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Abstract

Background: Reference intervals (RIs) play an important role in clinical decision-making. However, due to the time, labor,
and financial costs involved in establishing RIs using direct means, the use of indirect methods, based on big data previously
obtained from clinical laboratories, is getting increasing attention. Different indirect techniques combined with different data
transformation methods and outlier removal might cause differences in the calculation of RIs. However, there are few systematic
evaluations of this.

Objective: This study used data derived from direct methods as reference standards and evaluated the accuracy of combinations
of different data transformation, outlier removal, and indirect techniques in establishing complete blood count (CBC) RIs for
large-scale data.

Methods: The CBC data of populations aged ≥18 years undergoing physical examination from January 2010 to December 2011
were retrieved from the First Affiliated Hospital of China Medical University in northern China. After exclusion of repeated
individuals, we performed parametric, nonparametric, Hoffmann, Bhattacharya, and truncation points and Kolmogorov–Smirnov
distance (kosmic) indirect methods, combined with log or BoxCox transformation, and Reed–Dixon, Tukey, and iterative mean
(3SD) outlier removal methods in order to derive the RIs of 8 CBC parameters and compared the results with those directly and
previously established. Furthermore, bias ratios (BRs) were calculated to assess which combination of indirect technique, data
transformation pattern, and outlier removal method is preferrable.

Results: Raw data showed that the degrees of skewness of the white blood cell (WBC) count, platelet (PLT) count, mean
corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and mean corpuscular volume (MCV)
were much more obvious than those of other CBC parameters. After log or BoxCox transformation combined with Tukey or
iterative mean (3SD) processing, the distribution types of these data were close to Gaussian distribution. Tukey-based outlier
removal yielded the maximum number of outliers. The lower-limit bias of WBC (male), PLT (male), hemoglobin (HGB; male),
MCH (male/female), and MCV (female) was greater than that of the corresponding upper limit for more than half of 30 indirect
methods. Computational indirect choices of CBC parameters for males and females were inconsistent. The RIs of MCHC
established by the direct method for females were narrow. For this, the kosmic method was markedly superior, which contrasted
with the RI calculation of CBC parameters with high |BR| qualification rates for males. Among the top 10 methodologies for the
WBC count, PLT count, HGB, MCV, and MCHC with a high-BR qualification rate among males, the Bhattacharya, Hoffmann,
and parametric methods were superior to the other 2 indirect methods.

Conclusions: Compared to results derived by the direct method, outlier removal methods and indirect techniques markedly
influence the final RIs, whereas data transformation has negligible effects, except for obviously skewed data. Specifically, the
outlier removal efficiency of Tukey and iterative mean (3SD) methods is almost equivalent. Furthermore, the choice of indirect
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techniques depends more on the characteristics of the studied analyte itself. This study provides scientific evidence for clinical
laboratories to use their previous data sets to establish RIs.

(J Med Internet Res 2023;25:e45651) doi: 10.2196/45651
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Introduction

Reference intervals (RIs) play an important role in clinical
decision-making. For most clinical laboratories, objective RIs
are critical benchmarks for identifying healthy and unhealthy
populations [1]. However, improper RIs lead to clinical missed
and inaccurate diagnoses. Several studies have demonstrated
that RIs might be affected by race, age, sex, region, and other
factors [2]. Therefore, every laboratory should establish RIs
suitable for its specific service populations.

Previous studies have demonstrated that RIs can be established
through direct, indirect, and transference methods [2], each of
which has particular applicable conditions and relative
advantages. Generally, the Clinical and Laboratory Standards
Institute (CLSI) endorses direct methods over the other 2 types
of methods [2]. However, this gold standard has drawbacks,
such as difficulty in recruiting sufficient reference individuals;
selection bias in small-sample data; and time, labor, and
financial costs [2-4]. For some laboratories that do not have the
ability to carry out large-scale epidemiological investigations,
it is difficult to establish RIs suitable for their patients through
the gold standard. In this case, they need to continue to use the
RIs provided by the manufacturer, which may not be
appropriate. With the advent of medical big data, the use of
indirect methods based on data sets previously obtained from
clinical laboratories is promising.

The establishment of RIs using indirect methods roughly
involves data acquisition, data cleaning, transformation of
skewed data, elimination of outliers or error values, and selection
of appropriate statistical methods to calculate the reference
limits (RLs) [2,3]. Although indirect methods are obviously
more concise in the implementation process compared to direct
methods, the selection of an appropriate combination of data
transformation, outlier removal, and indirect processes to
establish RIs of laboratory analytes with different data
distribution characteristics still raises controversies [5].

In 2020, Hickman et al [1] reported that different
outlier-processing methods markedly influence the final RIs
derived by the direct method. However, whether various outlier
removal approaches affect RIs established using indirect
methods is unclear. Furthermore, it is crucial to separate the
data of “diseased populations” from big data for indirect
techniques [6-9]. Many indirect techniques, including parametric
and nonparametric approaches [10], the Hoffmann method [11],
the Bhattacharya method [12], and truncation points and the
Kolmogorov–Smirnov distance (kosmic method) [9], try to
cluster data through various mathematical operations in order
to obtain “nondiseased populations.” Each of these indirect

techniques demonstrates unique characteristics in terms of
establishing RIs. Although Ozarda et al [4] previously compared
RIs derived using direct and partial indirect methods based on
compatible data sets, there has been no systematic evaluation
of diverse indirect techniques combined with data transformation
approaches and various outlier removals for calculating RLs.

Hence, we systematically and comprehensively explored the
effects of various combinations of different statistical techniques
used in indirect methods on RI determination and compared the
RIs established using different indirect and direct methods. Our
results will provide a scientific basis for clinicians to use their
own laboratory data to establish RIs suitable for their own
service population.

Methods

The data-processing flowchart of this study is shown in Figure
S1 in Multimedia Appendix 1.

