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Abstract

Background: Developing effective and generalizable predictive models is critical for disease prediction and clinical
decision-making, often requiring diverse samples to mitigate population bias and address algorithmic fairness. However, a major
challenge is to retrieve learning models across multiple institutions without bringing in local biases and inequity, while preserving
individual patients’ privacy at each site.

Objective: This study aims to understand the issues of bias and fairness in the machine learning process used in the predictive
health care domain. We proposed a software architecture that integrates federated learning and blockchain to improve fairness,
while maintaining acceptable prediction accuracy and minimizing overhead costs.

Methods: We improved existing federated learning platforms by integrating blockchain through an iterative design approach.
We used the design science research method, which involves 2 design cycles (federated learning for bias mitigation and decentralized
architecture). The design involves a bias-mitigation process within the blockchain-empowered federated learning framework
based on a novel architecture. Under this architecture, multiple medical institutions can jointly train predictive models using their
privacy-protected data effectively and efficiently and ultimately achieve fairness in decision-making in the health care domain.

Results: We designed and implemented our solution using the Aplos smart contract, microservices, Rahasak blockchain, and
Apache Cassandra–based distributed storage. By conducting 20,000 local model training iterations and 1000 federated model
training iterations across 5 simulated medical centers as peers in the Rahasak blockchain network, we demonstrated how our
solution with an improved fairness mechanism can enhance the accuracy of predictive diagnosis.

Conclusions: Our study identified the technical challenges of prediction biases faced by existing predictive models in the health
care domain. To overcome these challenges, we presented an innovative design solution using federated learning and blockchain,
along with the adoption of a unique distributed architecture for a fairness-aware system. We have illustrated how this design can
address privacy, security, prediction accuracy, and scalability challenges, ultimately improving fairness and equity in the predictive
health care domain.
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Introduction

The ability to identify patients at a high risk for life-threatening
diseases is essential for precision medicine. The integration of
artificial intelligence (AI) and digital health data such as
electronic health records (EHRs) can improve precision
medicine by enabling better diagnosis and prediction [1].
Previous work has demonstrated that using machine learning
(ML) with EHR data can improve the prediction accuracy of
adverse outcomes such as cardiovascular disease [2] and enable
the early detection of symptoms of COVID-19 [3]. However,
as precision medicine has evolved, many research projects have
been conducted at local levels or by using local EHR data, which
can introduce bias owing to underrepresented population
samples and siloed data sources. Although solutions have been
proposed [4] to train and build global models with data from
various local institutions, several critical issues hinder
widespread adoption, such as the high cost associated with data
transmission and storage as well as the high risk in security and
privacy [5]. In addition, unclear data ownership and restrictions
on data sharing further impede progress in this area [6].

Federated learning (FL) is an ML paradigm in which multiple
collaborative sites only share locally trained ML models while
keeping all the training data private [7]. Studies have shown
that FL-trained models can achieve performance levels
comparable with those trained using centrally hosted data sets
and are superior to those trained with single-institution data
alone [8,9]. Therefore, developing health AI technologies using
FL is essential and in high demand in the field of medicine [10].
One such example is the privacy-preserving federated ML
(FML) projects supported by the European Union Innovative
Medicines Initiatives. However, most existing FL systems rely
on centralized coordinators, which are vulnerable to security
attacks and privacy concerns because of the possible single
point of failure.

To fill these gaps, this study aims to detect the bias in health
care data, improve the fairness of predictive models using FL,
and enhance trust and fairness through blockchain-assisted FL.
We propose a blockchain-empowered, decentralized FL platform
that improves fairness in predictive models in the health care
domain while preserving privacy. We adopted a blockchain
platform to establish ML models with the existing data on its
off-chain storage. Specifically, our design follows a 2-cycle
research method. By embedding fairness metrics in the federated
setting with a blockchain consensus process, our design
improves the overall fairness in the global model and provides
feedback to update the local training models. We implemented
the design and prototype using the Aplos smart contract,
microservices, Rahasak blockchain, and Apache
Cassandra–based distributed storage. In a pilot study [11] that
involved 5 simulated medical centers as peers in the Rahasak
blockchain network, we demonstrated how our design improved
the accuracy of a predictive model using 20,000 local model
training iterations and 1000 federated model training iterations.
Our evaluation results show that the proposed design provides
accurate predictions while providing fairness with an acceptable
overhead. Our innovative design contributes to health care equity

and quality of care by providing accurate and fair clinical
decisions [12].

