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Abstract

Background: Serious bacterial infections (SBIs) are linked to unplanned hospital admissions and a high mortality rate. The
early identification of SBIs is crucial in clinical practice.

Objective: This study aims to establish and validate clinically applicable models designed to identify SBIs in patients with
infective fever.

Methods: Clinical data from 945 patients with infective fever, encompassing demographic and laboratory indicators, were
retrospectively collected from a 2200-bed teaching hospital between January 2013 and December 2020. The data were randomly
divided into training and test sets at a ratio of 7:3. Various machine learning (ML) algorithms, including Boruta, Lasso (least
absolute shrinkage and selection operator), and recursive feature elimination, were utilized for feature filtering. The selected
features were subsequently used to construct models predicting SBIs using logistic regression (LR), random forest (RF), and
extreme gradient boosting (XGBoost) with 5-fold cross-validation. Performance metrics, including the receiver operating
characteristic (ROC) curve and area under the ROC curve (AUC), accuracy, sensitivity, and other relevant parameters, were used
to assess model performance. Considering both model performance and clinical needs, 2 clinical timing-sequence warning models
were ultimately confirmed using LR analysis. The corresponding predictive nomograms were then plotted for clinical use.
Moreover, a physician, blinded to the study, collected additional data from the same center involving 164 patients during 2021.
The nomograms developed in the study were then applied in clinical practice to further validate their clinical utility.

Results: In total, 69.9% (661/945) of the patients developed SBIs. Age, hemoglobin, neutrophil-to-lymphocyte ratio, fibrinogen,
and C-reactive protein levels were identified as important features by at least two ML algorithms. Considering the collection
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sequence of these indicators and clinical demands, 2 timing-sequence models predicting the SBI risk were constructed accordingly:
the early admission model (model 1) and the model within 24 hours of admission (model 2). LR demonstrated better stability
than RF and XGBoost in both models and performed the best in model 2, with an AUC, accuracy, and sensitivity of 0.780 (95%
CI 0.720-841), 0.754 (95% CI 0.698-804), and 0.776 (95% CI 0.711-832), respectively. XGBoost had an advantage over LR in
AUC (0.708, 95% CI 0.641-775 vs 0.686, 95% CI 0.617-754), while RF achieved better accuracy (0.729, 95% CI 0.673-780)
and sensitivity (0.790, 95% CI 0.728-844) than the other 2 approaches in model 1. Two SBI-risk prediction nomograms were
developed for clinical use based on LR, and they exhibited good performance with an accuracy of 0.707 and 0.750 and a sensitivity
of 0.729 and 0.927 in clinical application.

Conclusions: The clinical timing-sequence warning models demonstrated efficacy in predicting SBIs in patients suspected of
having infective fever and in clinical application, suggesting good potential in clinical decision-making. Nevertheless, additional
prospective and multicenter studies are necessary to further confirm their clinical utility.

(J Med Internet Res 2023;25:e45515) doi: 10.2196/45515
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Introduction

The detection and management of infectious diseases continue
to be a primary concern for individuals experiencing fever [1].
The prevalence of infectious diseases is notably elevated,
especially in regions characterized by low and lower-middle
income [2,3]. Severe infectious diseases have the potential to
rapidly advance to conditions such as sepsis, septic shock, or,
in extreme cases, fatalities. This exerts significant strain on
health care services and results in a depletion of intensive care
resources. Swiftly identifying and accurately diagnosing serious
bacterial infections (SBIs) are imperative to promptly initiate
suitable treatments. The established gold standard for diagnosing
infections in clinical samples relies on a process involving
incubation, isolation, and identification. However, this method
has its drawbacks, including a notable incidence of false-positive
and false-negative outcomes from bacterial cultures.
Additionally, the procedure is time-consuming, typically
requiring 2-3 days or even longer to yield a definitive result
[4,5]. The management of SBIs demands prompt action due to
the time-sensitive nature of the condition, which can rapidly
deteriorate. Nonetheless, the inappropriate use of
broad-spectrum antibiotics or combinations of antimicrobials
carries various drawbacks, including heightened health care
expenditures, adverse drug reactions, and an elevated risk of
developing drug-resistant bacteria. Therefore, the timely
detection of SBIs in febrile patients suspected of having an
infectious origin is paramount. This approach holds the potential
to save lives and encourage a swift response without resorting
to antibiotic misuse.