Indirect Methods

Data Source and Preliminary Data Cleaning
The probability of illness and interference factors among
populations undergoing physical examination is much lower
than that of outpatient and emergency patients; thus, in the
absence of other clinical diagnostic information, relatively
healthy populations undergoing physical examination are more
suitable for establishing complete blood count (CBC) RIs using
indirect methods. Furthermore, it is too difficult for clinical
laboratory researchers to obtain clinical information, which
creates a barrier to setting inclusion and exclusion standards for
indirect methods. To simulate practical application scenarios,
indirect methods derived from physical real-world data have
great application and promotion value. A data set of 8 CBC
parameters—the red blood cell (RBC) count, hemoglobin
(HGB), hematocrit (HCT), the mean corpuscular volume
(MCV), mean corpuscular hemoglobin (MCH), the mean
corpuscular hemoglobin concentration (MCHC), the platelet
(PLT) count, and the white blood cell (WBC) count—for
populations aged ≥18 years undergoing physical examination,
measured with an XE-2100 hematology analyzer (Sysmex
Corp), from January 2010 to December 2011 (24-month period)
was retrieved from the laboratory information system in the
physical examination center of the First Affiliated Hospital of
China Medical University, Shenyang. The relevant instruments
and equipment for CBC testing during the study period remained
the same. A daily control was performed following the
International Council for Standardization in Hematology (ICSH)
guidelines.
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Next, preliminary data cleaning was performed, as reported by
Jones et al [3]. In cases with repeated measures, only the initial
data were used in the analysis, since individuals who have more
than 1 measurement of analytes are more likely to have diseases.
Before data cleaning, the sample size was 42,176. After
eliminating 55 (0.13%) repeated measurements, the remaining
42,121 (99.87%) subjects (males: n=24,073, 57.15%) were
enrolled in the follow-up analysis.

Data Transformation and Treatment of Outliers
The data distribution normality was evaluated by calculating
skewness and kurtosis. We used the 2 most commonly used
data normalization methods, namely log transformation and
BoxCox transformation. After skewed data were transformed
through these 2 normalization methods, combined with 3 outlier
removal techniques, namely Reed–Dixon, Tukey, and iterative
mean (3SD), we obtained 6 processed initial data sets.

Statistical Analysis
Data were analyzed using R version 4.1.2 (R Core Team and
the R Foundation for Statistical Computing) [13] and Bellview
version 1.2.5 [14]. The normality assumptions were first checked
using the Kolmogorov–Smirnov test, stratified by sexes.
Numerical variables were presented as the median (IQR). Sex
differences were compared using the Mann–Whitney U test.
Next, variations of different analytes with age were illustrated
with scatter plots and fitting curves using the cubic spline
smoothing function of a generalized additive model.

Subsequent statistical operations were based on the 6 data sets
obtained after data transformation and outlier removal, except
for nonparametric and kosmic methods. Nonparametric and
kosmic methods used the original data set after data
transformation and outlier removal, whereas the parametric,
Hoffmann, and Bhattacharya methods used the transformed
data set after outlier removal to establish RIs.

Parametric Method

In this method, we first calculated the mean ( ) and SD of

each data set. Next, transformed RIs were calculated using 
(1.96 SD). Finally, the transformed RIs were inversely converted
according to their previous data transformation mode (log or
BoxCox transformation) to obtain targeted RIs. This data
transformation and inverse transformation were also applied to
Hoffmann and Bhattacharya techniques.

Nonparametric Method
This method was used per CLSI guidelines. RIs were determined
based on the central 95% range of reference values, that is, the
lower limits (LLs) and upper limits (ULs) were interpreted as
the 2.5th and 97.5th percentiles, respectively.

Hoffmann Method
The Hoffmann method mainly requires Gaussian distribution
data. We used the data after normalization and outlier removal.
This method relies on Q–Q plots and visual inspection of manual
intercepts of linear segments [4,15]. A linear segment is
extrapolated according to the Hoffmann plot, where the values
at the y axis are taken as 2.5% and 97.5% and the range

corresponding to the values at the x axis represents the central
95% of the healthy subpopulation, to establish RIs [6]. Analysis
was performed using R version 4.1.2 [13], as described by
Holmes et al [15].

Bhattacharya Method
This is a graphical method requiring Gaussian distribution data.
Thus, we used data after normalization and outlier removal [4].
Bellview version 1.2.5 [14] was used to draw log difference
plots to illustrate the relationship between logn+1 (bin count) –
logn (bin count) and the midpoint of the bins [5]. A straight line
with a negative slope was constructed by identifying points by
eye, and the x intercept and slope were used to calculate the
mean and SD, respectively. (Note, the straight line must cover
at least 3 points for a valid analysis.) We could input the start
and end locations of the bin to determine the straight line, using
Bellview version 1.2.5, requiring a Java environment (1.8 or
later). These processes were performed manually by the authors,
and the basic decision criteria can be found in Bellview
instructions.

Kosmic Method
The kosmic method primarily uses a truncated power normal
distribution family (Gaussian or truncated Gaussian after using
BoxCox transformation) to model the proportion of
physiological samples. Specifically, this approach minimizes
the Kolmogorov–Smirnov distance between an estimated normal
distribution and the truncated part of the observed distribution
of test results after BoxCox transformation; more specific
principles are described by Zierk et al [16]. To simplify these
procedures, Zierk et al [16] developed a web-based tool [17],
Python bindings, and C++ algorithm implementation, whereas
R bindings were explored by Devon Buchanan [18]. In this
study, the tidykosmic package and the kosmic function were
applied based on R version 4.1.2.

The Direct Method
The data set for establishing RIs using the direct method
pertained to the data of Han Chinese adults from September
2010 to January 2011 from our previously published study [19]
that recruited 4642 healthy individuals from 6 clinical centers
in China (Shenyang, Beijing, Shanghai, Guangzhou, Chengdu,
and Xi’an). As the data source for the indirect methods was
obtained from Shenyang, we used the data previously obtained
from Shenyang for the direct method as well. Additionally, we
mostly excluded that changes in physiological CBC values are
due to variations in social development and nutritional status
in the different study periods, because there were no significant
differences in the study periods of CBC parameters established
using direct (September 2010-January 2011) and indirect
(January 2010-December 2011) methods. All subjects fasted
for 8-14 hours before sampling. Blood from the cubital vein
was used to measure CBC parameters at the First Affiliated
Hospital of China Medical University using an XE-2100
hematology analyzer (Sysmex Corp), which was the same as
that used for the indirect methods. The precision, carry-over
assessment, and linearity of automated hematology analyzers
were evaluated according to the ICSH guidelines [20]. Accuracy
test results and the acceptable range of bias were determined
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using standard protocols. Overall, 861 healthy individuals aged
20-79 years (males: n=368, 42.74%; females: n=493, 57.26%)
were finally enrolled to establish RIs based on strict criteria;
the details are provided elsewhere [19]. Furthermore, related
and detailed demographic and general medical information
about participants for establishing RIs using the direct method
has been previously published as well [19].

