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Abstract

Background: Reference intervals (RIs) play an important role in clinical decision-making. However, due to the time, labor,
and financial costs involved in establishing RIs using direct means, the use of indirect methods, based on big data previously
obtained from clinical laboratories, is getting increasing attention. Different indirect techniques combined with different data
transformation methods and outlier removal might cause differencesin the calculation of RIs. However, there are few systematic
evaluations of this.

Objective: Thisstudy used data derived from direct methods as reference standards and eval uated the accuracy of combinations
of different data transformation, outlier removal, and indirect techniques in establishing complete blood count (CBC) Rls for
large-scale data.

Methods: The CBC data of populations aged =18 years undergoing physical examination from January 2010 to December 2011
were retrieved from the First Affiliated Hospital of China Medical University in northern China. After exclusion of repeated
individual s, we performed parametric, nonparametric, Hoffmann, Bhattacharya, and truncation points and Kolmogorov—Smirnov
distance (kosmic) indirect methods, combined with log or BoxCox transformation, and Reed-Dixon, Tukey, and iterative mean
(3SD) outlier remova methodsin order to derive the RIs of 8 CBC parameters and compared the results with those directly and
previously established. Furthermore, bias ratios (BRs) were calculated to assess which combination of indirect technique, data
transformation pattern, and outlier removal method is preferrable.

Results: Raw data showed that the degrees of skewness of the white blood cell (WBC) count, platelet (PLT) count, mean
corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and mean corpuscular volume (MCV)
were much more obvious than those of other CBC parameters. After log or BoxCox transformation combined with Tukey or
iterative mean (3SD) processing, the distribution types of these data were close to Gaussian distribution. Tukey-based outlier
removal yielded the maximum number of outliers. The lower-limit bias of WBC (male), PLT (male), hemoglobin (HGB; male),
MCH (male/female), and MCV (female) was greater than that of the corresponding upper limit for more than half of 30 indirect
methods. Computational indirect choices of CBC parameters for males and females were inconsistent. The RIs of MCHC
established by the direct method for females were narrow. For this, the kosmic method was markedly superior, which contrasted
with the RI calculation of CBC parameters with high |BR| qualification rates for males. Among the top 10 methodol ogies for the
WBC count, PLT count, HGB, MCV, and MCHC with a high-BR qualification rate among males, the Bhattacharya, Hoffmann,
and parametric methods were superior to the other 2 indirect methods.

Conclusions; Compared to results derived by the direct method, outlier removal methods and indirect techniques markedly
influence the final RIs, whereas data transformation has negligible effects, except for obviously skewed data. Specificaly, the
outlier removal efficiency of Tukey and iterative mean (3SD) methods is almost equiva ent. Furthermore, the choice of indirect
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techniques depends more on the characteristics of the studied analyte itself. This study provides scientific evidence for clinical

laboratories to use their previous data sets to establish RIs.

(J Med Internet Res 2023;25:e45651) doi: 10.2196/45651
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Introduction

Reference intervals (RIs) play an important role in clinical
decision-making. For most clinical laboratories, objective RIs
are critical benchmarks for identifying healthy and unhealthy
populations [1]. However, improper RIslead to clinical missed
and inaccurate diagnoses. Severa studies have demonstrated
that RIs might be affected by race, age, sex, region, and other
factors [2]. Therefore, every laboratory should establish RIs
suitable for its specific service populations.

Previous studies have demonstrated that RI's can be established
through direct, indirect, and transference methods [2], each of
which has particular applicable conditions and relative
advantages. Generally, the Clinical and Laboratory Standards
Ingtitute (CL SI) endorses direct methods over the other 2 types
of methods [2]. However, this gold standard has drawbacks,
such as difficulty in recruiting sufficient reference individuals;
selection bias in small-sample data; and time, labor, and
financial costs[2-4]. For somelaboratoriesthat do not have the
ability to carry out large-scale epidemiological investigations,
itisdifficult to establish RIs suitable for their patients through
the gold standard. In this case, they need to continue to use the
RIs provided by the manufacturer, which may not be
appropriate. With the advent of medical big data, the use of
indirect methods based on data sets previously obtained from
clinical laboratoriesis promising.

The establishment of RIs using indirect methods roughly
involves data acquisition, data cleaning, transformation of
skewed data, elimination of outliersor error values, and selection
of appropriate statistical methods to calculate the reference
limits (RLs) [2,3]. Although indirect methods are obviously
more concise in the implementation process compared to direct
methods, the selection of an appropriate combination of data
transformation, outlier removal, and indirect processes to
establish RIs of laboratory anaytes with different data
distribution characteristics still raises controversies [5].

In 2020, Hickman et a [1] reported that different
outlier-processing methods markedly influence the final RIs
derived by the direct method. However, whether various outlier
removal approaches affect RIs established using indirect
methods is unclear. Furthermore, it is crucial to separate the
data of “diseased populations’ from big data for indirect
techniques[6-9]. Many indirect techniques, including parametric
and nonparametric approaches[10], the Hoffmann method [11],
the Bhattacharya method [12], and truncation points and the
Kolmogorov—-Smirnov distance (kosmic method) [9], try to
cluster data through various mathematical operations in order
to obtain “nondiseased populations.” Each of these indirect
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techniques demonstrates unique characteristics in terms of
establishing RIs. Although Ozardaet al [4] previously compared
RIs derived using direct and partial indirect methods based on
compatible data sets, there has been no systematic evaluation
of diverseindirect techniques combined with datatransformation
approaches and various outlier removals for calculating RLs.

Hence, we systematically and comprehensively explored the
effects of various combinations of different statistical techniques
used inindirect methods on Rl determination and compared the
RIsestablished using different indirect and direct methods. Our
results will provide a scientific basis for cliniciansto use their
own laboratory data to establish RIs suitable for their own
service population.

Methods

The data-processing flowchart of this study is shown in Figure
S1in Multimedia Appendix 1.

