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Introduction

Studies have shown that Twitter can be a complementary source
of data for monitoring personal experiences of COVID-19, such
as symptoms [1-8]. Given the lack of manually annotated
training data for supervised machine learning, however, these
studies relied on other methods to identify English-language
tweets that self-report a COVID-19 infection, including
keywords [1-3], regular expressions [4,5], transfer learning [6],
self-supervised learning [7], and unsupervised learning [8]. As
Mackey et al [8] suggest, “supervised models that can leverage
validated training sets are likely to have a much higher
performance… and could likely achieve classification closer to
real time.” The objective of this study was to develop and deploy
a manually annotated data set and benchmark classification
models for automatically identifying users who have
self-reported a COVID-19 diagnosis. To validate self-reports
of COVID-19 infection, we included only tweets that provide
evidence of a diagnosis, such as a positive test, clinical
diagnosis, or hospitalization.

Methods

Ethical Considerations
The institutional review boards of the University of
Pennsylvania and Cedars-Sinai Medical Center reviewed this
study and deemed this human subjects research as exempt.

Data Collection
Between July 2020 and May 2021, we collected approximately
600,000 English-language tweets, excluding retweets, from the
Twitter streaming application programming interface (API) that
included keywords related to both COVID-19 and a test,
diagnosis, or hospitalization as a tokenized match (Multimedia
Appendix 1). For tweets that mentioned a test, we also required
them to include the keyword positive. We then searched these
tweets for personal references to the user and automatically
excluded tweets with select references to other people who were
assumed not to be members of the user’s household. The full
query (Multimedia Appendix 2) returned 70,319 tweets that
were posted by 58,847 users.

Annotation
We randomly sampled 10,000 (14%) of the 70,319 tweets,
posted by unique users, and developed annotation guidelines
(Multimedia Appendix 3) to help 3 annotators distinguish tweets
that self-reported a COVID-19 diagnosis from those that did
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not. Among the 10,000 tweets, 9000 (90%) were annotated by
2 annotators and 1000 (10%) were annotated by all 3 annotators.
Interannotator agreement (Fleiss κ), based on these 1000 tweets,
was 0.79. After resolving the disagreements among all 10,000
tweets, 1728 (17%) were annotated as self-reporting a
COVID-19 diagnosis and 8272 (83%) as not.

Automatic Classification
We split the 10,000 tweets into 80% and 20% random sets as
training data (Multimedia Appendix 4) and held-out test data,
respectively, and performed machine learning experiments using
5 deep neural network classifiers based on bidirectional encoder
representations from transformers (BERT) [9]. We preprocessed
the tweets by normalizing URLs and usernames and lowercasing
the text. For training, we used Adam optimization, a batch size
of 8, 5 epochs, and a learning rate of 0.00001, based on
evaluating models after each epoch using a 5% split of the
training set. We fine-tuned all layers of the transformer models
with our annotated tweets.

Results

Table 1 presents the performance of the classifiers. The
COVID-Twitter-BERT classifier, based on a BERT model that

was pretrained on tweets related to COVID-19 [10], achieved
the highest F1-score: 0.94 (precision=0.96, recall=0.91). We
deployed the classifier on 948,859 unlabeled tweets retrieved
by our query (Multimedia Appendix 2) through January 2023,
and 222,084 of them were detected as self-reports of a
COVID-19 diagnosis, posted by 181,521 users (Multimedia
Appendix 5). To validate precision over time, we annotated
1500 automatically classified tweets that were posted up to 15
months after our initial data collection, identifying 1451 true
positives (precision=0.97).

Table 2 presents examples of false positives and false negatives
of the COVID-Twitter-BERT classifier in the test set. Among
the 12 false positives, 4 (33%) were reported speech, such as
quotations (tweet 1), and 2 (17%) reported a positive antibody
test (tweet 2), which were annotated as “positive” when the
tweet did not imply that the test result may have been associated
with vaccination. Among the 29 false negatives, 11 (38%)
reported being hospitalized (tweet 3), 3 (10%) mentioned a
negative COVID-19 test (tweet 4), and another 3 (10%) reported
receiving treatment for COVID-19 (tweet 5).

Table 1. Precision, recall, and F1-scores of deep neural network classifiers for the class of tweets that self-report a COVID-19 diagnosis, evaluated on
a held-out test set of 2000 manually annotated tweets.

F1-scoreRecallPrecisionClassifier

0.840.850.82BERT-Base-Uncased

0.800.770.83DistilBERT-Base-Uncased

0.900.920.87RoBERTa-Large

0.910.910.90BERTweet-Large

0.940.910.96COVID-Twitter-BERT

Table 2. Sample false-positive and false-negative tweets of the COVID-Twitter-BERT classifier (with the keywords that matched the data collection
query in italics).

PredictedActualTweetNumber

+–“I am always advocating for people to get the vaccine,“ says @QCC_CUNY Public Safety Specialist
Doodnauth Singh. ”It is safe and has been tested a lot. I am in excellent health, but tested positive for COVID
in December. Stay safe, not sorry.“

1

+–I just received the results of my COVID Antibody test. After 6 months from my 2nd shot, I am happy to
report that I tested POSITIVE!!!!

2

–+After another night in the hospital I’ve decided I won’t let Covid take me out! I’m Hanging on!3

–+Me and my bf literally sleep in the same bed everyday his covid test was negative mines was positive this

is crazy 

4

–+I've had and recovered from covid getting monoclonal antibodies. I got the J & J vaccine. I read that I have
a 90% chance of not contracting covid again and a 100% chance of not being hospitalized. Are these numbers
true?

5

Discussion

The benchmark performance of supervised classification
demonstrates the utility of our annotated training data
(Multimedia Appendix 4) for automatically identifying Twitter

users who have self-reported a COVID-19 infection, facilitating
the use of Twitter data for monitoring personal experiences of
COVID-19 in real time. Although our approach is limited to
users who report evidence of a diagnosis, our deployment
demonstrates that users can be identified on a large scale
(Multimedia Appendix 5).
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