In this digital era, electronic health records serve as an extensive
repository of electronic data points encompassing a wide range
of clinical information [6]. Machine learning (ML) techniques
possess a distinctive capability to analyze vast data sets in a
flexible and trainable manner, enabling them to comprehend
the intricate relationships between variables [7]. Owing to their
enhanced processing capabilities, a variety of ML and artificial
intelligence (AI) techniques are extensively used for identifying
risk factors for diseases in patients and providing assistance to
clinicians. Nevertheless, a previous study [8] has indicated that
diverse feature selection methods and classification techniques

can yield differing performance outcomes. Therefore,
determining the optimal ML methods is essential for ensuring
stable and accurate predictions when applied in clinical settings.

Several clinical models utilizing ML have been developed and
validated for SBIs in infants and young children [9-11]. Yiu et
al [12] specifically created a multivariable model to forecast
the risk of serious infection in patients with psoriasis.
Nonetheless, the discriminative ability was found to be
unsatisfactory, with a C-statistic of only 0.64. Rawson et al [13]
developed and validated a model to predict the presence of
bacterial infection within 72 hours. However, the prediction did
not prove to be timely enough for SBIs, and no applicable tools
for physicians are currently available for use in their clinical
practice. Qu et al [14] conducted a study comparing the
timing-sequence recovery effect on exercise-induced muscle
damage at various time points, including 1, 24, 48, and 72 hours,
shedding new light on the timely prediction of SBIs. Building
on the insights from this research, our study aims to develop
and validate clinical timing-sequence warning models for SBIs
using multiple ML methods. The goal is to provide physicians
with practical and clinically applicable tools for use in their
busy clinical practice for patients suspected of having an
infective fever.

Methods

Study Design and Data Preprocessing
This retrospective observational cohort study was conducted at
a 2200-bed teaching hospital, spanning from January 2013 to
December 2020. An independent physician, blinded to the study,
was invited to collect data from January to December 2021
within the same hospital. Patients were included in the study if
they met the following criteria: (1) diagnosed with “fever of
unknown origin” or presented with a chief complaint of fever
persisting for several days, and (2) had a temperature of
≧37.5°C, indicative of fever. Exclusion criteria encompassed
patients who met any of the following: (1) age <18 years, (2)
pregnancy, (3) presence of an SBI upon admission, (4)
noninfectious fever, (5) missing data on the variables of interest,
and (6) undiagnosed fever. More specific details about the
patient enrollment process are illustrated in Figure 1. The
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confirmation of SBI diagnosis involved discussions with the
clinical research team and a review of the read code
classification [15] and the International Classification of
Diseases, 10th revision [16].

The variables of interest were obtained from the hospitalization
records, encompassing demographic information such as sex,
age, BMI, past medical history (hypertension, diabetes mellitus,
heart disease, nephropathy, hepatitis B, and malignant tumors),
as well as laboratory test results collected within the initial 24
hours of admission to the hospital. Outlier values, defined as
falling below the 0.5th percentile or exceeding the 99.5th
percentile, were adjusted to the values at the 0.5th percentile if

lower or the 99.5th percentile if higher. Subsequently, these
outliers were removed from the data set. Any other missing
laboratory values were imputed using the K-nearest neighbors
approach, replacing them with the mean of the respective feature
from the 10 most similar samples in the training data. The data
underwent normalization for each laboratory feature through
transformations involving subtraction of the mean and division
by the SD [17]. The research adhered to the CONSORT
(Consolidated Standards of Reporting Trials) checklist [18]
(Multimedia Appendix 1) and followed the “Guidelines for
Developing and Reporting Machine Learning Predictive Models
in Biomedical Research” [19].

Figure 1. Patient enrollment flowchart. SBI: serious bacterial infection.

Ethics Considerations
Data retrieval received approval from the ethics committee of
the First Affiliated Hospital, College of Medicine, Zhejiang
University (ITT20220327B; date of approval: July 19, 2022).
No potentially identifiable human images or data were included
in the data collection, and the requirement for informed consent
was thus waived.

Data Partitioning and Statistical Analysis
The data were randomly classified into training and test sets at
a ratio of 7:3, using equal proportion sampling. This was done
to ensure that both the training and test sets encompassed
approximately the same proportion of positive events (ie, SBIs).
Descriptive statistics, including the IQR and frequency
(proportion), were utilized to illustrate the distribution of the
features of interest. The chi-square test (or the Fisher exact
probability test) was applied for categorical variables, while the
Wilcoxon rank sum test was used for continuous variables to
assess the presence of differences in the distribution of clinical

features between the 2 data sets. Differences between the SBI
and non-SBI groups were assessed using either the Wilcoxon
rank sum test or the chi-square test. Furthermore, the correlation
between variables was gauged by calculating Pearson’s
correlation coefficients and visualized in a heatmap. All
statistical analyses and algorithms were executed using R,
version 4.0.2 (R Foundation) statistical software.