Indirect Methods

Data Source and Preliminary Data Cleaning

The probability of illness and interference factors among
populations undergoing physical examination is much lower
than that of outpatient and emergency patients; thus, in the
absence of other clinical diagnostic information, relatively
healthy populations undergoing physical examination are more
suitablefor establishing complete blood count (CBC) RIsusing
indirect methods. Furthermore, it is too difficult for clinical
laboratory researchers to obtain clinical information, which
createsabarrier to setting inclusion and exclusion standardsfor
indirect methods. To simulate practical application scenarios,
indirect methods derived from physical rea-world data have
great application and promotion value. A data set of 8 CBC
parameters—the red blood cell (RBC) count, hemoglobin
(HGB), hematocrit (HCT), the mean corpuscular volume
(MCV), mean corpuscular hemoglobin (MCH), the mean
corpuscular hemoglobin concentration (MCHC), the platelet
(PLT) count, and the white blood cell (WBC) count—for
populations aged =18 years undergoing physical examination,
measured with an XE-2100 hematology anayzer (Sysmex
Corp), from January 2010 to December 2011 (24-month period)
was retrieved from the laboratory information system in the
physical examination center of the First Affiliated Hospital of
ChinaMedical University, Shenyang. Therelevant instruments
and equipment for CBC testing during the study period remained
the same. A daly control was performed following the
International Council for Standardizationin Hematology (ICSH)
guidelines.
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Next, preliminary data cleaning was performed, as reported by
Jones et al [3]. In cases with repeated measures, only theinitial
datawere used inthe analysis, sinceindividualswho have more
than 1 measurement of analytesare morelikely to have diseases.
Before data cleaning, the sample size was 42,176. After
eliminating 55 (0.13%) repeated measurements, the remaining
42,121 (99.87%) subjects (maes: n=24,073, 57.15%) were
enrolled in the follow-up analysis.

Data Transformation and Treatment of Outliers

The data distribution normality was evaluated by calculating
skewness and kurtosis. We used the 2 most commonly used
data normalization methods, namely log transformation and
BoxCox transformation. After skewed data were transformed
through these 2 normalization methods, combined with 3 outlier
removal techniques, namely Reed-Dixon, Tukey, and iterative
mean (3SD), we obtained 6 processed initial data sets.

Statistical Analysis

Data were analyzed using R version 4.1.2 (R Core Team and
the R Foundation for Statistical Computing) [13] and Bellview
version 1.2.5[14]. The normality assumptionswerefirst checked
using the Kolmogorov—Smirnov test, stratified by sexes.
Numerical variables were presented as the median (IQR). Sex
differences were compared using the Mann—Whitney U test.
Next, variations of different analytes with age were illustrated
with scatter plots and fitting curves using the cubic spline
smoothing function of a generalized additive model.

Subsequent statistical operations were based on the 6 data sets
obtained after data transformation and outlier removal, except
for nonparametric and kosmic methods. Nonparametric and
kosmic methods used the original data set after data
transformation and outlier removal, whereas the parametric,
Hoffmann, and Bhattacharya methods used the transformed
data set after outlier removal to establish RIs.

Parametric Method

In this method, we first calculated the mean ( X ) and SD of

each data set. Next, transformed RIswere calculated using X
(1.96 SD). Finally, thetransformed RIswereinversely converted
according to their previous data transformation mode (log or
BoxCox transformation) to obtain targeted RIs. This data
transformation and inverse transformation were al so applied to
Hoffmann and Bhattacharya techniques.

Nonparametric Method

Thismethod was used per CLSI guidelines. RIswere determined
based on the central 95% range of reference values, that is, the
lower limits (LLs) and upper limits (ULS) were interpreted as
the 2.5th and 97.5th percentiles, respectively.

Hoffmann Method

The Hoffmann method mainly requires Gaussian distribution
data. We used the data after normalization and outlier removal.
Thismethod relies on Q—Q plotsand visual inspection of manual
intercepts of linear segments [4,15]. A linear segment is
extrapolated according to the Hoffmann plot, where the values
at the y axis are taken as 2.5% and 97.5% and the range
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corresponding to the values at the x axis represents the central
95% of the healthy subpopulation, to establish RIS[6]. Analysis
was performed using R version 4.1.2 [13], as described by
Holmeset a [15].

Bhattacharya Method

Thisisagraphical method requiring Gaussian distribution data.
Thus, we used data after normalization and outlier removal [4].
Bellview version 1.2.5 [14] was used to draw log difference
plotsto illustrate the relationship between log,,4 (bin count) —
log,, (bin count) and the midpoint of thebins[5]. A straight line
with a negative slope was constructed by identifying points by
eye, and the x intercept and slope were used to calculate the
mean and SD, respectively. (Note, the straight line must cover
at least 3 points for avalid analysis.) We could input the start
and end | ocations of the bin to determinethe straight line, using
Bellview version 1.2.5, requiring a Java environment (1.8 or
later). These processes were performed manually by the authors,
and the basic decision criteria can be found in Bellview
instructions.

Kosmic Method

The kosmic method primarily uses a truncated power normal
distribution family (Gaussian or truncated Gaussian after using
BoxCox transformation) to model the proportion of
physiological samples. Specificaly, this approach minimizes
the Kolmogorov—Smirnov distance between an estimated normal
distribution and the truncated part of the observed distribution
of test results after BoxCox transformation; more specific
principles are described by Zierk et a [16]. To simplify these
procedures, Zierk et a [16] developed a web-based tool [17],
Python bindings, and C++ algorithm implementation, whereas
R bindings were explored by Devon Buchanan [18]. In this
study, the tidykosmic package and the kosmic function were
applied based on R version 4.1.2.

The Direct Method

The data set for establishing RIs using the direct method
pertained to the data of Han Chinese adults from September
2010 to January 2011 from our previously published study [19]
that recruited 4642 hedlthy individuals from 6 clinical centers
in China (Shenyang, Beijing, Shanghai, Guangzhou, Chengdu,
and Xi’an). As the data source for the indirect methods was
obtained from Shenyang, we used the data previously obtained
from Shenyang for the direct method as well. Additionally, we
mostly excluded that changesin physiological CBC values are
due to variations in social development and nutritional status
inthe different study periods, because there were no significant
differencesin the study periods of CBC parameters established
using direct (September 2010-January 2011) and indirect
(January 2010-December 2011) methods. All subjects fasted
for 8-14 hours before sampling. Blood from the cubital vein
was used to measure CBC parameters at the First Affiliated
Hospital of China Medica University using an XE-2100
hematology analyzer (Sysmex Corp), which was the same as
that used for the indirect methods. The precision, carry-over
assessment, and linearity of automated hematology analyzers
were eval uated according to the |CSH guidelines[20]. Accuracy
test results and the acceptable range of bias were determined
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using standard protocols. Overall, 861 healthy individual s aged
20-79 years (males: n=368, 42.74%; females. n=493, 57.26%)
were finally enrolled to establish RIs based on strict criteria;
the details are provided elsawhere [19]. Furthermore, related
and detailed demographic and general medical information
about participants for establishing RIs using the direct method
has been previously published aswell [19].