Assessment of RLs Calculated by Different Methods
This study adopted 2 approaches to evaluate the differences and
biases in RLs determined using various methods. We selected
RLs determined using the direct method as the reference
standard for evaluating the differences among various indirect
methods for calculating RIs. One approach was to calculate the
relative deviation between RLs. The following formula was
used:

where d% is the difference between the LL/UL for indirect and
direct methods, and the LLs and ULs of the RIs to be evaluated
and the “reference standard” RIs are LLe, ULe, LLr, and ULr,
respectively.

The other method was to calculate bias ratios (BRs) [4]. First,
the SD of RI (SDRI) was calculated as follows:

Next, the BRs for LLe and ULe were calculated as follows [21]:

Finally, we regarded BRs<0.375 as the allowable minimum
bias [4]. Thus, if the BR was <0.375, RLs derived using indirect
methods were not significantly different from the corresponding
RLs derived using the direct method.

Ethical Considerations
This study complies with all the relevant national regulations
and institutional policies and the tenets of the Declaration of
Helsinki. The study was approved by the Ethics Committee of
the First Affiliated Hospital of China Medical University
(approval number 2021 442). Informed consent for the direct
method was obtained from all individuals included in this study,
whereas the indirect method research was exempt from informed
consent due to the use of previous laboratory data.

Results

Effects of Age and Sex
Scatter plots and fitting curves describing the original CBC
parameter changes with age for both sexes revealed notable
relationships between all the CBC parameters and age (Figure
1). Additionally, physiological levels of 8 CBC parameters
revealed significant differences between males and females
(Figure 1 and Table 1).

Figure 1. Trends of variation in the levels of CBC parameters with age. (A) WBCs (×109/L), (B) PLTs (×109/L), (C) RBCs (×1012/L), (D) HGB (g/L),
(E) MCH (pg), (F) MCV (fL), (G) MCHC (g/L), and (H) HCT (L/L). CBC: complete blood count; HCT: hematocrit; HGB: hemoglobin; MCH: mean
corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin concentration; MCV: mean corpuscular volume; PLT: platelet; RBC: red blood cell;
WBC: white blood cell.

J Med Internet Res 2023 | vol. 25 | e45651 | p. 4https://www.jmir.org/2023/1/e45651
(page number not for citation purposes)

Yang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Sex differences in 8 CBCa parameters after data cleaning.

P valuebOverall (N=42,121), median (IQR)Female (n=18,048), median (IQR)Male (n=24,073), median (IQR)UnitAnalyte

<.0016.40 (5.45-7.50)6.09 (5.19-7.11)6.64 (5.68-7.75)×109/LWBCc

<.0014.72 (4.39-5.05)4.39 (4.19-4.58)4.98 (4.75-5.21)×1012/LRBCd

<.001143 (131.00-154.00)130 (124.00-136.00)152 (146.00-159.00)g/LHGBe

<.0010.42 (0.39-0.45)0.39 (0.38-0.41)0.45 (0.43-0.46)L/LHCTf

<.00190 (87.00-92.00)89 (87.00-92.00)90 (87.00-92.00)fLMCVg

<.00130.3 (29.40-31.20)29.8 (28.90-30.70)30.6 (29.80-31.50)pgMCHh

<.001337 (331-344)332 (327-338)341 (335.00-347.00)g/LMCHCi

<.001217 (187-251)230 (199-266)208 (180-239)×109/LPLTj

aCBC: complete blood count.
bP value: The Mann–Whitney U test was performed to explore sex differences in CBC parameters (Table S1 in Multimedia Appendix 2), and P<.05
was considered statistically significant.
cWBC: white blood cell.
dRBC: red blood cell.
eHGB: hemoglobin.
fHCT, hematocrit.
gMCV: mean corpuscular volume.
hMCH: mean corpuscular hemoglobin.
iMCHC: mean corpuscular hemoglobin concentration.
jPLT: platelet.

Characteristics of Data Distribution for CBC Analytes
Tables 2 and 3 illustrate the skewness and kurtosis of raw and
processed data for 8 CBC parameters after different data
transformation and outlier removal methods were applied. From
the results for raw data, we found that data distributions of all
the CBC parameters showed different degrees of skew
distribution. Among them, the degrees of skewness of the WBC

count, PLT count, MCH, MCHC, and MCV were much more
obvious than those of other CBC parameters. Additionally, the
distribution types of these data were close to the Gaussian
distribution after log transformation (Table 2) or BoxCox
transformation combined (Table 3) with Tukey or iterative mean
(3SD) processing, whereas the Reed–Dixon outlier removal
method had no substantial effects on the transformation of data
distribution characteristics.
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Table 2. Skewness and kurtosis of raw data and log transformation–processed data for 8 CBCa parameters after different data transformation and outlier
removal methods were applied.