Methods

Ethical Considerations
We did not collect any human-related information or any survey
from any uses. Data used in this paper is generated by algorithms
to test the system performance.

Overview of Algorithmic Fairness and FL
The definition of fairness in ML is 2-fold: statistical notions of
fairness and individual notions of fairness [13]. Statistical
definitions of fairness refer to a guarantee of parity across
protected demographic groups based on statistical measures,
whereas individual definitions of fairness require equal treatment
for individuals with similar features [13,14]. Algorithmic
fairness has been viewed as a sociotechnical phenomenon in
recent literature [15], and there are mutual influences between
the technical and social structures. The use of AI algorithms is
sophisticated, and there are no standards or guidelines to
guarantee that the algorithms are designed with fairness [16] or
lead to fair outcomes. Despite the existence of unfairness in AI
algorithms, people can be incentivized to use an algorithm when
they could modify their forecasts [17]. Human control of
algorithms or human behaviors as the input of algorithms could
play an essential role in algorithm fairness. Moreover, although
research has made progress on methods for measuring and
addressing algorithmic fairness [18], such as IBM AI Fairness
360 toolkit [19], most existing studies have focused on a
centralized ML setting, which is not directly applicable to the
FL setting. As FL avoids full access to the raw training data set,
finding methods to detect and address bias without directly
examining sensitive information is an open challenge.

Fairness is also a major concern in health care. Specifically, the
problems of equity in access to care and the type of care received
are predominant concerns related to health care quality [20,21].
As a solution, ML is increasingly being used in health care to
address these concerns. However, research on algorithmic
fairness in precision medicine is scant. Current work on fairness
may provide a general approach in a general context [22]. Such
a general approach may not solve all fairness problems for
precision medicine because precision medicine involves multiple
unique types of data that can cause different types of bias in
ML models. In short, there is a need to measure, audit, and
mitigate the bias in FL specific to precision medicine
applications while protecting privacy during the data collection,
processing, and evaluation phases. Several studies show that
aggregating statistics may lead to the possibility of identifying
individuals [23]. In particular, in FL, the capabilities of sharing
models and data among distributed agents can lead to data
leakage via reverse engineering and aggregation of models.
There are growing concerns for data being reidentified and used
without patients’ consent or knowledge [24]. Prior research
suggests a general “debiasing” method by removing redundant
encoding related to sensitive human attributes for
prediction-focused ML applications [25]. However, this method
was tested only in the credit-lending context and may not be
ideal for decision-making in a health care context. Another
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method relates to the human-centric, fairness-aware automated
decision-making (ADM) framework [26] that emphasizes the
holistic involvement of human decision makers in each step of
ADM. This method is unrealistic in health care, given the
complexity of medical decision-making and privacy challenges.

Blockchain and FL Integration in Health Care
In an FL system in health care, a central coordinator coordinates
the learning process and aggregates the parameters from local
ML models trained on local participant data sets. A centralized
coordinator is vulnerable to various security attacks and privacy
breaches because it runs the risk of a single point of failure.
Moreover, in FL, malicious actors can exploit the distributed
model training process. They can fool the algorithm by sharing
fake data, incorrect gradient, or model parameters. In addition,
FL does not address issues that are inherent to learning on
medical data. Health data are subject to biases, for example, a
group of populations over- or underrepresented in the training
data and a large number of missing values. The distributed FL
mechanism makes it challenging to identify sources of bias.
Predictive algorithms trained on such data may also amplify
the bias and yield decisions skewed toward a certain group of
patient populations, thus inadvertently introducing unfairness
in decision-making [27]. Such unfairness would worsen the
disparities in health care and harm health equity [28]. Hence,

we propose the use of blockchain technology in FL to address
the privacy challenge. Blockchain technology provides
transparent operations [29] and accountability in a decentralized
architecture, while maintaining an acceptable overhead and
balanced trade-off between algorithm performance and fairness.

Design Science Research Methodology
We follow the 3-cycle view of design science research and
presented the tasks for each cycle in Figure 1 [30]. In the
“Relevance Cycle” section, we describe the objectives of our
fairness-aware FL platform and list the design science activities
that bridge blockchain and FL to improve fairness. The design
cycle iterates between building and evaluating the design
artifacts, where we have 2 design cycles. The first design cycle
involved adopting FL for fairness improvement in disease
prediction. The second design cycle is blockchain integration
to enhance the fairness of the FL process for disease prediction.
The rigor cycle presents the resources, technology, and expertise
available to establish the research project by connecting the
design activities with the knowledge base of fairness in health,
FL, and blockchain from scientific foundations and implications.
We discuss the relevance cycle and the artifacts building in this
section and the implementation and evaluation of the 2 design
cycles in the following 2 sections.