Feature Selection
Three popular algorithms—Boruta, Lasso (least absolute
shrinkage and selection operator), and RFE (recursive feature
elimination)—were utilized to screen important features in this
study. This approach was adopted to prevent a preference bias
that may arise from relying solely on 1 algorithm. To provide
further detail, Boruta uses the random forest (RF) model as a
classifier package algorithm [20]. Lasso operates on a linear
regression model by selecting and compressing variables,
effectively addressing the issue of overfitting [21]. By contrast,
RFE selects features by recursively reducing the size of the
examined feature set [22]. Features deemed important were
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those marked as such by at least two ML algorithms, a measure
taken to enhance the simplicity and stability of the models.

Model Construction
The chosen features were subsequently used to construct models
predicting SBIs using logistic regression (LR), RF, and extreme
gradient boosting (XGBoost) analyses, incorporating 5-fold
cross-validation (CV). Considering the clinical timing of
indicator acquisition (ie, basic characteristics and routine blood
indices were assessed and obtained immediately after admission,
while other serum biochemical indices were typically obtained
12-24 hours later) and the practical demands of clinical practice,
2 clinical timing-sequence warning models were developed.
Specifically, these models were designed for 2 purposes: the
prediction of SBI risk at early admission (model 1),
incorporating basic characteristics plus routine blood indices,
and a prediction within 24 hours of admission (model 2),
utilizing basic characteristics plus biochemical indicators.

Performance metrics, including the receiver operating
characteristic (ROC) curve and area under the ROC curve
(AUC), accuracy, sensitivity, specificity, positive predictive
value, negative predictive value, positive likelihood ratio (LR+),
and negative likelihood ratio (LR–), were used. The optimal
cutoff value was determined based on the Youden index.

Construction and Evaluation of the Predictive
Nomogram
Nomograms predicting the risk of SBIs were generated based
on the best model, providing a convenient tool for physicians
to assess SBI risk for individual patients in clinical practice.
Independent data were utilized for further validation of the
nomogram’s performance and clinical utility. Additionally, to

enhance practical usability for health care professionals globally
and enable open validation by peers, we have implemented the
2 nomogram tools online using DynNom [23,24]. Through this
platform, the SBI risk score can be automatically generated and
visually displayed.

Results

Patient Characteristics
In this study, a total of 945 patients clinically diagnosed with
infective fever and possessing complete clinical data were
included. Table 1 presents the demographic characteristics of
these patients. Among them, data from 661 patients were utilized
for training, while data from 284 patients were used for
validation. The median age of the patients was 54 years (IQR
38-66 years), and 47.4% (448/945) were female. The most
prevalent comorbidity among the patients was hypertension,
affecting 27.9% (264/945), while other comorbidities such as
diabetes mellitus, cardiopathy, and nephropathy were observed
in 12.1% (114/945), 6.3% (60/945), and 5.5% (52/945) of
patients, respectively. In the training cohort, consisting of 661
patients, 69% (456/661) were diagnosed with SBIs. The median
age of the patients was 59 years, and among them, 226 were
female. Further clinical characteristics of the patients with and
without SBIs are detailed in Multimedia Appendix 2.

Regarding the serious infectious episodes, the top 3 clinical
sites of infections were the lung (pneumonia; 224/945, 23.7%),
the urinary tract (83/945, 8.8%), and the abdomen (78/945,
8.3%). Based on the clinical course and microbiological data,
bacterial infections and viral infections were present in 717
patients (717/945, 75.9%) and 185 patients (185/945, 19.6%),
respectively (Multimedia Appendix 3).
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Table 1. Differences among patients in derivation and validation cohorts.