Assessment of RLs Calculated by Different Methods

Thisstudy adopted 2 approachesto evaluate the differencesand
biases in RLs determined using various methods. We selected
RLs determined using the direct method as the reference
standard for evaluating the differences among various indirect
methods for calculating RIs. One approach wasto calculate the
relative deviation between RLs. The following formula was
used:

_ (LLeor ULe—LLy or ULy)
- LL; or UL, ’

d%

where d% is the difference between the LL/UL for indirect and
direct methods, and the LLsand UL s of the RIsto be evaluated
and the “reference standard” RIsareLL,, UL, LL,, and UL,

respectively.

The other method was to calculate bias ratios (BRS) [4]. First,
the SD of RI (SDg,) was calculated as follows:

_ (ULy-LLy)

T 392

Next, the BRsfor LL,and UL . were calculated asfollows[21]:

Yang et a
_ |LLe=LLy|
BR for LL, = -
_ |ULe-UL|
BR for UL, = p

Finally, we regarded BRs<0.375 as the allowable minimum
bias[4]. Thus, if the BR was <0.375, RLsderived using indirect
methods were not significantly different from the corresponding
RL s derived using the direct method.

Ethical Consider ations

This study complies with all the relevant national regulations
and ingtitutional policies and the tenets of the Declaration of
Helsinki. The study was approved by the Ethics Committee of
the First Affiliated Hospital of China Medical University
(approval number 2021 442). Informed consent for the direct
method was obtained from all individual sincluded in this study,
whereastheindirect method research was exempt from informed
consent due to the use of previous laboratory data.

Results

Effects of Ageand Sex

Scatter plots and fitting curves describing the original CBC
parameter changes with age for both sexes revealed notable
relationships between all the CBC parameters and age (Figure
1). Additionally, physiological levels of 8 CBC parameters
revealed significant differences between males and females
(Figure 1 and Table 1).

Figure 1. Trendsof variation in the levels of CBC parameterswith age. (A) WBCs (x10%/L), (B) PLTs (x10%L), (C) RBCs (x10%?/L), (D) HGB (g/L),
(E) MCH (pg), (F) MCV (fL), (G) MCHC (g/L), and (H) HCT (L/L). CBC: complete blood count; HCT: hematocrit; HGB: hemoglobin; MCH: mean
corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin concentration; MCV: mean corpuscular volume; PLT: platelet; RBC: red blood cell;

WBC: white blood cell.
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Table 1. Sex differencesin 8 CBC? parameters after data cleaning.

Yang et a

Analyte Unit Male (n=24,073), median (IQR)  Female(n=18,048), median (IQR) Overal (N=42,121), median (IQR)  p ygue?
WBCE x109/L 6.64 (5.68-7.75) 6.09 (5.19-7.11) 6.40 (5.45-7.50) <.001
rRBCY x1012  4.98(4.75-521) 4.39 (4.19-4.58) 4.72 (4.39-5.05) <.001
HGRB® glL 152 (146.00-159.00) 130 (124.00-136.00) 143 (131.00-154.00) <.001
HeT' L/L 0.45 (0.43-0.46) 0.39 (0.38-0.41) 0.42 (0.39-0.45) <.001
MCVY fL 90 (87.00-92.00) 89 (87.00-92.00) 90 (87.00-92.00) <.001
McHP pg 30.6 (29.80-31.50) 29.8 (28.90-30.70) 30.3 (29.40-31.20) <.001
MCHC! gL 341 (335.00-347.00) 332 (327-338) 337 (331-344) <.001
LT} x10%/L 208 (180-239) 230 (199-266) 217 (187-251) <.001

8CBC: complete blood count.

bp value: The Mann-Whitney U test was performed to explore sex differencesin CBC parameters (Table S1 in Multimedia Appendix 2), and P<.05

was considered statistically significant.

SWBC: white blood cell.

9RBC: red blood cell.

®HGB: hemoglohin.

fHCT, hematocrit.

9MCV: mean corpuscular volume.

PMCH: mean corpuscular hemoglobin.

IMCHC: mean corpuscular hemoglobin concentration.
IPLT: platelet.

Characteristicsof Data Distribution for CBC Analytes

Tables 2 and 3 illustrate the skewness and kurtosis of raw and
processed data for 8 CBC parameters after different data
transformation and outlier removal methodswere applied. From
the results for raw data, we found that data distributions of all
the CBC parameters showed different degrees of skew
distribution. Among them, the degrees of skewness of the WBC

https://www.jmir.org/2023/1/e45651

RenderX

count, PLT count, MCH, MCHC, and MCV were much more
obvious than those of other CBC parameters. Additionally, the
distribution types of these data were close to the Gaussian
distribution after log transformation (Table 2) or BoxCox
transformation combined (Table 3) with Tukey or iterative mean
(3SD) processing, whereas the Reed-Dixon outlier removal
method had no substantial effects on the transformation of data
distribution characteristics.
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Table2. Skewnessand kurtosis of raw dataand |og transformation—processed datafor 8 CBC? parameters after different data transformation and outlier
removal methods were applied.

Analyte and sex Raw data Reed-Dixon Tukey Iterative mean (3SD)
Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

Male
wacP 6.264 243.709 0.158 4.483 0.020 2732 0.042 2.887
PLTC 0.873 8.840 —1.003 14.253 -0.060 2,742 —-0.093 2.937
recd -0.445 5.622 -1.172 11.090 -0.171 2.787 -0.218 2.975
HGB® —0.752 6.617 -1.530 13.064 -0.106 2734 -0.202 3.014
HeTf —0.690 6.484 -1.349 11.595 -0.203 2717 -0.194 3.034
McCVv9Y -0.204 8.406 -0.768 10.718 0.090 2.788 0.093 2.902
McH! -0.704 11.389 -1.601 17.466 0.060 2.762 0.068 2.981
MCHC -0.015 5.041 -0.193 5.897 0.072 2.814 0.088 2.907

Female
WBC 1.332 11.619 0.085 3.490 0.010 2737 0.008 2.883
PLT 0.698 6.632 -0.634 6.622 -0.076 2.765 -0.106 2.925
RBC 0.064 5.316 -0.565 9.993 —-0.056 2.748 -0.066 2.876
HGB -1.157 6.853 -1.907 11.560 -0.145 2.757 -0.283 3.080
HCT -0.700 5.509 -1.104 6.803 -0.163 2.746 -0.253 3.031
MCV -1.614 9.333 —2.115 12.179 -0.107 2.894 -0.199 3.044
MCH —2.162 11.334 —2.867 15.873 -0.138 2.822 -0.262 3131
MCHC -1.012 7.856 -1.305 9.112 0.029 2.822 -0.033 3.056

8CBC: complete blood count.