Figure 1. Design science research methodology (adapted from the study by Hevner [30]).

Relevance Cycle

Problem Identification
The focus of this study was to understand the issues of bias and
fairness in the ML process for prediction in the health care
domain. Following the design science research framework
proposed in the study by Hevner et al [32], this study aims to
understand the issues of bias and fairness metrics in the health
care domain and use a software architecture that integrates FL
with blockchain to improve fairness with acceptable prediction
accuracy and overhead. In doing so, we identified 3 main
objectives for this study:

• Objective 1 was to understand and detect the bias in health
care data prepared for building predictive models. We

proposed objective metrics for fairness so that health care
organizations can objectively measure fairness in the design
process using fair algorithms and detect biases and
unfairness with such objective metrics.

• Objective 2 was to mitigate bias and improve the fairness
of predictive models using FL. FL provides opportunities
to explore the adoption of various fairness metrics suited
for the distributed learning process and overall learning
outcomes for predictive models.

• Objective 3 was to develop blockchain-assisted FL for
fairness and trustworthiness. We adopted blockchain to
assist the FL process to improve the resilience of the
architecture by decentralizing the data flow during the
model training process. Moreover, the communication
architecture using blockchain will ensure accountability
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and transparency during the model aggregation process and
mitigate biases by executing smart contracts and achieving
consensus from all participating nodes. Blockchain-assisted
FL will also ease the concern of data sharing for health care
organizations owing to privacy restrictions in health care.

Fairness Metrics
Considering the health care context and objective of the
predictive models in medical decision-making, we focused on
the fairness of prediction performance. Fairness relates to biases.
Bias refers to the disparity observed in both the underlying data
and prediction model outcomes trained with the data. We

defined disparity as “discrepancies in measures of interest
unexplained by clinical need,” in line with the definition of the
Institute of Medicine [33]. We consider a model fair if its
prediction errors are similar between the privileged and
unprivileged groups. In contrast, an algorithm is unfair if its
decisions are skewed toward a particular group of the population
without being explained by clinical needs [18,33]. On the basis
of the definition of fairness [34], we used 2 metrics to assess
fairness—equal opportunity difference (EOD) and disparate
impact (DI). Textbox 1 shows the terminology used to define
the fairness metrics in this study.

Textbox 1. Definition of the terminology [35].

• Protected attribute: a protected attribute divides sample data into groups that should have parity in their outcomes. In this study, race and gender
were 2 protected attributes that we investigated.

• Privileged group: a privileged group was defined as a group of people whose protected attributes have privileged values. For example, White
and male groups were the privileged group compared with Black and female groups.

• Label: the outcome label for each individual; 1 indicates a diagnosis (case); 0 means normal control.

• Favorable label: a favorable label is one whose value corresponds to an outcome that benefits the recipient. Positive disease prediction was the
favorable label because high-risk patients can be identified early and treated to reduce their risk of adverse outcomes.

Previous studies adopted EOD and DI as fairness metrics [27,36]
for individual fairness and group fairness. We chose EOD and
DI as the primary metrics of fairness because they were
suggested in multiple studies related to bias assessment
[18,19,27]. In addition, true positive rates and positive prediction
rates are important concerns for fairness in clinical prediction
models. We define EOD and DI as follows:

1. EOD measures the difference in true positive rates between
the privileged and unprivileged groups. Mathematically, the
EOD is defined as follows:

where Ŷ is the predicted label, A is the protected attribute, a is
the privileged value (ie, White or men), a′ is the unprivileged
value, and Y is the actual label.

An EOD value of 0 indicates fairness if both groups have equal
true positive rates, which implies that the probability of an
individual with a certain predictive outcome should be the same
for Black and White and male and female.

2. DI measures the ratio of predicted favorable label percentage
between the groups, defined as follows:

where Ŷ, A, a, and a′ have the same meaning as defined in
equation 1. A DI value of 1 indicates fairness if the predicted
favorable outcome percentage is the same for both privileged
and unprivileged groups. The idea behind DI is that all people
should have an equivalent opportunity to obtain a favorable
prediction regardless of race and gender.