P valueTest cohortTraining cohortOverallDifferences between the cohorts

284661945Patients, n

.98134 (47.2)314 (47.5)448 (47.4)Female, n (%)

.8356.00 (43.00-64.00)54.00 (38.00-67.00)54.00 (38.00-66.00)Age (year), median (IQR)

.4421.88 (19.59-24.23)22.05 (19.82-24.38)22.04 (19.71-24.33)BMI (kg/m2), median (IQR)

.2292.00 (80.00-103.00)90.00 (79.00-101.00)90.00 (79.00-102.00)Ventricular rate (beats/minute), median
(IQR)

.2918.00 (18.00-20.00)19.00 (18.00-20.00)19.00 (18.00-20.00)Respiratory rate (breaths/minute), median
(IQR)

.8037.40 (36.90-38.00)37.30 (36.90-37.90)37.30 (36.90-37.90)Ear temperature (℃), median (IQR)

.9371.00 (64.75-79.00)71.00 (64.00-79.00)71.00 (64.00-79.00)Diastolic pressure (mm Hg), median (IQR)

.53115.00 (104.00-126.00)116.00 (105.00-128.00)115.00 (105.00-127.00)Systolic pressure (mm Hg), median (IQR)

.37118.00 (104.00-130.25)116.00 (104.00-130.00)117.00 (104.00-130.00)Hemoglobin (g/L), median (IQR)

.416.80 (5.00-9.50)6.50 (4.70-9.30)6.60 (4.80-9.40)White blood cell (×109/L), median (IQR)

.12226.00 (159.50-309.50)215.00 (149.00-282.00)217.00 (152.00-289.00)Platelet (×109/L), median (IQR)

.0371.90 (60.55-80.32)69.60 (57.40-78.80)70.10 (58.80-79.30)Neutrophils proportion (%), median (IQR)

.0718.20 (10.78-27.25)18.80 (12.10-28.70)18.70 (11.60-28.40)Lymphocytes proportion (%), median IQR)

.027.60 (5.70-10.00)8.20 (6.00-10.60)8.10 (5.90-10.40)Monocytes proportion (%), median (IQR)

.590.75 (0.20-1.83)0.80 (0.20-2.00)0.80 (0.20-1.90)Eosinophils proportion (%), median (IQR)

.160.30 (0.20-0.50)0.30 (0.20-0.50)0.30 (0.20-0.50)Basophils proportion (%), median (IQR)

.144.35 (3.10-7.40)4.20 (2.80-6.80)4.20 (2.90-7.00)Neutrophil count (×109/L), median (IQR)

.161.15 (0.78-1.69)1.26 (0.80-1.77)1.22 (0.80-1.75)Lymphocyte count (×109/L), median (IQR)

.300.51 (0.36-0.73)0.53 (0.36-0.79)0.52 (0.36-0.78)Monocyte count (×109/L), median (IQR)

.840.05 (0.01-0.13)0.05 (0.01-0.13)0.05 (0.01-0.13)Eosinophil count (×109/L), median (IQR)

.170.02 (0.01-0.04)0.02 (0.01-0.03)0.02 (0.01-0.03)Basophil count (×109/L), median (IQR)

.415.00 (4.42-6.05)4.97 (4.41-5.78)4.99 (4.41-5.82)Blood glucose (mmol/L), median (IQR)

.3134.95 (31.35-38.02)35.50 (31.30-38.80)35.30 (31.30-38.70)Albumin (g/L), median (IQR)

.9068.50 (55.00-81.00)66.00 (55.00-83.00)67.00 (55.00-82.00)Creatinine (μmol/L), median (IQR)

.651163.00 (543.00-3331.00)1311.50 (625.00-2914.75)1276.00 (604.50-3008.00)D-dimer (μg/L), median (IQR)

.8130.30 (26.80-34.60)30.20 (27.28-34.30)30.30 (27.10-34.40)Activated partial thromboplastin time (sec-
onds), median (IQR)

.044.57 (3.43-5.53)4.22 (3.10-5.42)4.38 (3.22-5.44)Fibrinogen (g/L), median (IQR)

.0444.10 (14.00-91.45)34.70 (10.70-77.40)36.30 (12.07-81.71)C-reactive protein (mg/L), median (IQR)

.090.17 (0.08-0.53)0.14 (0.06-0.36)0.15 (0.06-0.40)Procalcitonin (ng/mL), median (IQR)

.054.01 (2.25-7.56)3.69 (2.03-6.39)3.75 (2.09-6.72)Neutrophil-to-lymphocyte ratio, median
IQR

.36205 (72.2)456 (69.0)661 (69.9)Serious bacterial infection, n (%)

.76Comorbidities, n (%)

167 (58.8)375 (56.7)542 (57.4)0

72 (25.4)169 (25.6)241 (25.5)1

45 (15.8)117 (17.7)162 (17.1)2+

.3673 (25.7)191 (28.9)264 (27.9)Hypertension, n (%)

