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Abstract

Background: The global pandemics of severe acute respiratory syndrome, Middle East respiratory syndrome, and COVID-19
have caused unprecedented crises for public health. Coronaviruses are constantly evolving, and it is unknown which new
coronavirus will emerge and when the next coronavirus will sweep across the world. Knowledge graphs are expected to help
discover the pathogenicity and transmission mechanism of viruses.

Objective: The aim of this study was to discover potential targets and candidate drugs to repurpose for coronaviruses through
a knowledge graph–based approach.

Methods: We propose a computational and evidence-based knowledge discovery approach to identify potential targets and
candidate drugs for coronaviruses from biomedical literature and well-known knowledge bases. To organize the semantic triples
extracted automatically from biomedical literature, a semantic conversion model was designed. The literature knowledge was
associated and integrated with existing drug and gene knowledge through semantic mapping, and the coronavirus knowledge
graph (CovKG) was constructed. We adopted both the knowledge graph embedding model and the semantic reasoning mechanism
to discover unrecorded mechanisms of drug action as well as potential targets and drug candidates. Furthermore, we have provided
evidence-based support with a scoring and backtracking mechanism.

Results: The constructed CovKG contains 17,369,620 triples, of which 641,195 were extracted from biomedical literature,
covering 13,065 concept unique identifiers, 209 semantic types, and 97 semantic relations of the Unified Medical Language
System. Through multi-source knowledge integration, 475 drugs and 262 targets were mapped to existing knowledge, and 41
new drug mechanisms of action were found by semantic reasoning, which were not recorded in the existing knowledge base.
Among the knowledge graph embedding models, TransR outperformed others (mean reciprocal rank=0.2510, Hits@10=0.3505).
A total of 33 potential targets and 18 drug candidates were identified for coronaviruses. Among them, 7 novel drugs (ie, quinine,
nelfinavir, ivermectin, asunaprevir, tylophorine, Artemisia annua extract, and resveratrol) and 3 highly ranked targets (ie,
angiotensin converting enzyme 2, transmembrane serine protease 2, and M protein) were further discussed.

Conclusions: We showed the effectiveness of a knowledge graph–based approach in potential target discovery and drug
repurposing for coronaviruses. Our approach can be extended to other viruses or diseases for biomedical knowledge discovery
and relevant applications.

(J Med Internet Res 2023;25:e45225) doi: 10.2196/45225
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Introduction

The global COVID-19 pandemic has heavily burdened the
normal life and work of human beings, and has caused an
unprecedented crisis in medical care, and social and economic
development [1-3]. Although the impact of COVID-19 is
unprecedented, it is not the first outbreak of a coronavirus in
humans.

Coronaviruses represent a diverse group of enveloped viruses
with crown-like spikes on the surface, which were first
discovered in the 1930s, and human coronaviruses were first
identified in the 1960s [4]. To date, 7 coronaviruses are known
to infect humans. In addition to the common human
coronaviruses (229E, NL63, OC43, and HKU1), severe acute
respiratory syndrome coronavirus (SARS-CoV), Middle East
respiratory syndrome coronavirus (MERS-CoV), and
SARS-CoV-2 are highly pathogenic, causing a high number of
deaths and global panic in this century [5,6]. Currently, there
are no reports of clinically effective prevention or treatment
strategies for coronavirus infection. More seriously, the
continued emergence of novel coronaviruses and their zoonotic
potential further exacerbate concerns about the future of public
health [7].

Coronaviruses are still evolving, and it is unknown how and
when mutated strains of coronaviruses emerge [8,9]. Despite
ongoing progress in vaccination against coronaviruses and mass
antiviral screening being undertaken rapidly, there is uncertainty
about the protection that existing measures may provide [10].
Targets, drugs, and mechanisms of drug action for coronaviruses
urgently need to be discovered.

However, new drug development usually takes about 15 years.
In the early stages of drug development, tens of thousands of
active molecules need to be tested, but only 1 of them may end
up as a drug on the market [10-12]. Since traditional drug target
discovery processes are time-consuming and infeasible,
computational methods can be considered as some of the
promising avenues to improve the speed and efficiency of drug
target discovery.

The biomedical literature has abundant information on the
molecular virology of coronaviruses [13]. Existing drug and
genetic knowledge bases already contain a wealth of proven
biomedical knowledge. It is advisable to extract
coronavirus-related information from vast biomedical literature
and integrate it with existing knowledge to discover potential
targets and drug candidates to repurpose for coronaviruses.