BWBC: white blood cell.

°PLT: platelet.

9RBC: red blood cell.

®HGB: hemoglobin.

fHCT, hematocrit.

9MCV: mean corpuscular volume.

AMCH: mean corpuscular hemoglobin.

IMCHC: mean corpuscular hemoglobin concentration.
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Table 3. Skewness and kurtosis of raw data and BoxCox transformation—-processed data for 8 CBC? parameters after different data transformation and
outlier removal methods were applied.

Analyte and sex Raw data Reed-Dixon Tukey Iterative mean (3SD)
Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

Male
wacP 6.264 243.709 -0.019 4.133 -0.022 2733 -0.031 2.901
PLTC 0.873 8.840 0.116 5.262 0.066 2.753 0.077 2.949
recd —0.445 5.622 0.034 4.838 0.023 2.760 -0.001 2.948
HGB® —0.752 6.617 -0.268 4.680 0.008 2.889 0.005 2.998
HeTf —0.690 6.484 -0.254 4.736 0.059 2.644 0.009 2.989
McCVv9Y -0.204 8.406 0.120 8.233 0.172 2778 0.211 2,941
McH! -0.704 11.389 -0.001 10.061 0.141 2.762 0.206 2975
MCHC! -0.015 5.041 0.026 4.902 0.112 2.819 0.145 2.923

Female
WBC 1.332 11.619 -0.003 3424 -0.022 2.740 -0.037 2.888
PLT 0.698 6.632 0.085 4.578 0.054 2.767 0.074 2.925
RBC 0.064 5.316 0.064 5.316 0.039 2731 0.048 2.891
HGB -1.157 6.853 —0.608 5.046 0.006 2.801 -0.117 3.113
HCT -0.700 5.509 -0.280 4.372 0.035 2.850 -0.136 3.105
MCV -1.614 9.333 -1.134 7.729 -0.075 3.040 -0.075 3.040
MCH —2.162 11.334 -1.544 8.769 —-0.055 2.830 -0.146 3.153
MCHC -1.012 7.856 -0.814 6.484 0.037 2.838 0.041 3.109

8CBC: complete blood count.

BWBC: white blood cell.

°PLT: platelet.

9RBC: red blood cell.

®HGB: hemoglobin.

fHCT, hematocrit.

9MCV: mean corpuscular volume.

AMCH: mean corpuscular hemoglobin.

IMCHC: mean corpuscular hemoglobin concentration.

2) and females (Figure 3). In these charts, we compared the RIs

among normalization methods, outlier removal methods, and
indirect techniques.

Comparison of RIs Across 30 I ndirect Calculation
Methods

The RIs of CBC parameters, established using 30 different
indirect methods, are displayed in abar chart for males (Figure
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Figure2. Comparison of RIsfor males using 31 calculation methods. (A) WBC (x10%/L), (B) PLT (x10%L), (C) RBC (x10%2/L), (D) HGB (g/L), (E)
MCH (pg), (F) MCV (fL), (G) MCHC (g/L), and (H) HCT (L/L). 3SD: mean (3SD) with iteration; Bhatt: Bhattacharya; box: BoxCox transformation;
Direct: direct methods; Hoff: Hoffmann; HCT: hematocrit; HGB: hemoglobin; log: log transformation; MCH: mean corpuscular hemoglobin; MCHC:
mean corpuscular hemoglobin concentration; MCV: mean corpuscular volume; NP; nonparametric; P: parametric; PLT: platelet; RBC: red blood cell;
RI: reference interval; WBC: white blood cell.
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Figure 3. Comparison of RIs for females using 31 calculation methods. (A) WBC (x10%/L), (B) PLT (x10%L), (C) RBC (x10'%/L), (D) HGB (g/L),
(E) MCH (pg), (F) MCV (fL), (G) MCHC (g/L), and (H) HCT (L/L). 3SD: mean (3SD) withiteration; Bhatt: Bhattacharya; box: BoxCox transformation;
Direct: direct methods; Hoff: Hoffmann; HCT: hematocrit; HGB: hemoglobin; log: log transformation; MCH: mean corpuscular hemoglobin; MCHC:
mean corpuscular hemoglobin concentration; MCV: mean corpuscular volume; NP; nonparametric; P: parametric; PLT: platelet; RBC: red blood cell;

RI: reference interval; WBC: white blood cell.
A B

Effects of Normalization Methods on Rl's

When the outlier removal methods and indirect techniques
remained fixed, the UL, LL, or both RLsfor all CBC parameters,
except the WBC count, among males shifted rightward along
the x axis after log transformation compared to BoxCox
transformation (Figure 2). Additionaly, the normalization
method had a greater effect on WBC and PLT RIsthan on the
RIs of other analytes (Figures 2 and 3).

For WBC data among males, we found that the raw data
demonstrated a right-skewed distribution (skewness=6.264,
kurtosis=243.709; Tables 2 and 3). After using log
transformation combined with 3 different outlier removal
methods, the distributions of the processed dataall approximated
a Gaussian distribution, although the skewness values for all
combinations exceeded 0 (Table 2). After using BoxCox
transformation combined with the 3 different outlier removal
methods, the processed data also approximated a Gaussian
distribution but the skewness values showed a nonsignificant,
slightly left-skewed distribution (Table 3). Furthermore, only
the skewnessvaluesfor WBC data after | og transformation were
greater than those after BoxCox transformation among the 8
CBC parameters without considering outlier remova methods
(Tables 2 and 3).

https://www.jmir.org/2023/1/e45651
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For female CBC parameter data, the tendency for change was
the same as that for males (Figure 3), and the A values for both
sexes converted by BoxCox transformation are shown in Table
S2 in Multimedia Appendix 2. In this study, log transformation
was not equivalent to BoxCox transformation, because all the
A values were not equal to 0.

