

as well as NT-proBNP, are associated with the outcomes, as
confirmed in this report. Moreover, the use of β-blockers and
other first-line treatments can have an impact on patient
outcomes. These factors should continue to be considered in
patient care and intervention strategies [2,3,6,7].

Our focus on readmission serves a dual purpose: it acts as an
indicator of health outcomes and, simultaneously, as an
encounter that contributes to resource utilization, potentially
conflicting with other health care priorities. The need to screen
(and subsequently intervene with) approximately 4.5 patients
to identify and target 1 potentially preventable readmission
should be recognized as a compelling reason for further
interventional studies, where the cost of the intervention is
assessed. One potential intervention approach could involve
care planning tailored to the identified drivers of readmission
probability as determined in this study.

Limitations
In this study, we did not encompass aspects of care beyond
hospitals and primary health care. As readmissions were only
weakly associated with pharmaceutical treatment and several
other predictive factors were not easily amenable to intervention,
strategies to reduce readmissions may need to concentrate on
home care and enhancing patient comfort. However, it is
important to note that these aspects were not within the scope
of this study.

Moreover, the number of patients on SGLT-2 inhibitors in our
study was too small to draw definitive conclusions about their
impact on readmissions. However, other studies suggest that
this medication warrants further investigation in real-world
health care settings. It is important to emphasize that the
effectiveness of treatment with drugs such as SGLT-2 inhibitors
is not questioned according to guidelines and remains one of
the major tools for improving patient outcomes.

Comparison With Prior Work
A broad spectrum of predictive modeling methods, including
statistical approaches and conventional ML and DL methods,
have been used to tackle the readmission prediction problem
[14]. There is a prevailing trend in the literature toward the
utilization of traditional statistical and conventional ML models.
These models are favored because they offer greater
transparency, are easier to understand, and have been shown to
outperform DL models in certain contexts [8,9,25]. Prior studies
have often concentrated on comparing the predictive
performance of different models, often neglecting to investigate
their interpretability and practical usefulness in real clinical
settings. However, with the rapid advancements in explainable
artificial intelligence and the growing adoption of
model-agnostic interpretation techniques, even complex DL
models can offer both local and global explanations, as
demonstrated in this study.

Conclusions
In clinical prediction models, there can be a trade-off between
precision and explainability. When models exhibit similar
prediction performance, the less opaque or more interpretable
model is often favored. In the presented case, the shallow ML
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model performs at a similar level to a deeper model and
significantly outperforms traditional scoring methods. Achieving
explainability requires the collaborative effort of clinicians
through feature engineering. However, it is worth noting that
many of the features driving the predictions in this study may

not be easily actionable. Enhancing compliance with treatment
guidelines can lead to improvements, but for more substantial
impacts, exploring new drugs and interventions beyond the
scope of this study should also be considered.
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AUPRC: area under the precision-recall curve
CCI: Charlson Comorbidity Index
DL: deep learning
ED: emergency department
EHR: electronic health record
HF: heart failure
ICD-10-SE: International Classification of Diseases, revision 10, Sweden
LACE: Length of stay, Acuity of index admission, CCI, and number of ED visits in the last 6 months
LSTM: long short-term memory
ML: machine learning
NT-proBNP: N-terminal prohormone of brain natriuretic peptide
SGLT-2: sodium-glucose cotransporter-2
SHAP: Shapley Additive Explanations
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