Recently, a knowledge discovery approach combining
literature-based discovery and a knowledge graph (KG) has
emerged and is promising for drug repurposing. Literature-based
discovery is a mature method widely used to automatically mine
potential knowledge associations from the literature [14]. A KG
is a graph computing method that describes concepts and their
relationships in the physical world in a symbolic form [15,16].
With the development of various KG embedding methods,
large-scale KGs can be used for data mining and knowledge
discovery [17-20]. For example, the Rephetio project constructed
an integrative network, Hetionet, by integrating data from 29

public biomedical resources [21]. The drug repurposing KG
(DRKG) [22] integrated Hetionet with DrugBank, GNBR,
String, IntAct, and DGIdb, consisting of nearly 100,000 entities
and 6 million relationships, which was more than twice the size
of Hetionet. Although these large-scale databases have
integrated rich biomedical knowledge, the data fitting effect for
the required semantic types in specific real-world use cases
based on them may be ineffective, since the computational
model considers all semantic types in the graph simultaneously.
To improve the performance and computational efficiency for
specific tasks, a KG filtering method considering the trade-off
between data quantity and quality was proposed and applied in
the prediction task of drug repurposing [21]. The current
progress of integrating heterogeneous knowledge is relatively
slow [23,24]. Other than integrating heterogeneous data, a
notable drug repurposing approach [25] was developed via KG
completion based only on literature knowledge, and a specific
pattern was defined to filter out the relationship between drugs
and COVID-19.

Existing efforts have explored computational methods from
different perspectives for drug repurposing. However, available
KGs were only used for a single coronavirus, especially
SARS-CoV-2. The clinical manifestations of coronavirus
infection are similar. Patients infected with SARS-CoV,
MERS-CoV, and SARS-CoV-2 all exhibit flu-like symptoms
and may progress to pneumonia and dyspnea with acute
respiratory distress syndrome and multi-organ failure in severe
cases [26]. Coronaviruses, especially human coronaviruses,
have many similarities at the molecular level [27]. The analysis
data of the gene sequences of the coronavirus spike suggest that
coronaviruses have a similar evolution [28]. Constructing
specialized KGs for all identified coronaviruses is beneficial to
uncover underlying biological knowledge among various
coronaviruses. Although some biological studies have attempted
to explore the connections and differences among various
coronaviruses, no KGs for various coronaviruses have been
reported.

This study aimed to explore potential targets and drug candidates
to repurpose for coronaviruses, using KGs, to benefit the
prevention and treatment of highly pathogenic coronavirus
infections. The novelty of this work is taking the initiative to
employ KGs for various coronaviruses rather than a single
coronavirus. This work has the following main contributions:
(1) considering computational cost and efficiency,
coronavirus-related data from the literature were initially filtered
and semantic information was automatically extracted from a
large-scale biomedical literature database; (2) a coronavirus KG
(CovKG) was constructed with the integration of heterogeneous
data from both the biomedical literature and structured drug
and gene databases; (3) 6 state-of-the-art KG embedding
methods were evaluated for drug repurposing of coronaviruses;
and (4) the unrecorded mechanisms of drug action as well as
potential targets and drug candidates were discovered and
discussed with evidence-based support, which further enhanced
the interpretability of the predicted results.
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Methods

Overview
We first describe our data sources, including the biomedical
literature data source, drug and target knowledge source, and
gene product knowledge source. Then, we construct the CovKG
by extracting information from biomedical literature and
associating it with the Unified Medical Language System

(UMLS), DrugBank, and Gene Ontology (GO) in a unified
format. Next, 6 KG embedding models are explored to predict
potential targets and candidate drugs to repurpose for
coronaviruses, and the semantic reasoning technique of KGs is
employed to find the unrecorded mechanisms of drug action in
the existing drug knowledge base. Furthermore, evidence-based
supports are provided with a scoring and backtracking
mechanism. The workflow diagram illustrating our approach
is shown in Figure 1.

Figure 1. Diagram illustrating the workflow of our approach. CovKG: coronavirus knowledge graph; GO: Gene Ontology; KG: knowledge graph;
SPO: subject- predicate-object; UMLS: Unified Medical Language System.

Data Collection
PubMed contains more than 34 million biomedical articles, and
the data volume grows by thousands of articles every day [29].
It is one of the most commonly used literature resources. In this
study, PubMed was considered as the basic data source for
biomedical literature knowledge on coronaviruses. To explore
the potential relationships among coronavirus-related diseases,
targets, and drugs, we used “coronavirus” as the search term in
PubMed to obtain relevant biomedical literature data. Research
literature published from January 2000 to June 2022 was
collected. Then, a total of 18,687 most relevant publications
were obtained after deduplication, from which we extracted
coronavirus-related semantic relations.

DrugBank is a comprehensive database on drugs and targets
[30]. It consists of 15,305,066 triples, containing 13,580 drug
concepts and 84 relations, such as drug interaction, category,
dosage, mixture, and pathway. As a bioinformatics and
cheminformatics resource, it records detailed drug and target
information. In this study, we adopted DrugBank data in
Resource Description Framework (RDF) format.

GO is the largest source of information on the functions of gene
products [31]. It has a total of 1,423,359 triples, containing
47,345 gene concepts and 49 relations, such as label, subclass,
and definition. The GO data are provided in Web Ontology
Language (OWL) format.

CovKG Construction

Biomedical Literature Knowledge Base
The biomedical literature contains abundant information related
to coronaviruses and is an important knowledge source for the
construction of the CovKG. Therefore, we first extracted the
triples containing biomedical knowledge based on PubMed
literature data and then designed a semantic conversion model
to organize the knowledge in an orderly manner. Finally, we
stored the biomedical literature knowledge through a unified
standard. The biomedical literature knowledge base obtained
has been named PubMedAnn.