In the design cycles, we used both local fairness and global
fairness to deal with the algorithmic fairness of the proposed
design. Local fairness refers to the fairness measure in each
local data training process. Each FL node will self-monitor its

local state containing the fairness measurement and dynamically
adjust the ratio of each feature of the measurement. Both EOD
and DI are calculated interactively using feedback from the
global training model. On average, global fairness should have
similar weights based on the nearness of the predefined level
[18]. The blockchain node will monitor the global state
containing the fairness measurement and dynamically adjust
the ratio of each group. The global EOD and DI will be shared
with all participants so that local models can be iteratively
improved based on input from the global states. Both local and
global fairness metrics will be monitored and recorded in the
blockchain for accountability and transparency purposes.

Design Cycle: Build and Evaluate

Design Cycle 1: Adopt FL for Bias Mitigation in Disease
Prediction
Design cycle 1 was conducted to adopt FL for bias mitigation
in disease prediction. Bias mitigation, or debiasing, attempts to
improve the fairness metrics by modifying the training data
distribution, the learning algorithm, and the predictions. In this
design cycle, we used both local fairness and global fairness to
deal with the algorithmic fairness of the proposed design. Local
fairness refers to the fairness measure in each local data training
process. Each FL node will self-monitor its local state containing
the fairness measurement and dynamically adjust the ratio of
each feature of the measurement. Both fairness metrics (EOD
and DI) were interactively calculated using feedback from the
global training model. The global EOD and DI will be shared
with all participants so that local models can be iteratively
improved based on input from the global states. Both the local
and global fairness metrics will be monitored and recorded. We
implemented 4 modifications (M1 to M4) in the disease
prediction algorithm, as shown in Figure 2, to achieve bias
mitigation.
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Figure 2. Adopt federated learning for disease prediction.

In M1, we used decentralized data processing to perform bias
mitigation by retrieving local fairness measurements instead of
sharing data among participating institutions. During the model
training process, we adopted 2 types of debiasing methods:
removing protected attributes from the feature set and
resampling to balance the group distribution of the training data
across the protected attributes. Both protected attributes and
data imbalance are the primary causes of bias. As race and
gender were protected attributes, we excluded them from
comparison when training the models. Previous studies have
shown that removing the race or gender attribute from the
prediction model can reduce bias through a mechanism called
fairness through unawareness [27,37]. Consequently, we
compared the models trained with and without the protected
attributes.

In M2, we aggregated the ML model parameters at the global
level using the calculated training outcomes. For ML models,
bias is most likely caused by either of the following two
imbalanced cases: (1) training data in each group have an
imbalanced sample size. (2) Class distributions are not the same
across all groups. The resampling approach aims to mitigate
the bias caused by these 2 imbalanced cases. We applied two
resampling methods adapted from the study by Afrose et al
[38]: (1) resampling by group size, which oversampled the

minority group (smaller sample size) to match the size of the
majority group, and (2) resampling by proportion, which
resampled only positive samples in the group with a lower ratio
of positive class to balance ratios between groups. Resampling
by group size was adopted in the study by Afrose et al [38]
where there was a sample enrichment process to incrementally
enrich a specific subgroup so that a set of candidate models
were generated to achieve an optimal model.

After M2 aggregates the local model to the global level, each
participant shares the model outcomes at the global level in M3
and receives feedback from the aggregated global model in M4.
Participants in M3 shared the model data instead of the original
data set, preserving the privacy of individual participants. In
M4, participants received feedback automatically from the
global network supported by the collaborative network and
adjusted the local model parameters. Figure 3 shows a
hierarchical audit framework to detect and address local and
global bias under the FL architecture and the processes of M3
and M4, where the local parties share their local bias with the
global model while reweighing measures for aggregation. The
global model calculates the global model bias as feedback to
each local party to improve their models and initiate the local
reweighting process. The reweighting process will be iterated
for several rounds until a satisfying threshold has been met.
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Figure 3. A hierarchical framework to detect and address local and global bias under federated learning.

Design Cycle 2: Integrate Blockchain to Enhance
Fairness and Trustworthiness
Design cycle 2 involved blockchain integration to enhance the
trustworthiness and fairness of the FL process. We designed a
blockchain-assisted FL platform to enhance the security and
reliability of the FL process. The challenge of this cycle lies in
the network design of the FL process on top of the blockchain
network and the enhanced measurements to further reduce and
mitigate biases to achieve fairness in both local and global
models. To address the bias challenge, this study uses the
blockchain network to track the data flow and provide feedback
to each participating institute for further fine-tuning of
parameters for fairness features and the protection of data
privacy of distributed nodes. We achieved this with updated
modifications (M1 to M4) by removing the central server.
Moreover, we achieved real-time and transparent weight
adjustment, real-time model outcome adjustment, and
peer-to-peer feedback for fairness measurement.