Iterative mean (3SD)TukeyReed–DixonRaw dataAnalyte and sex

KurtosisSkewnessKurtosisSkewnessKurtosisSkewnessKurtosisSkewness

Male

2.8870.0422.7320.0204.4830.158243.7096.264WBCb

2.937–0.0932.742–0.06014.253–1.0038.8400.873PLTc

2.975–0.2182.787–0.17111.090–1.1725.622–0.445RBCd

3.014–0.2022.734–0.10613.064–1.5306.617–0.752HGBe

3.034–0.1942.717–0.20311.595–1.3496.484–0.690HCTf

2.9020.0932.7880.09010.718–0.7688.406–0.204MCVg

2.9810.0682.7620.06017.466–1.60111.389–0.704MCHh

2.9070.0882.8140.0725.897–0.1935.041–0.015MCHCi

Female

2.8830.0082.7370.0103.4900.08511.6191.332WBC

2.925–0.1062.765–0.0766.622–0.6346.6320.698PLT

2.876–0.0662.748–0.0569.993–0.5655.3160.064RBC

3.080–0.2832.757–0.14511.560–1.9076.853–1.157HGB

3.031–0.2532.746–0.1636.803–1.1045.509–0.700HCT

3.044–0.1992.894–0.10712.179–2.1159.333–1.614MCV

3.131–0.2622.822–0.13815.873–2.86711.334–2.162MCH

3.056–0.0332.8220.0299.112–1.3057.856–1.012MCHC

aCBC: complete blood count.
bWBC: white blood cell.
cPLT: platelet.
dRBC: red blood cell.
eHGB: hemoglobin.
fHCT, hematocrit.
gMCV: mean corpuscular volume.
hMCH: mean corpuscular hemoglobin.
iMCHC: mean corpuscular hemoglobin concentration.
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Table 3. Skewness and kurtosis of raw data and BoxCox transformation–processed data for 8 CBCa parameters after different data transformation and
outlier removal methods were applied.

Iterative mean (3SD)TukeyReed–DixonRaw dataAnalyte and sex

KurtosisSkewnessKurtosisSkewnessKurtosisSkewnessKurtosisSkewness

Male

2.901–0.0312.733–0.0224.133–0.019243.7096.264WBCb

2.9490.0772.7530.0665.2620.1168.8400.873PLTc

2.948–0.0012.7600.0234.8380.0345.622–0.445RBCd

2.9980.0052.8890.0084.680–0.2686.617–0.752HGBe

2.9890.0092.6440.0594.736–0.2546.484–0.690HCTf

2.9410.2112.7780.1728.2330.1208.406–0.204MCVg

2.9750.2062.7620.14110.061–0.00111.389–0.704MCHh

2.9230.1452.8190.1124.9020.0265.041–0.015MCHCi

Female

2.888–0.0372.740–0.0223.424–0.00311.6191.332WBC

2.9250.0742.7670.0544.5780.0856.6320.698PLT

2.8910.0482.7310.0395.3160.0645.3160.064RBC

3.113–0.1172.8010.0065.046–0.6086.853–1.157HGB

3.105–0.1362.8500.0354.372–0.2805.509–0.700HCT

3.040–0.0753.040–0.0757.729–1.1349.333–1.614MCV

3.153–0.1462.830–0.0558.769–1.54411.334–2.162MCH

3.1090.0412.8380.0376.484–0.8147.856–1.012MCHC

aCBC: complete blood count.
bWBC: white blood cell.
cPLT: platelet.
dRBC: red blood cell.
eHGB: hemoglobin.
fHCT, hematocrit.
gMCV: mean corpuscular volume.
hMCH: mean corpuscular hemoglobin.
iMCHC: mean corpuscular hemoglobin concentration.

Comparison of RIs Across 30 Indirect Calculation
Methods
The RIs of CBC parameters, established using 30 different
indirect methods, are displayed in a bar chart for males (Figure

2) and females (Figure 3). In these charts, we compared the RIs
among normalization methods, outlier removal methods, and
indirect techniques.
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Figure 2. Comparison of RIs for males using 31 calculation methods. (A) WBC (×109/L), (B) PLT (×109/L), (C) RBC (×1012/L), (D) HGB (g/L), (E)
MCH (pg), (F) MCV (fL), (G) MCHC (g/L), and (H) HCT (L/L). 3SD: mean (3SD) with iteration; Bhatt: Bhattacharya; box: BoxCox transformation;
Direct: direct methods; Hoff: Hoffmann; HCT: hematocrit; HGB: hemoglobin; log: log transformation; MCH: mean corpuscular hemoglobin; MCHC:
mean corpuscular hemoglobin concentration; MCV: mean corpuscular volume; NP: nonparametric; P: parametric; PLT: platelet; RBC: red blood cell;
RI: reference interval; WBC: white blood cell.
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Figure 3. Comparison of RIs for females using 31 calculation methods. (A) WBC (×109/L), (B) PLT (×109/L), (C) RBC (×1012/L), (D) HGB (g/L),
(E) MCH (pg), (F) MCV (fL), (G) MCHC (g/L), and (H) HCT (L/L). 3SD: mean (3SD) with iteration; Bhatt: Bhattacharya; box: BoxCox transformation;
Direct: direct methods; Hoff: Hoffmann; HCT: hematocrit; HGB: hemoglobin; log: log transformation; MCH: mean corpuscular hemoglobin; MCHC:
mean corpuscular hemoglobin concentration; MCV: mean corpuscular volume; NP: nonparametric; P: parametric; PLT: platelet; RBC: red blood cell;
RI: reference interval; WBC: white blood cell.

Effects of Normalization Methods on RIs
When the outlier removal methods and indirect techniques
remained fixed, the UL, LL, or both RLs for all CBC parameters,
except the WBC count, among males shifted rightward along
the x axis after log transformation compared to BoxCox
transformation (Figure 2). Additionally, the normalization
method had a greater effect on WBC and PLT RIs than on the
RIs of other analytes (Figures 2 and 3).

For WBC data among males, we found that the raw data
demonstrated a right-skewed distribution (skewness=6.264,
kurtosis=243.709; Tables 2 and 3). After using log
transformation combined with 3 different outlier removal
methods, the distributions of the processed data all approximated
a Gaussian distribution, although the skewness values for all
combinations exceeded 0 (Table 2). After using BoxCox
transformation combined with the 3 different outlier removal
methods, the processed data also approximated a Gaussian
distribution but the skewness values showed a nonsignificant,
slightly left-skewed distribution (Table 3). Furthermore, only
the skewness values for WBC data after log transformation were
greater than those after BoxCox transformation among the 8
CBC parameters without considering outlier removal methods
(Tables 2 and 3).

For female CBC parameter data, the tendency for change was
the same as that for males (Figure 3), and the λ values for both
sexes converted by BoxCox transformation are shown in Table
S2 in Multimedia Appendix 2. In this study, log transformation
was not equivalent to BoxCox transformation, because all the
λ values were not equal to 0.