Automatic Biomedical Information Extraction

SemRep is an effective off-the-shelf tool for identifying entities
and relations from text and linking them to UMLS standard
terminology [32]. We first leveraged SemRep to automatically
extract semantic triples from the retrieved literature. Figure 2
provides an example of automatic biomedical information
extraction using SemRep. In Figure 2, one or more semantic
types are assigned to each identified entity, for example, the
label and semantic type corresponding to “C0014597” are
“Epithelial Cells” and “Cell,” respectively. The title and abstract
of each article are segmented by sentences, and each sentence
may contain one or more triples. On the left side of Figure 2, 4
triples are extracted from the second sentence of the article
abstract (34206990.ab.2) with PubMed ID (PMID) 34206990,
as shown on the right side of Figure 2. Entities in each triple
were identified and normalized to concept unique identifiers
(CUIs) in the UMLS Metathesaurus [33], and relations were
linked to the semantic relations in the UMLS Semantic Network
[34].
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Figure 2. An example of automatic biomedical information extraction using SemRep. The bold content on the right represents the triplets extracted
from the text on the left, denoted as “CUI-Relation-CUI”. AB: Abstract; CUI: concept unique identifier; LID: Location ID; PMID: PubMed ID; TI:
Title.

Semantic Structure Conversion Model

For biomedical literature processed by SemRep, there are title
annotations and abstract annotations. These annotations
correspondingly have their own text content. Additionally,
entities identified by SemRep in these texts have their own CUIs
and labels. Furthermore, various relationships exist among CUIs.
Then, to organize the coronavirus-related information of
biomedical literature, a semantic structure conversion model
was defined, as shown in Figure 3.

In the conversion model, PMID represents the ID of a
coronavirus-related article retrieved from PubMed. The title ID
(TiID) and the abstract ID (AbID) of the literature are associated

with the PMID through the relationship of “hasAnnotation.”
Similarly, relationships, such as “hasText,” “hasCUI,” and
“hasLabel,” have been defined. The relations between CUIs
extracted by SemRep are represented by “hasRelation/*,” where
“*” indicates the relation type of the corresponding triple.
Moreover, “CUI2Label” and “hasType” have been defined for
the relations between CUI and its label, and between CUI and
its semantic type, respectively.

In the semantic structure of PubMedAnn, the semantic
relationship between biomedical entities is designed and the
sources of semantic type are clearly recorded through PMID,
TiID, and AbID, providing an interpretable path for the
subsequent model predictions.

Figure 3. Semantic structure of PubMedAnn. Entities and attributes are distinguished by different colors and different types of borders. AbID: abstract
ID; CUI: concept unique identifier; PMID: PubMed ID; TiID: title ID.

Standardized Storage of Graph Data

RDF is a standard model for data interaction, where node types
include Uniform Resource Identifier references, blank nodes,
and literals [35]. In this study, we employed RDFLib [36] to
unify the data format and convert the data extracted by SemRep
into RDF.

Thus, according to the designed semantic structure conversion
model, we extracted semantic triples from the data processed
by SemRep and then used RDFLib to convert them into the
RDF format required for KG construction. The transformed
data were stored in a graph database (PubMedAnn).

Multi-Source Knowledge Integration
To discover potential targets and candidate drugs to repurpose
for coronaviruses, the CovKG was constructed by integrating
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multi-source biomedical knowledge from the PubMedAnn,
DrugBank, and GO databases. This study focused on the
relationships between semantic types closely related to
coronaviruses, including virus, disease, drug, gene, host, etc.
Figure 4 shows the main schema of the CovKG.

Regarding the specific integration process across heterogeneous
knowledge bases, the semantic types in PubMedAnn were
mapped to those already existing in DrugBank and GO, for
example, “Clinical drug,” “Virus,” and “Molecular Function”
can be mapped to DrugBank, and “Gene or genome” and
“Molecular Function” can be mapped to GO. Meanwhile, the

relations were integrated by adding the relations of
“AFFECTED_ORGANISMS,” “PATHWAYS,” and
“TARGETS” in DrugBank and the relations of “ISA,”
“PART_OF,” and “REGULATED” in GO to the schema of the
CovKG. The attribute “rdfs:Label” was used to associate entities
with the same semantic type in different knowledge bases.

In view of the excellent performance of GraphDB [37] in the
field of graph databases, we used it to store the CovKG, and
implemented knowledge query and logic reasoning based on
the SPARQL language.

Figure 4. The main schema of the CovKG with the integration of multi-source biomedical knowledge from PubMedAnn, DrugBank, and GO. In the
CovKG, nodes represent semantic types and edges represent relations between semantic types. CovKG: coronavirus knowledge graph; GO: Gene
Ontology.

Knowledge Discovery

KG Embedding Models
Knowledge representation learning is mainly oriented to entities
and relations in KGs, and aims to represent the semantic
information of research objects as dense low-dimensional
real-valued vectors. We explored 2 classes of KG embedding
methods: TransE [38], TransR [39], and RotatE [40] for
translational models, and RESCAL [41], DistMult [42], and
ComplEx [43] for semantic matching models. These 6 models
were used to learn vector representations of entities and relations
for subsequent knowledge discovery.