Overall, we propose 3 algorithms to instantiate the
blockchain-enabled FL process. In M1, we adopted an
incremental learning technique to train the models continuously
by multiple peers in the blockchain network. Each peer in the
blockchain adopts debiasing methods in their local models.
Once a peer generates a model, it can be aggregated
incrementally by other peers in M2. Each blockchain node stores
the information to be shared in M3. The ledger provides a
method to audit the system. This design improves the
transparency of the feedback process in M4. To provide training
model provenance, a model card framework is adopted [39] for
ML model use and ethics-informed evaluations, which are
essential operations requiring accountability and transparency.

The model card object contains model information, such as
participating clients, generators of local models, and aggregators,
serving as a traceable record of model development and
protection against adversarial ML attacks.

Results

System Implementation
In the implementation of the blockchain-assisted FL platform,
we incorporated an incremental learning process to continuously
train the models by blockchain peers (Figure 4). The Rahasak
blockchain was adopted [40], with Aplos smart contracts [41]
providing a customized smart contract interface. Rahasak is a
permissioned blockchain platform in which participating
institutions can register and enroll their identities through the
membership management service. The platform has been
designed using a microservices architecture [42]. In our
implementation, we have 2 types of nodes: collaborative nodes,
representing collaborative nodes in the blockchain network, and
learning nodes, representing learning nodes for the FL process.
Each blockchain node in a collaborative nodes comes with 2
microservices: FML service and storage service. The FML
service handles FML functions using the Pytorch and Pysyft
libraries. The storage service handles the off-chain data storage
implemented with Apache Cassandra–based [43] distributed
storage. To bootstrap the learning process in individual
institutions, we implement algorithm 1 to initialize the training
pipeline, assuming a scenario where blockchain nodes are
deployed in 3 institutions, institutions A, B, and C (Textbox 2).
Blockchain is configured to store the data related to ML models.
Each institution has its off-chain storage, which stores local
patient data. The ML models are published in the blockchain
ledger, with consensus achieved using Apache Kafka [44].
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Figure 4. System overview of the layered architecture with collaborative node (CN) and learning node (LN) network.

Textbox 2. Algorithm 1: training pipeline initialization.

• Input: Blockchain nodes information, machine learning model training parameters

• Output: Blockchain genesis block, updated training parameters

• Results

1. The system initializes with 1 blockchain node chosen by the round robin scheduler with the node information and current training model
parameters.

2. The chosen blockchain node extracts information attributes from the training model parameters and executes the block creation process.

3. The chosen blockchain node broadcasts the genesis block to other peers in the network and the system choose the next available blockchain
node to continue the learning process.

• Return

1. The results are returned.
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We used the Lokka service to generate new blocks, including
the genesis block with incremental learning flow [45] and the
following blocks containing model parameters. In the new block
generation process, we implemented a federated consensus with
3 Lokka services. Blocks 1, 2, and 3 were sequentially generated
by Lokka A, B, and C, respectively. This block approval process
is repeatedly performed via federated consensus implemented
by Lokka services to generate future blocks. We implemented
an incremental learning flow that defined the order of the
training process. Assume that the incremental learning flow
among the 3 institutions is A to B to C. Peer A will produce an
initial model to be incrementally trained by peer B and then
peer C. Once peer A publishes the genesis block containing
model parameters and incremental flow to the entire network,
other peers take the block via a distributed cache service in the
Rahasak-ML training module and start to retain models based
on local data sets.

In the implementation of each incremental learning process,
peer A generates the learning model based on the model
parameters in the genesis block. The original model was not
published, but the hash and uniform resource identifier of the
built model were produced as a transaction. Peer B fetches the
URI of the model and launches the local training process with
off-chain storage. Similarly, this training model will be saved
on peer B’s off-chain storage, and peer B will publish the hash
and URI of the model as a transaction. Next, peer C repeats the
training process. After 3 institutions (or most of the institutions)
successfully complete the model training, the Lokka service
recognizes a finalized model and generates a new block
containing details with the finalized model parameters. Multiple
transactions produced by each peer will be included in the new
block. This new block is broadcasted to other peers for
validation. The peers validate the learning process with the
transactions in the block. Once the finalized model has been
fetched, it can be shared via smart contracts for prediction.