Effects of Outlier Removal Methods on RIs
More outliers were eliminated using the Tukey method than
using the iterative mean (3SD) and Reed–Dixon methods. For
males, the elimination rate using the Tukey method ranged from
1.15% to 3.26% compared to 0.64%-1.77% using the iterative
mean (3SD) method and 0% using the Reed–Dixon method
(Table S3 in Multimedia Appendix 2). Different outlier removal
methods led to different elimination rates in both sexes (Tables
S3 and S4 in Multimedia Appendix 2).

With fixed data transformation and indirect techniques, the RIs
of analytes were mostly affected by outlier removal methods
(Figures 2 and 3). For parametric, nonparametric, and Hoffmann
indirect methods, the Reed–Dixon method yielded the widest
RI regardless of the data transformation method used (Figure
2). For the WBC count, PLT count, HGB, and RBC count
among males, after removing outliers using the Tukey method,
the RI width calculated using the Hoffmann, nonparametric,
and parametric methods were all narrower than when eliminating
extreme values using the Reed–Dixon and iterative mean (3SD)
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methods. However, there was no constant rule when using the
Bhattacharya and kosmic techniques (Figure 2).

Comparison of RIs Among Indirect Methods
Nonparametric and parametric methods yielded wider RIs of
HGB, MCH, MCV, MCHC, and HCT than did the other 3
methods among females (Figure 3).

Performance of the Hoffmann Method
The representative Q–Q plots of quantiles of the Gaussian
distribution of CBC parameters in males and females, after
using different data transformation and outlier removal methods,
are displayed in Figures S2 and S3 in Multimedia Appendix 1,
respectively. The data included in the analysis of CBC
parameters after applying Tukey and iterative mean (3SD)
methods formed a substantial straight line in the middle of the
chart (Figures S2 and S3 in Multimedia Appendix 1). However,
the Reed–Dixon method yielded the narrowest linear range for
all CBC parameters (Figures S2 and S3 in Multimedia Appendix
1). Different data transformation modes had little effect on the
linear range (Figures S2 and S3 in Multimedia Appendix 1).
The RI width obtained with the Reed–Dixon method was
significantly wider than that obtained with the other 2 outlier
removal methods when calculating RIs using the Hoffmann
method (Figures 1 and 2). Furthermore, the representative Q–Q
plots for MCV and HCT illustrated that the linear relationship
is not ideal. Table S5 in Multimedia Appendix 2 shows details
of the start and end points of the Hoffmann method.

Performance of the Bhattacharya Method
Gaussian populations for establishing RIs were selected by
identifying points that formed a straight line with a negative
slope (Figures S4-S19 in Multimedia Appendix 1). A
least-square regression model was constructed to determine the
mean and SD from the x intercept and slope of the straight line,
respectively (Figures S4-S19 in Multimedia Appendix 1). From
log difference plots, we found it difficult to draw a straight line
to cover at least 4 points for transformed CBC parameter data
after using the Reed–Dixon method to remove outliers (Figures
S4-S19 in Multimedia Appendix 1). However, straight lines
were much easier to mark for transformed data after using Tukey
and iterative mean (3SD) methods (Figures S4-S19 in
Multimedia Appendix 1). Additionally, not all transformed data
had small fluctuations on the log difference plots after using
Tukey and iterative mean (3SD) methods to remove outliers,
such as the data for HGB, MCV, MCHC, and HCT among both
sexes (Figures S7, S9-S11, S15, and S17-S19 in Multimedia
Appendix 1). Table S6 in Multimedia Appendix 2 shows details
of the start and end points of the Bhattacharya method. The
operations can be repeated based on the decision criteria (ie,
start and end points) recorded in Table S6 in Multimedia
Appendix 2.

Performance of the Kosmic Method
The estimated distributions of physiological test results and RIs
are shown in Figures S20 and S21 in Multimedia Appendix 1.
Compared with the influence of outlier removal methods on the
kosmic method, the data transformation approaches had little
effect (Figure 2). From the frequency distribution histograms
for males, the WBC and PLT distributions showed a slight

rightward deviation after data processing, while the other
parameters had a normal or approximately Gaussian distribution
(Figure S20 in Multimedia Appendix 1). For PLT RIs among
males and females, outlier removal methods had clear effects
when using the kosmic method after log and BoxCox
transformations (Figure 3). For the RBC count, HGB, MCH,
MCV, and MCHC, the results obtained using the kosmic method
were more stable than those obtained using the other 4 indirect
methods, and they were not affected by data transformation and
outlier removal methods (Figure 3).

Comparison of RIs Between Direct and Different
Indirect Methods
Figures 4 and 5 and Figures S22 and S23 in Multimedia
Appendix 1 present a comparison of the biases of RIs calculated
using indirect methods with those established using the direct
method in males and females, respectively. Compared with the
RIs of CBC parameters calculated using the direct method, the
LL bias of WBC (male), PLT (male), HGB (male), MCH
(male/female), and MCV (female) were greater than that of the
corresponding UL for more than half of the 30 indirect methods
(Figures 4 and 5).

First, the |BR| values of the LL and UL were sorted in ascending
order. Table 4 illustrates the proportion of |BRLL or
BRUL|<0.375 and the intersection of the top 10 methodologies
(if some methods shared the 10th place, all methods sharing the
10th rank were involved in drawing the Venn diagram for
|BRLL| and |BRUL|) corresponding to the ordered |BR| values.
Biases of the LL or UL (or both) of some indicators were large.
Among the 30 indirect calculation methods, the qualified rate
(proportion of |BR|<0.375) of the |BR| for many analytes was
above 0 (Table 4).

We also found the following:

• Only a large bias of LLs (ratio of |BRLL|<85%): HGB
(female), MCV (female), MCH (female), and MCHC
(female)

• Only a large bias of ULs (ratio of |BRUL|<85%): WBC
(male/female) and RBC (male/female)

• A large bias of both limits (ratios of |BRLL| and |BRUL|
both<85%): MCH (male) and HCT (male/female)

See Figures 4 and 5, Figures S22 and S23 in Multimedia
Appendix 1, and Table 4. Although the qualified rate of |BR|
for the RLs for MCH and HCT was a little lower, the fluctuation
range for |d%| of the LLs and ULs for MCH in both sexes was
just 0.73%-4.74% and 0.31%-12.96%, respectively (Figure 5
and Figure S23 in Multimedia Appendix 1). In particular, the
range of |d%| of the LLs in male HCT could even be between
0% and 2.50% (Figure 5D).