TransE is a representative translational distance model that
represents entities and relations as vectors in the same semantic
space of dimension. TransE extracts vectors from the head entity
and relation, and performs L1 norm or L2 norm operations to
make the obtained results approximate to the vectors in the tail
entity. TransE is simple and has good prediction performance.
However, TransE only models 1-1 relations and fails to embed
1-n and n-n relations. To solve this problem, several other
solutions have been proposed, including TransR and RotatE.

TransR separates the relation space from the entity space, and
semantic spaces do not need to have the same dimensions. Each
of these spaces captures a different aspect of the head entity h
or the tail entity t, which is related to a distinct relationship
r. Similar to TransE, the score function fr of TransR measures
the Euclidean distance between h+r and t, and fr is as follows:

RotatE maps entities and relations to a complex vector space
and defines each relation as a rotation from the head entity to
the tail entity. RotatE uses a self-adversarial negative sampling
method that samples negative triples based on the current
embedding model. The score function dr (h,t) of RotatE
measures the angular distance between the head and tail
elements, and dr (h,t) is as follows:

RESCAL is the most basic model based on tensor
decomposition. The core idea of RESCAL is to encode the entire
KG into a 3D tensor, and decompose a core tensor and a factor
matrix from it. Each slice Xk of the 2D matrix represents a tensor
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representation of a relation in the core tensor, k denotes the
number of relationships, and A represents the entity set matrix.
The result restored by the core tensor and factor matrix is
regarded as the probability of the corresponding triple. If the
probability is greater than a certain threshold, the corresponding

triple is correct. The score function fr (h,t) for h, t   Rd, captures
pairwise interactions between entities in h and t through
relationship matrix Mr that is the collection of all individual
Rk matrices and is of dimension d×d, and the formulas are as
follows:

DistMult alleviates the overfitting problem by reducing the
number of parameters. DistMult simplifies RESCAL by
restricting Mr from a general asymmetric r×r matrix to a
diagonal square matrix, thus reducing the number of parameters

per relation. DistMult introduces vector embedding r   Rd, and
then, the score function is as follows:

ComplEx extends DistMult by introducing complex-valued
embedding to better model asymmetric relations. In ComplEx,
the embedding of entity and relation no longer exists in the real
vector space but in the complex vector space. An essential
strategy is to compute joint representations for the entities,

regardless of their roles as subjects or objects, and perform dot
products on these embeddings, with a score function as follows:

Link Prediction and Similarity Calculation
In the context of biomedical networks, KG embedding helps to
discover previously unknown associations or interactions. Here,
we employed the KG embedding model to obtain
low-dimensional vector representations, which were further
used for link prediction and similarity calculation to find
potential targets and drug candidates for coronaviruses,
respectively. The knowledge discovery process based on
network representation learning is shown in Figure 5.

Link prediction is the task of predicting the possibility of an
unknown connection between 2 entities in a given network
through known information [44]. In this task, the existing triples
in the graph are used as positive samples, while the unknown
entities or relations are negatively sampled.

Through similarity calculation, the predicted entity should be
most similar to the recorded drug entity in the graph. The
embedding of the recorded drug entity was denoted as e, and
the embedding of the predicted drug entity was denoted as e′.
Cosine similarity [45] was used to calculate the similarity
between entity pairs. Since 6 KG embedding models were
employed for KG completion in our study, the similarity
calculation formula was as follows:

Figure 5. Knowledge discovery process based on network representation learning. MRR: mean reciprocal rank.

Semantic Reasoning–Based Knowledge Discovery
Based on the CovKG integrating multi-source biomedical
knowledge (ie, PubMedAnn, DrugBank, and GO), we designed
a semantic reasoning-based knowledge discovery pattern to
identify unrecorded mechanisms of drug action. SPARQL was
used to filter triples with the semantic type “head entity (drug)
- r - tail entity (target)” in PubMedAnn, where the head entity
was mapped to the drug name in DrugBank and the tail entity
was mapped to the target name in GO. Thus, all drug-target
relationships recorded in PubMedAnn were obtained, which
were then compared with the existing drug targets in the
authoritative database to find the unrecorded mechanisms of
drug action.

Evaluation Criteria
We conducted cross-validation to evaluate the model
performance for drug and target predictions. All triples were
randomly shuffled 5 times and split into a training set (70%)

and a test set (30%) with the same ratios. The mean reciprocal
rank (MRR) and Hits@k, which have been widely used as
evaluation metrics [46], were adopted to measure the
performance of our KG embedding models.

The MRR is the average inverse rank of all test triples and is
calculated as follows:

Hits@k measures the percentage of true triples appearing in the
top k ranked triples [47]. Usually, the top 1%, 3%, and 10%
correct entities are calculated, and the calculation formula is as
follows:
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Evidence-Based Support
The interpretability of prediction results is an important indicator
determining the practicality of the machine learning–based
model [48]. Although current KG embedding methods can be
used to directly predict outcomes, interpretable reasoning is a
major challenge owing to the lack of intermediate knowledge
in the prediction process [49]. The quantity and quality of the
knowledge source can be considered as important factors in
assessing the credibility of knowledge in the biomedical field
[21]. In this study, we provided an evidence scoring and
backtracking mechanism to provide interpretability for the
prediction results of the CovKG.