Effects of Outlier Removal Methods on RIs

More outliers were eliminated using the Tukey method than
using the iterative mean (3SD) and Reed-Dixon methods. For
males, the elimination rate using the Tukey method ranged from
1.15% to 3.26% compared to 0.64%-1.77% using the iterative
mean (3SD) method and 0% using the Reed-Dixon method
(Table S3in Multimedia Appendix 2). Different outlier removal
methods led to different elimination ratesin both sexes (Tables
S3 and $4 in Multimedia Appendix 2).

With fixed data transformation and indirect techniques, the Rls
of analytes were mostly affected by outlier removal methods
(Figures 2 and 3). For parametric, nonparametric, and Hoffmann
indirect methods, the Reed-Dixon method yielded the widest
RI regardless of the data transformation method used (Figure
2). For the WBC count, PLT count, HGB, and RBC count
among males, after removing outliers using the Tukey method,
the RI width calculated using the Hoffmann, nonparametric,
and parametric methodswere all narrower than when eliminating
extreme val ues using the Reed-Dixon and iterative mean (3SD)
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methods. However, there was no constant rule when using the
Bhattacharya and kosmic techniques (Figure 2).

Comparison of RIs Among Indirect M ethods

Nonparametric and parametric methods yielded wider RIs of
HGB, MCH, MCV, MCHC, and HCT than did the other 3
methods among females (Figure 3).

Performance of the Hoffmann Method

The representative Q-Q plots of quantiles of the Gaussian
distribution of CBC parameters in males and females, after
using different datatransformation and outlier removal methods,
aredisplayed in Figures S2 and S3 in Multimedia Appendix 1,
respectively. The data included in the anaysis of CBC
parameters after applying Tukey and iterative mean (3SD)
methods formed a substantial straight line in the middle of the
chart (Figures S2 and S3in Multimedia Appendix 1). However,
the Reed-Dixon method yielded the narrowest linear range for
all CBC parameters (Figures S2 and S3 in Multimedia Appendix
1). Different data transformation modes had little effect on the
linear range (Figures S2 and S3 in Multimedia Appendix 1).
The RI width obtained with the Reed-Dixon method was
significantly wider than that obtained with the other 2 outlier
removal methods when calculating RIs using the Hoffmann
method (Figures 1 and 2). Furthermore, the representative Q—Q
plotsfor MCV and HCT illustrated that the linear relationship
isnot ideal. Table S5 in Multimedia Appendix 2 shows details
of the start and end points of the Hoffmann method.

Performance of the Bhattacharya Method

Gaussian populations for establishing Rls were selected by
identifying points that formed a straight line with a negative
sope (Figures $4-S19 in Multimedia Appendix 1). A
|east-square regression model was constructed to determinethe
mean and SD from the x intercept and slope of the straight line,
respectively (Figures S4-S19in MultimediaAppendix 1). From
log difference plots, we found it difficult to draw astraight line
to cover at least 4 points for transformed CBC parameter data
after using the Reed-Dixon method to remove outliers (Figures
$4-S19 in Multimedia Appendix 1). However, straight lines
weremuch easier to mark for transformed data after using Tukey
and iterative mean (3SD) methods (Figures $4-S19 in
Multimedia Appendix 1). Additionally, not al transformed data
had small fluctuations on the log difference plots after using
Tukey and iterative mean (3SD) methods to remove outliers,
such asthe datafor HGB, MCV, MCHC, and HCT among both
sexes (Figures S7, S9-S11, S15, and S17-S19 in Multimedia
Appendix 1). Table S6in MultimediaAppendix 2 showsdetails
of the start and end points of the Bhattacharya method. The
operations can be repeated based on the decision criteria (ie,
start and end points) recorded in Table S6 in Multimedia
Appendix 2.

Performance of the Kosmic Method

The estimated distributions of physiological test resultsand RIs
are shown in Figures S20 and S21 in Multimedia Appendix 1.
Compared with theinfluence of outlier removal methods onthe
kosmic method, the data transformation approaches had little
effect (Figure 2). From the frequency distribution histograms
for males, the WBC and PLT distributions showed a dlight
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rightward deviation after data processing, while the other
parameters had anormal or approximately Gaussian distribution
(Figure S20 in Multimedia Appendix 1). For PLT RIs among
males and females, outlier removal methods had clear effects
when using the kosmic method after log and BoxCox
transformations (Figure 3). For the RBC count, HGB, MCH,
MCV, and MCHC, the results obtained using the kosmic method
were more stable than those obtained using the other 4 indirect
methods, and they were not affected by datatransformation and
outlier removal methods (Figure 3).

Comparison of Rls Between Direct and Different
Indirect Methods

Figures 4 and 5 and Figures S22 and S23 in Multimedia
Appendix 1 present acomparison of the biases of RIscalculated
using indirect methods with those established using the direct
method in males and females, respectively. Compared with the
RIs of CBC parameters calculated using the direct method, the
LL bias of WBC (male), PLT (mae), HGB (mae), MCH
(male/female), and MCV (female) were greater than that of the
corresponding UL for morethan half of the 30 indirect methods
(Figures 4 and 5).

First, the [BR| values of the LL and UL were sorted in ascending
order. Table 4 illustrates the proportion of |[BRLL or
BRUL [<0.375 and the intersection of the top 10 methodologies
(if some methods shared the 10th place, al methods sharing the
10th rank were involved in drawing the Venn diagram for
[BRLL ] and |BRUL|) corresponding to the ordered |BR| values.
Biasesof the LL or UL (or both) of someindicatorswerelarge.
Among the 30 indirect calculation methods, the qualified rate
(proportion of |BR|<0.375) of the [BR| for many analytes was
above 0 (Table 4).

We also found the following:

+ Only alarge bias of LLs (ratio of |BRLL|<85%): HGB
(female), MCV (femae), MCH (female), and MCHC
(female)

« Only alarge bias of ULs (ratio of [BRUL|<85%): WBC
(male/female) and RBC (male/female)

« A large bias of both limits (ratios of |BRLL| and |BRUL|
both<85%): MCH (male) and HCT (male/female)

See Figures 4 and 5, Figures S22 and S23 in Multimedia
Appendix 1, and Table 4. Although the qualified rate of |BR|
for theRLsfor MCH and HCT wasalittlelower, thefluctuation
range for |d%| of the LLs and ULsfor MCH in both sexes was
just 0.73%-4.74% and 0.31%-12.96%, respectively (Figure 5
and Figure S23 in Multimedia Appendix 1). In particular, the
range of |d%| of the LLsin male HCT could even be between
0% and 2.50% (Figure 5D).