System Evaluation Outcomes

Overview
As a use case of the platform, we discuss how to explore the
integration of FL and blockchain into the health care domain.
The blockchain network was deployed in 5 hospitals in a
simulated environment, where each had its own data set. We
used a data set about inflammations of the bladder to predict
acute inflammations of the bladder [46]. A logistic regression
algorithm was used to build models for each peer. The
evaluation of the platform focuses on model accuracy,
performance in terms of blockchain scalability, and overall
overhead during model calculations.

Descriptive Assessment of Fairness
We used decentralized data processing to perform bias
mitigation by retrieving local fairness measurements instead of
sharing data among participating institutions. During the model
training process, we adopted 2 types of debiasing methods:
removing protected attributes from the feature set and
resampling to balance the group distribution of the training data
across the protected attributes. Both protected attributes and
data imbalances were the primary causes of bias.

Training and Validation Loss for Local Model Accuracy
Local fairness metrics are calculated as the first step of the FL
process. Each FL node will self-monitor its local state containing
the fairness measurement and dynamically adjust the ratio of
each feature of the measurement. The local training process is
performed with 20,000 iterations to capture local model
accuracy, as well as training and validation loss on a single peer
[47]. We measured the accuracy of the local model using the
area under the receiver operating characteristic curve (Figure
5). As the number of iterations increases, the accuracy of the
local model reaches a steady threshold, indicating that model
stability is achieved. Simultaneously, we captured both the
training loss and validation loss in Figures 6 and 7 in a single
peer, and the results show that the validation loss reaches an
acceptable level after 1000 iterations.
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Figure 5. Single peer local model accuracy.

Figure 6. Single peer training loss.

Figure 7. Single peer validation loss.
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Federated Model Accuracy
In this evaluation, we used 1000 iterations to measure the model
accuracy and training loss of the FML model with different
numbers of peers. The resulting accuracy (Figure 8) indicates
that as the number of peers increases, the accuracy of the

federated model is improved. Similarly, the federated model
training loss (Figure 9) is also improved significantly after 500
iterations. The number of peers in the federated training process
does not play a significant role because the main modification
to the FL process is related to fairness metrics instead of ML
parameters.

Figure 8. Federated model accuracy.

Figure 9. Federated model training loss.

Performance of Blockchain Scalability
In the local block generation and consensus phase, blocks will
be generated in a preset threshold. The average time required
to generate a block depends on the steps required in the
consensus process: leader election, peer broadcast, block
generation, and transaction validation. Multiple transactions
will be included in 1 block, which will greatly improve the

performance in terms of scalability. In this evaluation, we
simulated the consensus process using 1, 4, and 7 nodes (Figure
10). As new peers join, the time required to generate a new
block increases because of the new block calculation and
verification. A larger number of peers will consume more time
for new block calculation and verification, but the overall
performance of the network is improved.
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Figure 10. New block generation time.

Local Model–Building Time and Search Time
In this evaluation, we measured the average model-building
time relative to the size of the data set. The ML models are built
using a logistic regression algorithm. We adjusted the data sizes
in each simulation (Figure 11). Overall, the local model–building
time increases linearly and shows the scalability of the platform
with varying volumes of data sets. The health record data are

stored off-chain in the Cassandra-based Elassandra storage,
which allows for transaction search operations. We used elastic
search-based APIs to simulate the transaction search operations
(Figure 12). When each peer performs transaction searches, the
time taken to search against the number of records in the storage
increases. The overall time cost is in milliseconds, which is
acceptable in ML models.

Figure 11. Model-building time in each peer.
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Figure 12. Transaction search in each peer.

Discussion

Principal Findings
We designed and implemented a bias-mitigation process within
the blockchain-empowered FL framework. First, we propose a
design of an FL platform that can mitigate bias and thus improve
fairness in decision-making in distributed medical institutions
without sharing raw health data. Such a design can incentivize
collaboration among health care institutions and ease their
concerns regarding data leakage and privacy risks in a
centralized setting. Second, we integrate blockchain into the
FL framework to provide an accountable and transparent
bias-mitigation process. Meanwhile, the integration of
blockchain and FL enables institutions to share FL models
without a centralized coordinator and removes a single point of
failure. The implementation of the system demonstrated that
the proposed design is a feasible solution for addressing fairness
in a decentralized environment. Performance evaluation
indicates that the overhead brought about by blockchain
integration is acceptable, considering the achieved capabilities.