For the entity pair <ei, ej>, there may be multiple reachable
paths between them, denoted as pi,j. In these paths, ei and ej may
be directly connected, that is, pi,j=<ei,ri,j,ej>. They may also be
connected by multiple hops through other nodes connected to
them, that is, pi,j=<ei,ri,x,ex,…,ey,ry,j,ej>. The biomedical literature
supporting the existence of these paths is the evidence. The
evidence number for the path pk is denoted as Count(pk). The
evidence score of the predicted link of the entity pair <ei, ej> is
the sum of the evidence number in all reachable paths, and the
formula is as follows:

Additionally, the source information (eg, PMID, TiID, and
AbID) of the biomedical entity involved in the literature has
been considered during the design process of the semantic

structure of PubMedAnn. Therefore, for each triple predicted
by the KG embedding model, it can be traced back to its original
source, including its specific literature, abstract, and title. In the
example shown in Figure 2, an explanation path “Epithelial
Cells-LOCATION_OF-Defensins-ISA-Immunologic Factors”
can be generated for the predicted result about “Epithelial Cells”
and “Immunologic Factors” in the abstract of PMID 34206990.

Results

CovKG Statistics
The CovKG we constructed contains 17,369,620 triples. Among
them, PubMedAnn constructed from biomedical literature
contains 641,195 triples, covering 13,065 CUIs, 209 semantic
types, and 97 semantic relations of the UMLS. Table 1 shows
the high-frequency triples related to diseases, drugs, and genes
in PubMedAnn.

Through multi-source knowledge integration, 475 drugs and
262 targets in PubMedAnn were mapped to DrugBank and GO,
respectively. The top 10 high-frequency drugs in PubMedAnn
were “hydroxychloroquine,” “chloroquine,” “azithromycin,”
“dexamethasone,” “ribavirin,” “colchicine,” “ergocalciferol,”
“ivermectin,” “methylprednisolone,” and “ritonavir.” The top
10 high-frequency targets in PubMedAnn were “angiotensin
converting enzyme 2,” “M Protein, multiple myeloma,”
“inflammatory response,” “vitronectin, human,”
“endopeptidases,” “measles virus nucleoprotein,” “cytokine,”
“peptides,” “TMPRSS2 gene,” and “glycoproteins.”

Table 1. Top 10 triples in PubMedAnn (eliminated generic biomedical semantic types).

CountTail entityRelationHead entity

680DiseaseCAUSESCoronavirus infections

322Severe acute respiratory syndromeAFFECTSCoronavirus infections

164SARS coronavirusPART_OFM Protein, multiple myeloma

138PatientsTREATSHydroxychloroquine

131DetectionMETHOD_OFAssay

129SARS coronavirusPART_OFMeasles virus nucleoprotein

97SymptomsCOEXISTS_WITHFever

92ChloroquineINTERACTS_WITHHydroxychloroquine

81Homo sapiensPART_OFACE2 gene

80AntibodiesLOCATION_OFSerum

Unrecorded Drug Mechanism of Action Discovery
The constructed CovKG was used to explore the mechanisms
of drug action that have not been recorded in DrugBank. Here,
“the mechanism of drug action” is a broad semantic type, which
refers to the physiological process of drug action on targets or
hosts, such as “gene or genome,” “genetic function,” “molecular
function,” “biologic function,” etc.

Owing to KG technologies, the SPARQL query and logical
reasoning statements related to the semantic triple <subject,
predicate, object> can be constructed to obtain the relations
between drugs and targets in PubMedAnn, where the subject
(ie, head entity) is the drug name in DrugBank and the object
(ie, tail entity) is the gene name in GO. The results were
compared with all triples in DrugBank whose semantic type is
“drug-relation-gene,” and a total of 41 mechanisms of action
for drug repurposing that have not been recorded in DrugBank
were found (Table 2).
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Table 2. Unrecorded mechanisms of action for drug repurposing.