Data transformation would dlightly affect the comparison
between the direct and indirect methods. When we compared
the BR of RLs for males and females, we found that log (43
times) and BoxCox (41 times) transformations were similar in
the top 10 methodologies (Table 4). Furthermore, for the
selection of outlier processing with indirect methods, we found
that Tukey (30 times) and mean (3SD; 35 times) methods had
similar effects, whereasthe existence of the Reed-Dixon method
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(19 times) was usually accompanied with the use of Hoffmann,
Bhattacharya, and kosmic methods (Table 4).

For the selection of indirect techniques, computational choices
of CBC parameters for males and females were inconsistent.
The RIs of MCHC established using the direct method for
femaleswere narrow. For this, the kosmic method was markedly
superior (Table 4). This contrasted with the RI calculation for

Yang et a

CBC parameters with high |BR| qualification rates for males.
Among the top 10 methodol ogiesfor indicatorswith ahigh |BR|
qualification rate (WBC count, PLT count, HGB, MCV, and
MCHC) among males, the Bhattacharya method appeared 5
times, both parametric and Hoffmann methods appeared 4 times,
and the nonparametric method appeared 2 times, whereas the
kosmic method did not feature at al (Table 4).

Figure4. Comparison of RIsfor (A) WBC count, (B) PLT count, (C) RBC, and (D) HGB for males using 31 indirect methods with calculation of bias
at RLs. (A) WBC (><109/L), (B) PLT (><109/L), (C) RBC (><1012/L), and (D) HGB (g/L). 3SD: mean (3SD) with iteration; Bhatt: Bhattacharya; box:
BoxCox transformation; Hoff: Hoffmann; BR: bias ratio; d% between LL: relative deviation of lower RL between indirect and direct methods; d%
between UL.: relative deviation of upper RL between indirect and direct methods; HGB: hemoglobin; LL: lower limit; log: log transformation; PLT:
platelet; RBC: red blood cell; RI: reference interval; RL: reference limit; UL: upper limit; WBC: white blood cell.
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Figure5. Comparison of RIsof (A) MCH, (B) MCV, (C) MCHC, and (D) HCT for males using 31 indirect methods with calculation of bias at RLs.
(A) MCH (pg), (B) MCV (fL), (C) MCHC (g/L), and (D) HCT (L/L). 3SD: mean (3SD) with iteration; Bhatt: Bhattacharya; box: BoxCox transformation;
HCT: hematocrit; Hoff: Hoffmann; BR: bias ratio; d% between LL: relative deviation of lower RL between indirect and direct methods; d% between
UL: relative deviation of upper RL between indirect and direct methods; LL: lower limit; log: log transformation; MCH: mean corpuscular hemoglobin;
MCHC: mean corpuscular hemoglobin concentration; MCV: mean corpuscular volume; RI: referenceinterval; RL: reference limit; UL: upper limit.
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Table 4. Ratio of the BR|?for lower and upper RLS of <0.375, based on 30 indirect methods and the intersection of the top 10 combinations of data
transformation, outlier removal, and indirect techniques for descending [BRLL|C or |BRUL|d.

Analyte and sex Ratio of |BR- Ratio of Top methods
LL[<0.375 (%) |[BRUL|<0.375 (%)
Male
WBC® 100.00 80.00 log-Dixon-Bhatt?
pLT" 100.00 100.00 box'-Dixon-P!, log-Dixon-NP¥, box-Dixon-NP
RBC' 100.00 46.67 | og-3SD m-N P
HGB" 90.00 100.00 log-Dixon-Hoff°, box-Dixon-P
MCHP 13.33 76.67 box-3SD-Bhatt, box-Tukey-Hoff, box-Tukey-Bhatt, box-3SD-P, box-3SD-Hoff
mcvd 100.00 100.00 box-3SD-Bhatt
MCHC" 96.67 93.33 box-Tukey-Bhatt, box-3SD-Bhatt, |og-3SD-Bhatt, box-Dixon-Hoff, box-Tukey-
P, box-Tukey-Hoff, box-3SD-P, box-3SD-Hoff
HCTS 73.33 40.00 log-Dixon-Hoff, log-Tukey-Hoff, log-Tukey-Bhatt, |og-3SD-P, log-3SD-NP,
log-3SD-Hoff, log-3SD-Bhatt
Female
WBC 100.00 53.33 box-Dixon-Hoff, box-Tukey-Bhatt, box-3SD-Bhatt
PLT 100.00 93.33 box-Tukey-NP, box-3SD-P, box-3SD-Hoff, log-Dixon-kosmic, box-Dixon-
kosmic, box-3SD-Bhatt
RBC 100.00 70.00 log-Tukey-P, log-Tukey-Hoff, 10g-3SD-P, log-3SD-Hoff, log-3SD-NP
HGB 83.33 96.67 log-Dixon-Hoff, log-3SD-Hoff, box-Dixon-Bhatt, log-Tukey-NP, log-Tukey-
Hoff, log-3SD-P, log-3SD-NP
MCH 43.33 86.67 box-Tukey-NP, box-Tukey-P, box-Tukey-Hoff, box-Tukey-Bhatt
MCV 66.6 93.33 |0g-3SD-NP, box-Dixon-Hoff, box-Dixon-Bhatt, box-Tukey-P, box-Tukey-NP,
box-Tukey-Hoff, box-3SD-P, box-3SD-NP, box-3SD-Hoff
MCHC 73.33 90.00 log-Dixon-kosmic, log-Tukey-kosmic, 1og-3SD-kosmic, box-Dixon-kosmic,
box-Tukey-kosmic, box-3SD-kosmic, log-Tukey-P, log-Tukey-NP, log-Tukey-
Hoff, log-Tukey-Bhatt, log-3SD-P, log-3SD-Hoff, log-3SD-Bhatt, box-3SD-
Bhatt
HCT 56.67 63.33 log-Dixon-Hoff, log-Dixon-Bhatt, log-Tukey-P, log-Tukey-NP, log-Tukey-Hoff,
log-Tukey-Bhatt, |og-3SD-P, 1og-3SD-Hoff
8BR: hiasratio.