Data transformation would slightly affect the comparison
between the direct and indirect methods. When we compared
the BR of RLs for males and females, we found that log (43
times) and BoxCox (41 times) transformations were similar in
the top 10 methodologies (Table 4). Furthermore, for the
selection of outlier processing with indirect methods, we found
that Tukey (30 times) and mean (3SD; 35 times) methods had
similar effects, whereas the existence of the Reed–Dixon method
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(19 times) was usually accompanied with the use of Hoffmann,
Bhattacharya, and kosmic methods (Table 4).

For the selection of indirect techniques, computational choices
of CBC parameters for males and females were inconsistent.
The RIs of MCHC established using the direct method for
females were narrow. For this, the kosmic method was markedly
superior (Table 4). This contrasted with the RI calculation for

CBC parameters with high |BR| qualification rates for males.
Among the top 10 methodologies for indicators with a high |BR|
qualification rate (WBC count, PLT count, HGB, MCV, and
MCHC) among males, the Bhattacharya method appeared 5
times, both parametric and Hoffmann methods appeared 4 times,
and the nonparametric method appeared 2 times, whereas the
kosmic method did not feature at all (Table 4).

Figure 4. Comparison of RIs for (A) WBC count, (B) PLT count, (C) RBC, and (D) HGB for males using 31 indirect methods with calculation of bias

at RLs. (A) WBC (×109/L), (B) PLT (×109/L), (C) RBC (×1012/L), and (D) HGB (g/L). 3SD: mean (3SD) with iteration; Bhatt: Bhattacharya; box:
BoxCox transformation; Hoff: Hoffmann; BR: bias ratio; d% between LL: relative deviation of lower RL between indirect and direct methods; d%
between UL: relative deviation of upper RL between indirect and direct methods; HGB: hemoglobin; LL: lower limit; log: log transformation; PLT:
platelet; RBC: red blood cell; RI: reference interval; RL: reference limit; UL: upper limit; WBC: white blood cell.
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Figure 5. Comparison of RIs of (A) MCH, (B) MCV, (C) MCHC, and (D) HCT for males using 31 indirect methods with calculation of bias at RLs.
(A) MCH (pg), (B) MCV (fL), (C) MCHC (g/L), and (D) HCT (L/L). 3SD: mean (3SD) with iteration; Bhatt: Bhattacharya; box: BoxCox transformation;
HCT: hematocrit; Hoff: Hoffmann; BR: bias ratio; d% between LL: relative deviation of lower RL between indirect and direct methods; d% between
UL: relative deviation of upper RL between indirect and direct methods; LL: lower limit; log: log transformation; MCH: mean corpuscular hemoglobin;
MCHC: mean corpuscular hemoglobin concentration; MCV: mean corpuscular volume; RI: reference interval; RL: reference limit; UL: upper limit.
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Table 4. Ratio of the |BR|a for lower and upper RLsb of <0.375, based on 30 indirect methods and the intersection of the top 10 combinations of data

transformation, outlier removal, and indirect techniques for descending |BRLL|c or |BRUL|d.

Top methodsRatio of
|BRUL|<0.375 (%)

Ratio of |BR-
LL|<0.375 (%)

Analyte and sex

Male

logf-Dixon-Bhattg80.00100.00WBCe

boxi-Dixon-Pj, log-Dixon-NPk, box-Dixon-NP100.00100.00PLTh

log-3SDm-NP46.67100.00RBCl

log-Dixon-Hoffo, box-Dixon-P100.0090.00HGBn

box-3SD-Bhatt, box-Tukey-Hoff, box-Tukey-Bhatt, box-3SD-P, box-3SD-Hoff76.6713.33MCHp

box-3SD-Bhatt100.00100.00MCVq

box-Tukey-Bhatt, box-3SD-Bhatt, log-3SD-Bhatt, box-Dixon-Hoff, box-Tukey-
P, box-Tukey-Hoff, box-3SD-P, box-3SD-Hoff

93.3396.67MCHCr

log-Dixon-Hoff, log-Tukey-Hoff, log-Tukey-Bhatt, log-3SD-P, log-3SD-NP,
log-3SD-Hoff, log-3SD-Bhatt

40.0073.33HCTs

Female

box-Dixon-Hoff, box-Tukey-Bhatt, box-3SD-Bhatt53.33100.00WBC

box-Tukey-NP, box-3SD-P, box-3SD-Hoff, log-Dixon-kosmic, box-Dixon-
kosmic, box-3SD-Bhatt

93.33100.00PLT

log-Tukey-P, log-Tukey-Hoff, log-3SD-P, log-3SD-Hoff, log-3SD-NP70.00100.00RBC

log-Dixon-Hoff, log-3SD-Hoff, box-Dixon-Bhatt, log-Tukey-NP, log-Tukey-
Hoff, log-3SD-P, log-3SD-NP

96.6783.33HGB

box-Tukey-NP, box-Tukey-P, box-Tukey-Hoff, box-Tukey-Bhatt86.6743.33MCH

log-3SD-NP, box-Dixon-Hoff, box-Dixon-Bhatt, box-Tukey-P, box-Tukey-NP,
box-Tukey-Hoff, box-3SD-P, box-3SD-NP, box-3SD-Hoff

93.3366.6MCV

log-Dixon-kosmic, log-Tukey-kosmic, log-3SD-kosmic, box-Dixon-kosmic,
box-Tukey-kosmic, box-3SD-kosmic, log-Tukey-P, log-Tukey-NP, log-Tukey-
Hoff, log-Tukey-Bhatt, log-3SD-P, log-3SD-Hoff, log-3SD-Bhatt, box-3SD-
Bhatt

90.0073.33MCHC

log-Dixon-Hoff, log-Dixon-Bhatt, log-Tukey-P, log-Tukey-NP, log-Tukey-Hoff,
log-Tukey-Bhatt, log-3SD-P, log-3SD-Hoff