Tail entityRelationHead entity

Late endosomeAFFECTSAmiodarone

Phosphatidylinositol 3-kinase signalingAFFECTSLopinavir

Inflammatory responseAFFECTSErgocalciferol

Peptidase activityAFFECTSAllopurinol

Peptidase activityAFFECTSNaproxen

RNA replicationAFFECTSMethylprednisolone

Inflammatory responseAFFECTSColchicine

Phosphatidylinositol 3-kinase signalingAFFECTSTeicoplanin

Neutrophil degranulationAFFECTSColchicine

Ion channel activityAFFECTSAmantadine

Mast cell activationAUGMENTSPlatelet activating factor

RNA replicationAUGMENTSSelenium

Neutrophil apoptotic processCAUSESDoxorubicin

Channel activityDISRUPTSAmantadine

N-glycan processingDISRUPTSMiglustat

Inflammatory responseDISRUPTSSerotonin

Cell activationDISRUPTSLuteolin

Exoribonuclease activityDISRUPTSRitonavir

Clathrin-dependent endocytosisDISRUPTSChlorpromazine

RNA replicationDISRUPTSRoxadustat

P-bodyDISRUPTSArginine

Syncytium formation by plasma membrane fusionDISRUPTSFenretinide

Inflammatory responseDISRUPTSDoxorubicin

TransductionDISRUPTSDoxycycline

EndolysosomeDISRUPTSChloroquine

Virus maturationDISRUPTSNiclosamide

Nucleocytoplasmic transportDISRUPTSIvermectin

Monocyte activationDISRUPTSMetformin

Inflammatory responseDISRUPTSMetformin

Cytokine productionDISRUPTSFluvoxamine

Ion channel activityNEG_AFFECTSRimantadine

Ion channel activityNEG_DISRUPTSAmiloride

Inflammatory responsePREDISPOSESErgocalciferol

Inflammatory responsePREVENTSBradykinin

Inflammatory responseTREATSNicotine

Inflammatory responseTREATSGTS-21

AlanineLOCATION_OFViral membrane

HydroxychloroquineLOCATION_OFLate endosome

ChloroquineLOCATION_OFFood vacuole

CholesterolLOCATION_OFHost cell membrane

Nitric oxidePRODUCESCytokine production
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KG Embedding

Performance Comparison
The performances of the 6 state-of-the-art KG embedding
models are shown in Table 3. Higher scores of MRR and Hits@k
(k=1, 3, and 10) are associated with better predictive

performance of the model. The results showed that TransR
performed the best on all metrics. The optimal TransR
configuration was achieved with emb_size=400 hidden
dimensions, learning rate lr=0.25, regularization coefficient
λ=1e-09, max_train_step=6000, and batch_size=1000.

Table 3. Performance of the knowledge graph embedding models.

Hits@10Hits@3Hits@1MRRaModel

0.30140.21820.12800.1987TransE

0.3505b0.2967b0.2011b0.2510bTransR

0.29800.23070.14750.2016RotatE

0.27990.24070.18970.2209RESCAL

0.22100.13900.09850.1302DistMult

0.22690.15180.12090.1497ComplEx

aMRR: mean reciprocal rank.
bBest results.

Potential Target Discovery
To predict potential targets, 3 data sets were constructed for
entities and their relations, namely, the known entity set se, the
candidate entity set se′, and the candidate relation set sr. We
extended the term “coronavirus” to construct the known entity
set, and 39 terms were acquired by retrieving in the CovKG,
involving coronavirus name, virus variant name, and abbreviated
name. Correspondingly, all other terms were regarded as
candidate entities. The 361 relations contained in the CovKG
were defined as the relation candidate set.

The KG embedding models described in the Methods section
were used to predict the potential targets related to
coronaviruses. The entities in the known entity set se were taken
as the head entities or tail entities. The link prediction results
for potential target discovery are presented in Table 4.

To assess the reliability of the predictions and provide the
interpretability of the results, the explanation paths were
extracted. Each path can be regarded as a combination of triples,
and the evidence score of each triple can be calculated by the
amount of evidence reported in the literature. The sum of the
scores of all triples is the credibility of the path. For example,
in Table 4, the explanation path “SARS coronavirus RNA -
AUGMENTS - Membrane - PART_OF - Virus -
LOCATION_OF - CD69 protein, human” can be split into
“SARS coronavirus RNA - AUGMENTS - Membrane,”

“Membrane - PART_OF - Virus,” and “Virus - LOCATION_OF
- CD69 protein, human.” Since the evidence scores for each
triple were 1, 2, and 3, respectively, the path had a confidence
score of 6.

Furthermore, to investigate the molecular features of potential
targets, the public gene expression data for transcriptome
profiling were obtained from The Cancer Genome Atlas (TCGA)
database. There were 59 normal lung tissues from
TCGA-LUAD. We downloaded the RNA sequencing data
(fragments per kilobase of transcript per million mapped reads
[FPKM] value) from TCGA. All of the RNA sequencing data
were adjusted for background adjustment and quantile
normalization with a robust multiarray averaging method in the
“affy” and “simpleaffy” packages.

We performed gene set enrichment analysis (GSEA) with GSEA
4.3.2 (UC San Diego and Broad Institute). The gene set of “C2:
curated gene sets [including Kyoto Encyclopedia of Genes and
Genomes (KEGG)]” was downloaded from the MSigDB
database. We set the nominal (NOM) at P<.05 and the
enrichment score (ES) at >0.2 or <−0.2 for statistical
significance to identify the difference in the biological process,
and the 5 sets with the highest ESs are shown in Figure 6.
According to the KEGG collection defined by MSigDB, some
potential targets were related, including the adherens junction,
primary immunodeficiency, and oxidative phosphorylation. The
raw data of differential gene expression are shown in Multimedia
Appendix 1.
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Table 4. Link prediction results for potential target discovery.