BRL: reference limit.

CLL: lower limit.

duL: upper limit.

SWBC: white blood cell.

flog: log transformation.

9Bhatt: Bhattacharya method.

PpLT: platelet.

ihox: BoxCox transformation.

ip: parametric.

KNP: nonparametric.

'RBC: red blood cell.

M33D: iterative mean (3SD).

"HGB: hemoglobin.

®Hoff: Hoffmann method.

PMCH: mean corpuscular hemoglobin.
IMCV: mean corpuscular volume.

"M CHC: mean corpuscular hemoglobin concentration.
SHCT: hematocrit.
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Discussion

Principal Findings

To the best of our knowledge, this is the first study to
comprehensively evaluate the effects of combinations of
different data transformation, outlier removal, and indirect
techniques on establishing RIs for large-scale data. For most
laboratoriesthat are unableto carry out direct method research,
this study provides a scientific and reasonable basis for their
use of previous laboratory data sets to establish Rls using
indirect methods. Moreover, we used data derived from the
direct method as reference standards. We found that for data
with different distribution characteristics, outlier removal
method and indirect technique use markedly influenced thefinal
RIs, whereas data transformation had negligible effects except
for obvioudly skewed data.

Strengths

There are several strengths of this study. First, the samples for
direct and indirect methods were derived from the same study
area and were tested in the same laboratory using the same
instrumentation as well. This eliminated many confounding
factors for the subsequent combined evaluation of indirect
methods. Second, only harmonization of results requires
multicenter studies in a given region or country. Thus, this
single-center study will encourage laboratory researchers to
attempt to establish RIs suitable for their own laboratories.
Third, to mostly eliminate the interference of “diseased
populations,” we selected subjects undergoing physical
examination rather than outpatient or inpatient individuals.
Furthermore, to ensure that the “reference population” excluded
asmuch as possibleindividuals who were sick and considering
that individuals who have repeated measurement data are more
likely to have abnormalities or diseases, we included only the
earliest visit records [22]. We only processed the repeated
measurement data in the data-cleaning step, although this step
had no substantive impact on the overall data distribution.

For CBC parameters, we found significant differences between
the sexes and minor variation among age groups based on the
data used for indirect methods. This phenomenon is essentially
consistent with Takami et a [22], who reported RIs of the RBC
count for healthy adultsin Japan and calculated the SD ratio to
measure the magnitude of sex differences. They found that sex
differences existed in HGB, HCT, RBC count, and MCHC, as
the SD ratios of these 4 analytes exceeded 0.3[22]. Additionally,
South African studies have shown that there are sex differences
for the WBC and PLT counts as well [23]. Haeckel et a [24]
once explored the importance of correct stratifications when
comparing directly and indirectly estimated RIs. They suggested
that the requirement for stratification should not been neglected
during RI determination, with the main variables affecting RIs
being sex and age. Considering these viewpoints, at the
beginning of this study, confounding factors (ie, sex and age)
were explored, and we found that significant sex differences
exist in CBC parameters. Therefore, subsequent calculations
were stratified by sex.

When exploring the impact of different data transformation
methods used with indirect techniques on calculating RIs, there
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were dlight variances between |og and BoxCox transformations
for different types of data distribution. In most cases, the
absolute skewnessvaluesfor BoxCox transformation were |ower
than those for log transformation, which means that the effect
of BoxCox transformation is better than that of log
transformation when A is not equal to O, like in this study. For
some skewed distribution data, BoxCox transformation might
result in overcorrection. For example, raw WBC datain males
showed a right-skewed distribution. After log transformation,
the data could approximate a Gaussian distribution, although
the skewness value still exceeded 0. In contrast to the effect of
log transformation, the skewness value of the transformed data
was less than O after BoxCox transformation, implying
correction to a left-skewed distribution. Conseguently, raw
WBC data for males shifted rightward on the abscissa after
BoxCox transformation, which explainsthe horizontal rightward
shift of RIs calculated after BoxCox transformation. Data
transformation may bring the pathological population closer to
the healthy population, thereby making it more difficult to
separate them. However, in this study, compared with theimpact
of outlier processing and indirect technology on the results, data
transformation had a slight impact on the final results.