63.3356.67HCT

aBR: bias ratio.
bRL: reference limit.
cLL: lower limit.
dUL: upper limit.
eWBC: white blood cell.
flog: log transformation.
gBhatt: Bhattacharya method.
hPLT: platelet.
ibox: BoxCox transformation.
jP: parametric.
kNP: nonparametric.
lRBC: red blood cell.
m3SD: iterative mean (3SD).
nHGB: hemoglobin.
oHoff: Hoffmann method.
pMCH: mean corpuscular hemoglobin.
qMCV: mean corpuscular volume.
rMCHC: mean corpuscular hemoglobin concentration.
sHCT: hematocrit.
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Discussion

Principal Findings
To the best of our knowledge, this is the first study to
comprehensively evaluate the effects of combinations of
different data transformation, outlier removal, and indirect
techniques on establishing RIs for large-scale data. For most
laboratories that are unable to carry out direct method research,
this study provides a scientific and reasonable basis for their
use of previous laboratory data sets to establish RIs using
indirect methods. Moreover, we used data derived from the
direct method as reference standards. We found that for data
with different distribution characteristics, outlier removal
method and indirect technique use markedly influenced the final
RIs, whereas data transformation had negligible effects except
for obviously skewed data.

Strengths
There are several strengths of this study. First, the samples for
direct and indirect methods were derived from the same study
area and were tested in the same laboratory using the same
instrumentation as well. This eliminated many confounding
factors for the subsequent combined evaluation of indirect
methods. Second, only harmonization of results requires
multicenter studies in a given region or country. Thus, this
single-center study will encourage laboratory researchers to
attempt to establish RIs suitable for their own laboratories.
Third, to mostly eliminate the interference of “diseased
populations,” we selected subjects undergoing physical
examination rather than outpatient or inpatient individuals.
Furthermore, to ensure that the “reference population” excluded
as much as possible individuals who were sick and considering
that individuals who have repeated measurement data are more
likely to have abnormalities or diseases, we included only the
earliest visit records [22]. We only processed the repeated
measurement data in the data-cleaning step, although this step
had no substantive impact on the overall data distribution.

For CBC parameters, we found significant differences between
the sexes and minor variation among age groups based on the
data used for indirect methods. This phenomenon is essentially
consistent with Takami et al [22], who reported RIs of the RBC
count for healthy adults in Japan and calculated the SD ratio to
measure the magnitude of sex differences. They found that sex
differences existed in HGB, HCT, RBC count, and MCHC, as
the SD ratios of these 4 analytes exceeded 0.3 [22]. Additionally,
South African studies have shown that there are sex differences
for the WBC and PLT counts as well [23]. Haeckel et al [24]
once explored the importance of correct stratifications when
comparing directly and indirectly estimated RIs. They suggested
that the requirement for stratification should not been neglected
during RI determination, with the main variables affecting RIs
being sex and age. Considering these viewpoints, at the
beginning of this study, confounding factors (ie, sex and age)
were explored, and we found that significant sex differences
exist in CBC parameters. Therefore, subsequent calculations
were stratified by sex.

When exploring the impact of different data transformation
methods used with indirect techniques on calculating RIs, there

were slight variances between log and BoxCox transformations
for different types of data distribution. In most cases, the
absolute skewness values for BoxCox transformation were lower
than those for log transformation, which means that the effect
of BoxCox transformation is better than that of log
transformation when λ is not equal to 0, like in this study. For
some skewed distribution data, BoxCox transformation might
result in overcorrection. For example, raw WBC data in males
showed a right-skewed distribution. After log transformation,
the data could approximate a Gaussian distribution, although
the skewness value still exceeded 0. In contrast to the effect of
log transformation, the skewness value of the transformed data
was less than 0 after BoxCox transformation, implying
correction to a left-skewed distribution. Consequently, raw
WBC data for males shifted rightward on the abscissa after
BoxCox transformation, which explains the horizontal rightward
shift of RIs calculated after BoxCox transformation. Data
transformation may bring the pathological population closer to
the healthy population, thereby making it more difficult to
separate them. However, in this study, compared with the impact
of outlier processing and indirect technology on the results, data
transformation had a slight impact on the final results.