EvidenceExplanation pathaLink prediction result

PMIDb 18451981, 34323931,
and 33862647

SARS coronavirus RNA - AUGMENTS (1) - Membrane - PART_OF
(2) - Virus - LOCATION_OF (3) - CD69 protein, human

SARS coronavirus RNA - AFFECTS - CD69
protein, human

PMID 32720578, 33305554,
and 15890949

3C - like protease, SARS coronavirus - compared_with (1) - Hydroxy-
chloroquine - COEXISTS_WITH (61) - Pharmaceutical Preparations
- COEXISTS_WITH (22) - Endopeptidases

3C - like protease, SARS coronavirus - IN-
TERACTS_WITH - Endopeptidases

PMID 16797548, 12919893,
and 16893997

M protein, Coronavirus - CAUSES (1) - Apoptosis - AFFECTS (4) -
Severe Acute Respiratory Syndrome - PRODUCES (22) - M Protein,
multiple myeloma

M protein, Coronavirus - COEXISTS_WITH
- M Protein, multiple myeloma

PMID 32703328, 15271120,
and 33796097

SARS2 gene - CAUSES (1) - Disease - AFFECTS (357) - Patients -
LOCATION_OF (3) - TMPRSS2 gene

SARS2 gene - USES -TMPRSS2 gene

PMID 22291007, 34648284,
and 26038424

angiotensin converting enzyme 2 - LOCATION_OF (5) - Mutation -
AFFECTS (1) - RNA Recognition Motif - COEXISTS_WITH (10) -
M Protein, multiple myeloma

angiotensin converting enzyme 2 - INTER-
ACTS_WITH - M Protein, multiple myeloma

PMID 34185681, 34117116,
and 15631740

ACE2 protein, human - CAUSES (1) - Severe disorder - PROCESS_OF
(82) - Patients - LOCATION_OF (7) - anti - IgG

ACE2 protein, human - INHIBITS - anti -
IgG

PMID 15890949, 16928748,
and 15840526

Human coronavirus 229E - LOCATION_OF (1) - Replicon - PART_OF
(7) - SARS coronavirus - LOCATION_OF (164) - M Protein, multiple
myeloma

Human coronavirus 229E - INTER-
ACTS_WITH - M Protein, multiple myeloma

PMID 16734668, 32564046,
and 33243116

nucleocapsid protein, Coronavirus - AFFECTS (3) - Cells - LOCA-
TION_OF (9) - ACE2 gene - COEXISTS_WITH (24) - TMPRSS2
gene

nucleocapsid protein, Coronavirus - STIMU-
LATES - TMPRSS2 gene

PMID 33728680, 32980345,
and 33617712

Ataxia Telangiectasia Mutated Proteins - INTERACTS_WITH (1) -
ACE2 gene - LOCATION_OF (2) - receptor expression - PRO-
CESS_OF (1) - ACE2 protein, human

Ataxia Telangiectasia Mutated Proteins -
INTERACTS_WITH - ACE2 protein, human

PMID 34671200, 15837019,
and 34755492

AGTR1 gene - ASSOCIATED_WITH (1) - Infiltration - CAUSES (3)
- Severe Acute Respiratory Syndrome - PRODUCES (28) - angiotensin
converting enzyme 2

AGTR1 gene - STIMULATES - angiotensin
converting enzyme 2

PMID 21338626, 15640317,
and 14574997

stinging nettle lectin - DISRUPTS (1) - Severe Acute Respiratory
Syndrome - AFFECTS (1324) - Patients - LOCATION_OF (1) -
Coronavirus antibody

stinging nettle lectin -AFFECTS - Coron-
avirus antibody

PMID 34341659, 18050746,
and 16273643

Interferon Type I - COEXISTS_WITH (4) - Genes - INTER-
ACTS_WITH - Escherichia coli (4) - LOCATION_OF (3) - Spike
Glycoprotein, Coronavirus

Interferon Type I - INTERACTS_WITH -
Spike Glycoprotein, Coronavirus

aGiven the large amount of evidence, only 1 explanation path for each link prediction result is listed. “()” indicates the confidence score of each triple.
bPMID: PubMed ID.
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Figure 6. Gene set enrichment analysis of the discovered targets of coronaviruses. (A) ACE2; (B) TMPRSS2; (C) SARS; (D) SARS2; (E) ITGA2B;
(F) ATM; (G) AGTR1; (H) CD69; (I) ACE. The X-axis indicates the level of gene expression, and the Y-axis indicates the enrichment score. ACE:
angiotensin I converting enzyme; ACE2: angiotensin converting enzyme 2; AGTR1: angiotensin II receptor type 1; ATM: ATM serine/threonine kinase;
CD69: cluster of differentiation 69; ITGA2B: integrin subunit alpha 2b; TMPRSS2: transmembrane serine protease 2. For a higher-resolution version
of this figure, see Multimedia Appendix 2.

Drug Repurposing
By querying DrugBank, the recorded drugs having therapeutic
effects on “SARS-CoV-2,” “MERS-CoV,” and “SARS-CoV”
were “ritonavir,” “chloroquine,” “darunavir,” “lopinavir,”
“elbasvir,” “umifenovir,” “remdesivir,” “human interferon beta,”
“TMC-310911,” “N4-hydroxycytidine,” and “EIDD-2801.” To
explore the potential anticoronavirus drugs, 6 KG embedding
models were used to find drugs that are the most similar to the
above 11 drugs.

Figure 7 shows the prediction results visualized through a heat
map. It can be seen that all models consistently predicted the
highest similarity between “chloroquine” and
“hydroxychloroquine.”