.2540 (14.1)74 (11.2)114 (12.1)Diabetes, n (%)

J Med Internet Res 2023 | vol. 25 | e45515 | p. 5https://www.jmir.org/2023/1/e45515
(page number not for citation purposes)

Liu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


P valueTest cohortTraining cohortOverallDifferences between the cohorts

.6720 (7.0)40 (6.1)60 (6.3)Cardiopathy, n (%)

.3312 (4.2)40 (6.1)52 (5.5)Nephropathy, n (%)

>.9912 (4.2)29 (4.4)41 (4.3)Hepatitis B, n (%)

.709 (3.2)26 (3.9)35 (3.7)Malignancy, n (%)

Characteristics of the Selected Features
A total of 37 indicators, spanning demographic variables,
clinical characteristics, vital signs, and blood biochemical
indicators, were screened and compared. Notably, 14, 9, and 2
features were identified as important by the Boruta, Lasso, and
RFE algorithms, respectively (Figure 2A-2D). A total of 18
independent features were recognized, with nearly all
demonstrating significant differences (P<.05) between the SBI
and non-SBI groups (Multimedia Appendix 2). However,

notable collinearity was observed among these indicators, as
depicted in Multimedia Appendix 4. To enhance the simplicity
and stability of the models, features identified as important by
at least two ML algorithms were chosen for model construction.
These included age, neutrophil proportion (NP), hemoglobin,
C-reactive protein (CRP), and fibrinogen levels (Figure 2E).
Additionally, given that the neutrophil-to-lymphocyte ratio
(NLR) simultaneously reflects lymphocyte proportions and NPs
and is commonly used in clinical practice, it was used as a
replacement for NP.
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Figure 2. Process of feature selection. (A) The rank of feature importance sorted by Boruta; 14 features were marked as significant. (B and C) The
best parameter (lambda) and best number of indicators (ie, 9) for the best performance in the Lasso algorithm. (D) RFE included 2 features to obtain
the top accuracy. (E) The union of all the features selected by the Boruta, Lasso, and RFE algorithms. BP: basophils proportion; CRP: C-reactive protein;
EC: eosinophil count; EP: eosinophils proportion; HB: hemoglobin; Lasso: least absolute shrinkage and selection operator; LC: lymphocyte count; LP:
lymphocytes proportion; MC: monocyte count; NC: neutrophil count; NLR: neutrophil-to-lymphocyte ratio; NP: neutrophils proportion; PCT:
procalcitonin; RFE: recursive feature elimination; SP: systolic pressure; WBC: white blood cell.

Model Performance Result
Considering the sequence of collection for the chosen indicators
and the clinical requirements, 2 timing-sequence models for
predicting SBI risk were formulated. The early admission model
(model 1) incorporated age, hemoglobin level, and NLR, while
the model within 24 hours of admission (model 2) included age,
hemoglobin, NLR, fibrinogen, and CRP levels. LR exhibited
greater stability compared with RF and XGBoost in the 5-fold

CV of both models. For model 1, LR achieved AUCs of 0.749
(5-fold CV training set) and 0.744 (5-fold CV validation set),
while for model 2, LR showed AUCs of 0.806 (5-fold CV
training set) and 0.807 (5-fold CV validation set; see panels A
and B in Multimedia Appendix 5). Moreover, LR outperformed
the other 2 algorithms in model 2, with an AUC, accuracy, and
sensitivity of 0.780 (95% CI 0.720-841), 0.754 (95% CI
0.698-804), and 0.776 (95% CI 0.711-832), respectively, as
presented in Tables 2 and 3. In model 1, XGBoost demonstrated
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an advantage over LR in terms of AUC (0.708, 95% CI
0.641-775 vs 0.686, 95% CI 0.617-754), while RF achieved
superior accuracy (0.729, 95% CI 0.673-780) and sensitivity

(0.790, 95% CI 0.728-844) compared with the other 2 algorithms
(Tables 2 and 3).

Table 2. Model characteristics among the training and test sets: the early admission assessment model.