There have been many studies on the significant effects of the
chosen outlier removal method on RIs [1,25,26]. Eggers et al
[26] and Hickman et a [25] used direct sampling techniques
and evaluated the influence of different outlier-processing
methods on the 99th percentile of cardiac troponin values. They
found that the UL of the RI is sensitive to the choice of the
outlier removal method. Hickman et al [25] stated that the RIs
of al analytes would potentialy be affected by the outlier
removal method. Our study used theindirect sampling technique
to calculatethe RIsof CBC parameters. These analytesdiffered
from cardiac troponin with regard to the data distribution type.
The former often approximates a Gaussian distribution, while
the latter shows an obviously skewed distribution. However, in
this study, Reed-Dixon, Tukey, and iterative mean (3SD)
methods had significant effects on the RIs of CBC parameters
aswell. Hickman et al [1] reported that various outlier removal
methods could markedly change RIs. In their study, the Tukey
method more often yielded narrower RIs [1]. The outlier
removal efficiency of the Tukey method was similar to that of
the iterative mean (3SD) method, consistent with our study.
The RI often covers 95% of the healthy population. Furthermore,
the Tukey method eliminates about 1% [1]. Therefore, when
Tukey method—processed data are used to cal culate 95% of the
RI, it actually calculates 94% of the RI. Thisisthe fundamental
reason for the narrower Rl obtained with the Tukey method.
When establishing RIsusing the direct method, the popul ations
used to calculate RIs are unlikely to be contaminated by
“diseased populations,” because the a priori—set exclusion
criteria are strict. In the absence of clear evidence that the
individual valueisabnormal, each participant’s val ue confirmed
by exclusion criteria should be retained in the subsegquent
calculation. Therefore, the selection of the outlier removal
method for the direct technique is inclined to be conservative.
However, when using indirect methods on big data, due to the
difficulty of applying strict screening criteria, the applicability
of conservative outlier removal methods, such as the
Reed-Dixon method, in this type of research is poor.
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When we explored the influence of different indirect techniques
on RIs, we found that data transformation and outlier removal
methods had different effects on the results of subsegquent
parametric, nonparametric, Hoffmann, and Bhattacharya
methods. Outlier removal had a larger effect than data
transformation on indirect techniques. There was a recent
publication examining 8 different indirect methods for RI
derivation [27]. The authors conducted 8 methods to simulate
4 different scenarios of mixed populations and distributions.
They found that the results derived by the kosmic method in
most simulation scenarios are within the allowabl e error range,
and a high proportion of pathological subgroups significantly
reduce the performance of the indirect method [27]. However,
the median absolute deviation (MAD) and double median
absolute deviation (dAMAD) involved in that paper study are not
discussed in our study. In addition, our research used real-world
data and selected results calculated using the direct method as
areference to evaluate the accuracy of commonly used indirect
methods, including the parametric, Hoffmann, and Bhattacharya
methods that have not been evaluated by Tan et a [27]. The
similarity of these 2 studies is that no matter which data
transformation and outlier-processing methods are used, the
calculation results of the kosmic method are the most stable
ones, since they are minimaly affected by these
data-preprocessing measures. In contrast to parametric and
nonparametric methods, even for big data, after data cleaning
and outlier removal, the kosmic method recognized that both
pathological and nonpathological valueswere present. The core
of this method is that the estimation of the proportion of
physiological samples can be modeled with a parametric
distribution and minimizes the Kolmogorov—Smirnov distance
between a hypothetical Gaussian distribution and the observed
distribution of test results after BoxCox transformation [9,16].
For the WBC count, the upper RL estimated by the kosmic
method was quite different from that cal culated using the direct
method. This could be due to the limitations of the kosmic
method itself [ 16] or because among the popul ation undergoing
physiological examination, the probability of abnormal WBC
test results is significantly higher than that of other CBC
parameters. If there is much overlap between abnormal and
physiological test results (ie, the abnormal test results are more
likely to be close to the UL or LL), the BR between indirect
and direct methodsincreases. Since Hoffmann and Bhattacharya
methods depend on linearity [12,28], they are both highly
sengitiveto datanormality and the presence of outliers. Although
both methods use the middata for calculation, too many values
were retained to establish a linear equation in this study. The
reason for this phenomenon is that raw distributions of most
CBC parameters approximated a Gaussian distribution and
fewer valueswith anegative impact on linearity were eliminated
at both ends of the line. Furthermore, a different bin size was
optimized, and it was difficult for different authors involved in
the subjective selection of the straight lineto retain consistency.
However, wefollowed the same principlein the process of value
selection and recorded the location of the bin to ensure the
repeatability of the study as much as possible. When comparing
the effects of combinations of indirect techniques, data
transformation, and outlier removal methods on RIs with
reference to the direct method RIs, the width of the RIs
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established using the direct method was wider (larger
intraindividual variation) and those calculated by Hoffmann,
nonparametric, Bhattacharya, and parametric methods were
closer to those cal culated using the direct method. For datawith
smaller intraindividual variation, the width of the RIs determined
using the direct method was narrower; the kosmic method that
excluded a large number of pathological values seemed to be
markedly more applicable.

Limitations

Thisstudy hasafew limitations. First, it isessential to consider
the requirement of correct stratifications when comparing
directly and indirectly estimated RIs. Both direct and indirect
methods |ead to erroneous RIs if stratification is performed for
unknown variables. However, this study explored 2 important
factors affecting Rls, namely sex and age, in order to eliminate
the interference of these factorsin the comparison of results as
much as possible. Second, the 5 indirect methods used in this
study were all based on unimodal data. Thus, the calculation
was simply based on the distribution rule of the dataitself, which
inevitably causes contamination of the “reference population”
with the “diseased population” to the fullest extent. The
exclusion of “diseased populations’ using statistical tools is
obviously insufficient. Therefore, in the future, we will obtain
as much multimodal data as possible during the data-cleaning
phasein order to construct an unsupervised classification model
to ensure that the included “reference population” is healthy.
Next, this study selected results derived using the direct method
as areference. However, the direct sampling of the population
may not be truly representative and is aways subject to
methodol ogical biasand variability. To ensure the comparability
of the results of the indirect and direct methods, this study
selected the same research period, the same detecting system,
and the same sampling location to avoid therisk of biasasmuch
as possible. In addition, the direct method was used as a
measurement standard of the indirect method results, which
was also applied by Ozarda et a [4]. We also advocate that in
the process of establishing RIs, afusion of direct and indirect
methods can be applied, and the screening criteria of the direct
method can be applied to the data sources of the indirect
methods so as to obtain more representative Rls. Additionally,
thisstudy only compared the RIs of CBC parameters established
using direct and indirect methods. However, for analytes such
as alanine aminotransferase, Rls are quite different compared
to CBC parameters. More interfering factors, such as smoking,
drinking, exercise, and eating habits, might have significant
effects on such analytes. Thus, whether our conclusions are
applicableremainsto befurther discussed in thefuture. Finally,
this study only covered 5 commonly used indirect methods,
while many other complicated machine learning approaches
exist. In the future, we will evaluate these emerging methods
to provide much more comprehensive guidance on indirect
methods for establishing accurate Rls.

Conclusion

In summary, this comparative study investigated indirect
methodsfor establishing RIs, and the results provide avaluable
scientific basis for method selection by laboratory clinicians.
Compared to the results of the direct method, the selection of
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outlier removal methods and indirect techniques markedly
affectsthefinal RIs, whereas the effects of data transformation
are negligible except for obviously skewed data. Specifically,
the outlier removal efficiency of Tukey and iterative mean (3SD)
methodsisamost equivalent. Furthermore, the choice of indirect
techniques depends more on the characteristics of the studied
analyte itself. Use of the kosmic method to establish RIs of

Yang et a

recommended. Furthermore, each laboratory should developits
own RIs under the applicable conditions. This study provides
a new scientific basis for establishing RIs for laboratories at
any level. In the future, we will explore more efficient indirect
techniques based on multimodal data. Eval uation of the accuracy
and applicability of RIsestimated using indirect methodsisalso
needed, particularly in the absence of direct dataas areference.

analytes with large intraindividual variations is not
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ICSH: International Council for Standardization in Hematology
LL: lower limit

MCH: mean corpuscular hemoglobin

MCHC: mean corpuscular hemoglobin concentration
MCV: mean corpuscular volume

PLT: platelet

RBC: red blood cell

RI: reference interval

RL: reference limit

UL: upper limit

WBC: white blood cell
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