Our work makes several contributions to the fields of research
and practice related to FL for disease prediction and clinical
decision-making. To the research field, our study first
contributes to the research on FL and blockchain by designing
and implementing the blockchain-empowered FL framework
that can improve the fairness of decision-making in the health
care domain. The framework combines the advantages of FL
learning in distributed settings and blockchain in terms of
privacy and trustworthiness preservation. Second, it contributes
to algorithmic fairness research by implementing a
bias-mitigation process through which both the global and local
FL learning models can incrementally or continuously improve
fairness using the feedback of the fairness metrics adopted.
Third, it contributes to design science research by demonstrating
how design science research guides analytic research in general

and health care analytics in particular. Our work shows that
adopting design science for analytic research can help ensure
the design rigor of analytic artifacts in a specific domain with
system requirements from the user perspective.

Our work has practical implications. It provides a solution to
primary stakeholders such as patients and providers who are
concerned about fairness and disparity in health care. For
patients, our design accounts for biases in training data to avoid
the over- or underrepresentation of certain patient populations
and hence eases patients’ fairness concerns in ML-aided clinical
decision-making. For providers, our design protects the privacy
of data for local institutions that are subject to strict data-sharing
restrictions under security and privacy regulations. This can
motivate collaboration among providers to build more accurate
global models to improve the fairness, precision, and quality of
clinical decision-making.

For developers, our work provides the blockchain-empowered
FL framework, its prototype, and the prototype evaluation.
Developers can build upon our work to have a full
implementation of the framework to generate learning models
with fairness for specific disease diagnoses and clinical
decisions. They can also extend our work to explore other
designs that combine the advantages of FL and blockchain. In
pursuing such designs, they may consider several trade-offs
based on our design. First is the trade-off between prediction
accuracy and fairness. To achieve fairness, there are metrics to
adopt and parameters to adjust, so this will inherently affect the
prediction accuracy. Second, there is a trade-off between the
prediction accuracy and cost of accuracy. The computational
performance during the prediction is largely dependent on the
architecture design and number of nodes in the blockchain. To
balance the desired accuracy and number of participating health
care institutions, developers need to conduct precise modeling
and simulation before real-world production. The third trade-off
is the fairness and transparency requirement, which enhances
model trust and promotes market adoption of innovative
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architectural design. Overall, human trust should be at the
forefront of algorithm development, so that trust in ML models
can be understood and promoted.

As for physicians, the proposed platform provides opportunities
for incentive design and can help mitigate human bias and
structural inequalities that could affect diagnosis and treatment
use [48]. Our blockchain-empowered FL platform allows each
participant to share their data, thus promoting the fairness of
the collaboration. Following our design, an incentive model can
be built. The model can consider the contribution of each
participant and distribute rewards accordingly, based on the
topological relationships between the participants to further
develop value models in the process of revenue distribution
[49]. This proposed platform can be combined with signature
techniques to maintain fair incentives for physicians, such as
the Boneh-Goh-Nissim cryptosystem and Shamir’s secret
sharing for data obliviousness security and fault tolerance [50].
Moreover, each IT component should not only have an
independent fiduciary responsibility to each hospital for the
standardization, organization, maintenance, aggregation, and
release of data but also be enabled to respond to the needs of
collaboration among physicians as a whole [51]. A better
understanding of both the cultural and political significance of
IT implementation, specifically the algorithm design and new
technology adoption, quality of care delivery, and effectiveness,
can be incorporated [52].

Limitations
Blockchain and FL are both new technologies that have not yet
been fully developed in the health care domain [53] or framed
by government rules and regulations [54]. There are some
technical limitations of our prototype, especially related to the
health care domain, which are highlighted as follows: in the
health care domain, ML models could differ in terms of formats
and parameters based on different data sets. Generalized and
standardized mechanisms for institutional collaboration are
required to address this limitation. Sharing ML models can lead
to unintended intellectual information disclosure if the
deployment of the system is not done correctly. Using thorough
planning and negotiation between institutions [55] can address
this limitation. The incentive mechanism for institutional
collaboration could also be explored to address this limitation
in future work. Full participation from all stakeholders [56] is
essential for promoting the adoption of this innovative
architectural design to achieve algorithmic fairness. Meanwhile,
the sequential nature of FL may limit the efficiency of the
learning process. However, in hospital settings, disease
prediction is not required to be performed in real time, and the
number of nodes is not large. It is acceptable to have delays in
the learning process.