LR (–)e (95%
CI)

LR (+)d (95%
CI)

NPVc (95%
CI)

PPVb (95%
CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

Accuracy
(95% CI)

AUCa (95% CI)Cohort and
model

Training set

0.461 (0.400-
0.531)

2.973 (2.268-
3.898)

0.494 (0.438-
0.550)

0.869
(0.828-
0.903)

0.785 (0.723-
0.840)

0.638 (0.592-
0.682)

0.684 (0.647-
0.719)

0.756 (0.715-
0.796)

LRf

0.342 (0.273-
0.429)

1.808 (1.544-
2.118)

0.568 (0.496-
0.638)

0.801
(0.761-
0.836)

0.551 (0.480-
0.621)

0.811 (0.772-
0.846)

0.731 (0.695-
0.764)

0.723 (0.679-
0.766)

RFg

0.282 (0.229-
0.347)

2.619 (2.122-
3.232)

0.615 (0.549-
0.678)

0.853
(0.816-
0.886)

0.693 (0.625-
0.755)

0.805 (0.765-
0.840)

0.770 (0.736-
0.802)

0.796 (0.758-
0.833)

XG-

Boosth

Test set

0.557 (0.447-
0.695)

2.078 (1.447-
2.982)

0.409 (0.326-
0.496)

0.844
(0.775-
0.898)

0.709 (0.596-
0.806)

0.605 (0.534-
0.672)

0.634 (0.575-
0.690)

0.686 (0.617-
0.754)

LR

0.368 (0.265-
0.511)

1.836 (1.411-
2.389)

0.511 (0.402-
0.619)

0.827
(0.766-
0.877)

0.570 (0.453-
0.681)

0.790 (0.728-
0.844)

0.729 (0.673-
0.780)

0.685 (0.612-
0.759)

RF

0.475 (0.374-
0.603)

2.279 (1.594-
3.258)

0.448 (0.359-
0.540)

0.855
(0.791-
0.906)

0.709 (0.596-
0.806)

0.663 (0.594-
0.728)

0.676 (0.618-
0.730)

0.708 (0.641-
0.775)

XGBoost

aAUC: area under the ROC curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dLR (+): positive likelihood ratio.
eLR (–): negative likelihood ratio.
fLR: logistic regression.
gRF: random forest.
hXGBoost: extreme gradient boosting.
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Table 3. Model characteristics among the training and test sets: the risk assessment model within 24 hours of admission.

LR (–)e (95%
CI)

LR (+)d

(95% CI)
NPVc (95%
CI)

PPVb (95%
CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

Accuracy (95%
CI)

AUCa (95% CI)Cohort and
model

Training set

0.252 (0.199-
0.320)

2.330
(1.928-
2.815)

0.643 (0.572-
0.710)

0.837 (0.799-
0.870)

0.640 (0.569-
0.706)

0.839 (0.801-
0.872)

0.777 (0.742-
0.808)

0.807 (0.771-
0.844)

LRf

0.300 (0.248-
0.363)

3.100
(2.426-
3.962)

0.602 (0.539-
0.664)

0.872 (0.835-
0.904)

0.750 (0.684-
0.808)

0.775 (0.733-
0.813)

0.767 (0.732-
0.799)

0.809 (0.772-
0.846)

RFg

0.351 (0.302-
0.409)

4.984
(3.516-
7.065)

0.564 (0.506-
0.620)

0.916 (0.881-
0.944)

0.860 (0.804-
0.905)

0.698 (0.652-
0.740)

0.748 (0.713-
0.782)

0.846 (0.812-
0.879)

XG-

Boosth

Test set

0.322 (0.239-
0.434)

2.563
(1.807-
3.635)

0.546 (0.442-
0.648)

0.869 (0.809-
0.915)

0.697 (0.581-
0.798)

0.776 (0.711-
0.832)

0.754 (0.698-
0.804)

0.780 (0.720-
0.841)

LR

0.415 (0.324-
0.533)

2.637
(1.790-
3.885)

0.483 (0.389-
0.577)

0.872 (0.809-
0.920)

0.737 (0.623-
0.831)

0.694 (0.624-
0.758)

0.706 (0.648-
0.759)

0.759 (0.691-
0.826)

RF

0.394 (0.311-
0.500)

3.272
(2.096-
5.108)

0.496 (0.404-
0.588)

0.894 (0.834-
0.938)

0.789 (0.681-
0.875)

0.689 (0.619-
0.753)

0.717 (0.659-
0.770)

0.780 (0.717-
0.843)

XGBoost

aAUC: area under the ROC curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dLR (+): positive likelihood ratio.
eLR (–): negative likelihood ratio.
fLR: logistic regression.
gRF: random forest.
hXGBoost: extreme gradient boosting.