There have been many studies on the significant effects of the
chosen outlier removal method on RIs [1,25,26]. Eggers et al
[26] and Hickman et al [25] used direct sampling techniques
and evaluated the influence of different outlier-processing
methods on the 99th percentile of cardiac troponin values. They
found that the UL of the RI is sensitive to the choice of the
outlier removal method. Hickman et al [25] stated that the RIs
of all analytes would potentially be affected by the outlier
removal method. Our study used the indirect sampling technique
to calculate the RIs of CBC parameters. These analytes differed
from cardiac troponin with regard to the data distribution type.
The former often approximates a Gaussian distribution, while
the latter shows an obviously skewed distribution. However, in
this study, Reed–Dixon, Tukey, and iterative mean (3SD)
methods had significant effects on the RIs of CBC parameters
as well. Hickman et al [1] reported that various outlier removal
methods could markedly change RIs. In their study, the Tukey
method more often yielded narrower RIs [1]. The outlier
removal efficiency of the Tukey method was similar to that of
the iterative mean (3SD) method, consistent with our study.
The RI often covers 95% of the healthy population. Furthermore,
the Tukey method eliminates about 1% [1]. Therefore, when
Tukey method–processed data are used to calculate 95% of the
RI, it actually calculates 94% of the RI. This is the fundamental
reason for the narrower RI obtained with the Tukey method.
When establishing RIs using the direct method, the populations
used to calculate RIs are unlikely to be contaminated by
“diseased populations,” because the a priori–set exclusion
criteria are strict. In the absence of clear evidence that the
individual value is abnormal, each participant’s value confirmed
by exclusion criteria should be retained in the subsequent
calculation. Therefore, the selection of the outlier removal
method for the direct technique is inclined to be conservative.
However, when using indirect methods on big data, due to the
difficulty of applying strict screening criteria, the applicability
of conservative outlier removal methods, such as the
Reed–Dixon method, in this type of research is poor.
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When we explored the influence of different indirect techniques
on RIs, we found that data transformation and outlier removal
methods had different effects on the results of subsequent
parametric, nonparametric, Hoffmann, and Bhattacharya
methods. Outlier removal had a larger effect than data
transformation on indirect techniques. There was a recent
publication examining 8 different indirect methods for RI
derivation [27]. The authors conducted 8 methods to simulate
4 different scenarios of mixed populations and distributions.
They found that the results derived by the kosmic method in
most simulation scenarios are within the allowable error range,
and a high proportion of pathological subgroups significantly
reduce the performance of the indirect method [27]. However,
the median absolute deviation (MAD) and double median
absolute deviation (dMAD) involved in that paper study are not
discussed in our study. In addition, our research used real-world
data and selected results calculated using the direct method as
a reference to evaluate the accuracy of commonly used indirect
methods, including the parametric, Hoffmann, and Bhattacharya
methods that have not been evaluated by Tan et al [27]. The
similarity of these 2 studies is that no matter which data
transformation and outlier-processing methods are used, the
calculation results of the kosmic method are the most stable
ones, since they are minimally affected by these
data-preprocessing measures. In contrast to parametric and
nonparametric methods, even for big data, after data cleaning
and outlier removal, the kosmic method recognized that both
pathological and nonpathological values were present. The core
of this method is that the estimation of the proportion of
physiological samples can be modeled with a parametric
distribution and minimizes the Kolmogorov–Smirnov distance
between a hypothetical Gaussian distribution and the observed
distribution of test results after BoxCox transformation [9,16].
For the WBC count, the upper RL estimated by the kosmic
method was quite different from that calculated using the direct
method. This could be due to the limitations of the kosmic
method itself [16] or because among the population undergoing
physiological examination, the probability of abnormal WBC
test results is significantly higher than that of other CBC
parameters. If there is much overlap between abnormal and
physiological test results (ie, the abnormal test results are more
likely to be close to the UL or LL), the BR between indirect
and direct methods increases. Since Hoffmann and Bhattacharya
methods depend on linearity [12,28], they are both highly
sensitive to data normality and the presence of outliers. Although
both methods use the middata for calculation, too many values
were retained to establish a linear equation in this study. The
reason for this phenomenon is that raw distributions of most
CBC parameters approximated a Gaussian distribution and
fewer values with a negative impact on linearity were eliminated
at both ends of the line. Furthermore, a different bin size was
optimized, and it was difficult for different authors involved in
the subjective selection of the straight line to retain consistency.
However, we followed the same principle in the process of value
selection and recorded the location of the bin to ensure the
repeatability of the study as much as possible. When comparing
the effects of combinations of indirect techniques, data
transformation, and outlier removal methods on RIs with
reference to the direct method RIs, the width of the RIs

established using the direct method was wider (larger
intraindividual variation) and those calculated by Hoffmann,
nonparametric, Bhattacharya, and parametric methods were
closer to those calculated using the direct method. For data with
smaller intraindividual variation, the width of the RIs determined
using the direct method was narrower; the kosmic method that
excluded a large number of pathological values seemed to be
markedly more applicable.

Limitations
This study has a few limitations. First, it is essential to consider
the requirement of correct stratifications when comparing
directly and indirectly estimated RIs. Both direct and indirect
methods lead to erroneous RIs if stratification is performed for
unknown variables. However, this study explored 2 important
factors affecting RIs, namely sex and age, in order to eliminate
the interference of these factors in the comparison of results as
much as possible. Second, the 5 indirect methods used in this
study were all based on unimodal data. Thus, the calculation
was simply based on the distribution rule of the data itself, which
inevitably causes contamination of the “reference population”
with the “diseased population” to the fullest extent. The
exclusion of “diseased populations” using statistical tools is
obviously insufficient. Therefore, in the future, we will obtain
as much multimodal data as possible during the data-cleaning
phase in order to construct an unsupervised classification model
to ensure that the included “reference population” is healthy.
Next, this study selected results derived using the direct method
as a reference. However, the direct sampling of the population
may not be truly representative and is always subject to
methodological bias and variability. To ensure the comparability
of the results of the indirect and direct methods, this study
selected the same research period, the same detecting system,
and the same sampling location to avoid the risk of bias as much
as possible. In addition, the direct method was used as a
measurement standard of the indirect method results, which
was also applied by Ozarda et al [4]. We also advocate that in
the process of establishing RIs, a fusion of direct and indirect
methods can be applied, and the screening criteria of the direct
method can be applied to the data sources of the indirect
methods so as to obtain more representative RIs. Additionally,
this study only compared the RIs of CBC parameters established
using direct and indirect methods. However, for analytes such
as alanine aminotransferase, RIs are quite different compared
to CBC parameters. More interfering factors, such as smoking,
drinking, exercise, and eating habits, might have significant
effects on such analytes. Thus, whether our conclusions are
applicable remains to be further discussed in the future. Finally,
this study only covered 5 commonly used indirect methods,
while many other complicated machine learning approaches
exist. In the future, we will evaluate these emerging methods
to provide much more comprehensive guidance on indirect
methods for establishing accurate RIs.

Conclusion
In summary, this comparative study investigated indirect
methods for establishing RIs, and the results provide a valuable
scientific basis for method selection by laboratory clinicians.
Compared to the results of the direct method, the selection of
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outlier removal methods and indirect techniques markedly
affects the final RIs, whereas the effects of data transformation
are negligible except for obviously skewed data. Specifically,
the outlier removal efficiency of Tukey and iterative mean (3SD)
methods is almost equivalent. Furthermore, the choice of indirect
techniques depends more on the characteristics of the studied
analyte itself. Use of the kosmic method to establish RIs of
analytes with large intraindividual variations is not

recommended. Furthermore, each laboratory should develop its
own RIs under the applicable conditions. This study provides
a new scientific basis for establishing RIs for laboratories at
any level. In the future, we will explore more efficient indirect
techniques based on multimodal data. Evaluation of the accuracy
and applicability of RIs estimated using indirect methods is also
needed, particularly in the absence of direct data as a reference.
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ICSH: International Council for Standardization in Hematology
LL: lower limit
MCH: mean corpuscular hemoglobin
MCHC: mean corpuscular hemoglobin concentration
MCV: mean corpuscular volume
PLT: platelet
RBC: red blood cell
RI: reference interval
RL: reference limit
UL: upper limit
WBC: white blood cell
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