Comparison With Prior Work
FL is an innovative technology in the ML field that addresses
health care issues. Previous research provided benchmark data
[57] to provide a performance assessment and guidance on
privacy-preserving aspects [58] for FML in medical research,
including mobile health [59]. Prior research has investigated
the combination of FL and blockchain technologies to address
unfairness in FL. A weighted data sampler algorithm was

developed to enhance fairness in a COVID-19 X-ray detection
use case [60], which provides accountability. However, this
method does not preserve privacy. When it comes to privacy
challenges in FL, research efforts usually focus on statistical
inference by combining multiple datasets from different sources.
These efforts use methods such as the statistical estimator, risk
utility [61], and binary hypothesis testing [62], which are
successfully developed in many scenarios with radiation and
partitioned data sets [63]. We need models that can configure
an appropriate set of attributes or the optimal combination of
attributes to identify individuals such as name, address, and
telephone number. Existing privacy-preserving applications use
decentralized learning mechanisms [64] but face the issue of
identity leakage due to the sharing of data and models between
distributed nodes. There are growing concerns for data being
reidentified and used without patients’ consent or knowledge
[24]. Prior research suggests a general “debiasing” method by
removing redundant encoding that is related to sensitive human
attributes for prediction-focused ML applications [25]. However,
this method was tested only in the credit-lending context and
may not be ideal for decision-making in a health care context.
Another method relates to the human-centric, fairness-aware
ADM framework [26] that emphasizes the holistic involvement
of human decision makers in each step of ADM. The method
is unrealistic in health care, given the complexity of medical
decision-making and privacy challenges.

Our proposed model enables institutes to configure an
appropriate set of attributes or the optimal combination of
attributes to identify individuals such as name, address, and
telephone number. Overall, our blockchain technology–enabled
FL platform provides transparent operations and accountability
on a decentralized architecture while maintaining an acceptable
overhead and balanced trade-off between algorithmic fairness
and algorithm performance.

Conclusions and Future Directions
A major goal of precision medicine is the fast and reliable
detection of patients with severe and heterogeneous illnesses.
However, data from multiple health care providers are
heterogeneous with varying characteristics and behaviors,
resulting in unfair and inaccurate predictions. Hence, bias needs
to be detected and mitigated in different cycles of data from the
origin to collection and processing. We designed the mechanism
of bias mitigation within the blockchain-empowered FL
framework based on a novel architecture design that enables
multiple medical institutions to jointly train predictive models
using their privacy-protected data effectively and efficiently,
ultimately achieving fairness in decision-making in the health
care domain. The proposed framework functions in a 2-stage
process, namely the learning process and the sharing or
coordination process. The learning process was initiated at each
participating institute, where data were locally collected, stored,
and used for training local ML models. The sharing or
coordination process is initiated when the participating institute
joins the collaborative network with permission from the
blockchain membership management service. The sharing or
coordination process is mainly responsible for bias reduction
and mitigation, based on the adopted fairness metrics.
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This novel architectural design helps to understand and detect
the bias in health care data prepared for building predictive
models. It mitigates bias and improves the fairness of predictive
models using FL. To do so, it develops blockchain-assisted FL
for fairness and trustworthiness and to improve the resilience
of the architecture by decentralizing the data flow during the
model training process. Our system evaluation shows that the
proposed design provides accurate prediction while providing
fairness with an acceptable overhead. Hence, our design can
help improve health care equity and the quality of care by
offering accurate and fair clinical decisions. Local hospitals can
benefit from the FL process in which what is learned in peer
hospitals is integrated. This enables hospital systems to benefit
from one another without sharing patient data.

Future work can extend this framework and create a
collaboration model that incorporates the incentive mechanism
to promote participation and collaboration among relevant health
care institutions. The incentive model can evaluate the
contribution of each participant and distribute the rewards
accordingly. Future work can extend this framework by
embedding different fairness metrics and evaluating the fairness
outcomes. Future studies can further improve our work by
testing it using various medical data sets. Moreover, research
has attempted to integrate new learning methods, such as swarm
learning, with new technologies, such as edge computing and
fog computing, for ML models while maintaining confidentiality
without the need for a central coordinator. Future work can
build on our work by applying new learning methods.
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