Evaluation of the Predictive Nomogram
Two SBI-predicting nomograms based on LR, offering a
succinct SBI risk score for each patient, were developed for
models 1 and 2 (Figure 3A and 3C). To assess the clinical utility
of the predictive nomograms, data on 164 patients diagnosed
with infective fever and possessing complete prediction
indicators (ie, age, hemoglobin level, lymphocyte count,
neutrophil count, fibrinogen level, and CRP level) collected in

2021 were included. The early predictive nomogram exhibited
good accuracy and sensitivity, with accuracy at 0.707 and
sensitivity at 0.729. In the assessment of the model within 24
hours of admission, high sensitivity and good accuracy were
observed, with sensitivity at 0.927 and accuracy at 0.750 (Figure
3B and 3D). These results demonstrate practical utility in clinical
practice for distinguishing SBIs from non-SBIs. Two dynamic
nomogram tools are deployed online [23,24].
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Figure 3. The predictive nomograms and their evaluation in clinical application. The predictive nomogram was developed to assess the SBI risk using
(A) the early admission model and (C) the model within 24 hours of admission. The evaluation of the SBI risk for 164 patients in clinical application
based on (B) the early assessment and (D) the assessment within 24 hours of admission. The height of each bar represents the SBI risk score for each
patient, and the filling color indicates their actual outcomes. SBI: serious bacterial infection.

Discussion

Principal Findings
Given the advancement of AI and the growing need for
extensive data in clinical medicine, the integration of AI
techniques into clinical practice and research holds significant
importance. This retrospective study focused on the development
of 2 timing-sequence SBI-risk models for adults with infectious
fever. Leveraging multiple ML algorithms, these models were
designed with a minimal set of 3 and 5 features, aiming to
achieve accurate and stable predictions. The nomograms
developed and validated for physicians provide a straightforward
and convenient way to assess the risk of SBI for each patient
in clinical practice. This suggests their promising potential in
clinical decision-making, aiming to minimize unnecessary
hospitalizations and the empirical use of antibiotics. As far as
our knowledge extends, this study is the first to utilize
timing-sequence models for detecting SBI in adults with
suspected infectious fever, and their validation in clinical
applications adds a novel dimension to the existing body of
research.

The utilization of various feature screening methods comes with
its set of advantages and disadvantages. In this study, we opted
for a comprehensive approach by combining multiple feature
screening methods with clinician advice for the final

confirmation of features. The features selected by multiple ML
algorithms, namely, age, hemoglobin levels, CRP levels,
fibrinogen levels, and the NLR, align with the consensus in the
current management of SBIs. This alignment enhances the
reliability and interpretability of the models we constructed.

Indeed, aging has been associated with a decrease in the
efficiency of bacterial killing by neutrophils under ex vivo
conditions [25]. The reduced ability of older adults to mount
an adequate immune response makes them more susceptible to
bacterial infections compared with their younger counterparts
[26].

The SBI group exhibited lower hemoglobin levels and higher
CRP levels, aligning with findings from prior studies [27,28].
The inflammatory response to an infection, characterized by
the secretion of interleukin-6 (IL-6) in significant amounts,
could be a primary factor contributing to anemia [29,30]. IL-6
plays a role in upregulating hepcidin transcription, inhibiting
the transport of intracellularly stored iron from macrophages
and hepatocytes into the plasma, and reducing intestinal iron
uptake, resulting in low levels of iron in the plasma [31]. The
mechanism, initiated within hours of infection, restricts the
availability of plasma iron required for erythroblast proliferation,
consequently inhibiting erythropoiesis [31]. CRP is an
acute-phase reactive protein released in significant amounts
from the liver upon stimulation with IL-6 and other cytokines
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[32]. In the presence of infection, CRP plays dual roles by
exerting both proinflammatory and anti-inflammatory effects.
Its functions are mediating the elimination of pathogens and
inhibiting the interaction between white blood cells and
endothelial cells. Consequently, CRP is frequently used for the
early diagnosis of infectious diseases. However, the diagnostic
value of CRP alone for bacterial infections is considered only
moderate. Indeed, elevated CRP levels are observed not only
in pediatric patients infected with adenovirus in the absence of
a secondary bacterial infection but also in patients with bacterial
infections. This suggests that both viruses and bacteria can
trigger an inflammatory host response [33].

Fibrinogen possesses an intrinsic ability to combat invading
bacterial pathogens [34]. In a recent study, wild-type mice
demonstrated rapid and efficient clearance of Staphylococcus

aureus, while mice lacking fibrinogen (Fbg–) failed to clear the
microbes. This disparity in the early clearance of bacteria
resulted in all wild-type mice surviving the infection even after

2 weeks, whereas all Fbg– mice succumbed within 24 hours
[35]. Fibrinogen serves as an antimicrobial host defense protein
through various mechanisms, including (1) establishing a
physical barrier at the air–liquid interface, (2) entrapping
bacteria in fibrinogen or fibrin networks, and (3) facilitating the
recruitment and activation of host immune cells [34].

The sensitivity of the NLR in the diagnosis of bacteremia,
infection, and sepsis has been validated in numerous studies
[36-38]. Aird [39] reported that the hematologic system plays
a primary role in sepsis pathogenesis. In systemic infection and
sepsis, all blood cells undergo activation, leading to significant
changes in their functions, counts, receptor expression, humoral
substances, and the secretion of various signaling molecules.
A complete blood count can offer a wealth of valuable
information, including parameters such as the NLR.

The clinical presentation of SBIs is often variable and
nonspecific [40]. Therefore, the application of ML to assess
SBI risk is feasible, given its capability to identify associations
not previously considered among a large number of variables.
Moreover, the potential of ML tends to increase with larger data
sets. These 3 ML algorithms are extensively used in constructing
clinical prediction models and consistently demonstrate excellent
performance. Given the variation in information, specifically
blood indicators, obtained at admission among patients, we
devised 2 sequential models to enhance clinical applicability.
Both models demonstrated commendable performance in early
and late evaluations, aiding in the early warning of SBIs. In the
early model (model 1), the RF model yielded the best results,
achieving the highest accuracy scores (0.731 for the training
set and 0.729 for the test set). RF is an ensemble learning
method known for its effectiveness in various classification and
regression tasks [41]. It operates as a classifier that leverages
multiple trees for training and predicting outcomes. Notably,
RF exhibits high accuracy and is adept at balancing errors when
analyzing data sets with unbalanced classifications [42]. In the
later model (model 2), the LR model demonstrated an excellent

accuracy score, achieving 0.777 for the training set and 0.754
for the test set. LR is a classic predictive analysis algorithm
rooted in the concept of probability. It utilizes a sigmoid function
to derive the predicted output for classification [10]. To visualize
and quantify the LR results, a nomogram was constructed, with
regression coefficients standardized and expressed as risk scores
on a number line. The nomogram serves as a highly practical
visual tool for constructing clinical models, offering great
convenience for physicians in busy clinical practice. Our
nomograms were rigorously tested to demonstrate their
capability to sensitively and accurately identify patients at a
high risk of SBIs. This aspect is critical in clinical practice,
providing physicians with timely alerts to take proactive
measures and avoid the development of severe conditions.
Additionally, we deployed online dynamic nomogram tools,
making model parameters publicly accessible on the same
website. This setup enables health care professionals and peers
to openly validate the clinical utility of the model, further
enhancing its practical usage.

Strengths
The strength of this study lies in the meticulous process of
feature capture, ensuring that the selected covariates are highly
relevant to the risk of SBIs in a clinical setting. This approach
facilitates the construction of concise and stable models with
clinical interpretation. We anticipate that the findings of our
study could serve as a valuable reference for the application of
ML models in various health care systems. Second, our study
introduced and developed clinical timing-sequence warning
models, representing an innovative approach adaptable to
complex clinical situations. Third, we constructed and validated
nomograms to visualize and quantify the risk of SBI for each
patient, providing a practical tool for clinical application.

Limitations
Our study has several limitations. The retrospective nature of
the study may introduce bias in the analysis of the results.
Additionally, the predictive model was generated using 1 data
set and tested on another, which could impact the
generalizability of the findings. While we believe that our model
has undergone validation, it is crucial to apply it in other health
institutions to assess its generalizability and test its applicability
in clinical practice. Second, due to the retrospective design of
the study, data were solely collected from past medical records.
Recent laboratory tests that could be linked to SBIs, such as
lactate levels, were not included as they were not tested.

Conclusions
Early prediction of SBIs in adults is a crucial clinical
requirement. Our research has the potential to assist clinicians
in identifying SBIs in adults soon after onset, facilitating early
clinical monitoring and treatment while avoiding unnecessary
antibiotic use. In the future, additional prospective and
multicenter studies are essential to further confirm the clinical
utility of these models.
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