To generate explanations for the predicted results, the predicted
drugs and coronaviruses were formed into a “query pair” to
obtain explanation paths, as shown in Table 5.
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Figure 7. Heatmap depicting the strength of the association between the drugs in DrugBank (vertical axis) and the prediction results (horizontal axis),
using the similarity calculation method. A darker color is associated with greater similarity between the corresponding 2 drugs.

Table 5. Potential drug explanation paths with evidence-based support.

EvidenceExplanation pathaQuery pair

PMIDb 34919258, 18380809,
and 17942563

Hydroxychloroquine - TREATS (24) - Disease - CAUSES (202) - Severe Acute
Respiratory Syndrome - COEXISTS_WITH (322) - Coronavirus Infections

Hydroxychloroquine - Coronavirus
Infections

PMID 33918670, 15780893,
and 14726162

Quinine - AFFECTS (3) - Virus Diseases - AFFECTS - Disease - AFFECTS
(680) - Coronavirus Infections

Quinine - Coronavirus Infections

PMID 32374457, 15262502,
and 34716096

Nelfinavir - AFFECTS (1) - Membrane Fusion - AFFECTS (8) - Glycoproteins
- PART_OF (1) - Human coronavirus

Nelfinavir - Human coronavirus

PMID 34269012, 34763510,
and 28616501

lopinavir/Ritonavir - COEXISTS_WITH (8) - arbidol - TREATS (2) - Pneumonia
- COEXISTS_WITH (3) - Middle East Respiratory Syndrome Coronavirus

Lopinavir/Ritonavir - Middle East
Respiratory Syndrome Coronavirus

PMID 33941899, 14975502,
and 16107218

Amodiaquine - ISA (2) - Antimalarials - AUGMENTS (1) - Apoptosis - AF-
FECTS (17) - SARS coronavirus

Amodiaquine - SARS coronavirus

PMID 32720571, 23434688,
and 15690493

Daclatasvir - ISA (2) - Pharmaceutical Preparations - AFFECTS (126) - Disease
- AFFECTS (680) - Coronavirus Infections

Daclatasvir - Coronavirus Infections

PMID 32752938, 33768439,
and 32845538

Tipranavir - INTERACTS_WITH (1) - Enzymes - AFFECTS (1) - Malignant
Neoplasms - COEXISTS_WITH (10) - Coronavirus Infections

Tipranavir - Coronavirus Infections

PMID 33360831, 34427335,
and 23532101

Telaprevir - ISA (2) - Pharmaceutical Preparations - AFFECTS (126) - Disease
- COEXISTS_WITH (1) - Coronavirus OC43, Human

Telaprevir - Coronavirus OC43,
Human

PMID 33373194, 23434688,
and 15690493

Boceprevir - ISA (2) - Pharmaceutical Preparations - AFFECTS (126) - Disease
- AFFECTS (680) - Coronavirus Infections

Boceprevir - Coronavirus Infections

PMID 33984267, 15739619,
and 25093995

Paritaprevir - ISA (2) - Pharmaceutical Preparations - STIMULATES (5) - In-
terferons - DISRUPTS (1) - Coronavirus Infections

Paritaprevir - Coronavirus Infections

PMID 33156364, 33504301,
and 32335561

Atazanavir - COEXISTS_WITH (1) - lopinavir - ISA (2) - Antiviral Agents -
TREATS (13) - Coronavirus Infections

Atazanavir - Coronavirus Infections

PMID 32923151 and
33525415

Azithromycin - COEXISTS_WITH (54) - Hydroxychloroquine - INTER-
ACTS_WITH (1) - Spike Glycoprotein, Coronavirus

Azithromycin - Spike Glycoprotein,
Coronavirus

PMID 32752938 and
33530371

Tipranavir - INTERACTS_WITH (1) - Enzymes - PART_OF (1) - Genus:
Coronavirus

Tipranavir - Genus: Coronavirus

aGiven the large amount of evidence, only 1 explanation path for each link prediction result is listed. “()” indicates the confidence score of each triple.
bPMID: PubMed ID.
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Discussion

Model Performance
The evidence-based analysis of the results showed that all
models adopted in this study could identify drugs and targets
for coronaviruses with KGs. Among them, TransR performed
the best in translational models and RESCAL performed the
best in semantic matching models. TransR optimized the
projection of complex relations and could well represent the
semantic connection between entities and relations. However,
owing to the large number of model parameters, it took the
longest training time compared with other models. RESCAL
took the shortest training time and showed the second best
performance on our data set. Although DistMult and ComplEx
were improved models of RESCAL, they did not fit our data
well from the experimental results. TransE, RotatE, DistMult,
and ComplEx performed poorly on MRR and Hits@k, but these
models were still able to predict most drugs and targets.

Knowledge Discovery

Unrecorded Mechanisms of Drug Action
We constructed CovKG by integrating multi-source knowledge
in a semantic way and identified 41 mechanisms of drug action
not recorded in DrugBank. We have discussed 3 mechanisms
of drug action in Table 2.

Colchicine-AFFECTS-Inflammatory Response

Colchicine has good therapeutic effects on myocardial
infarction, atherosclerosis, gout, etc. It can interfere with
multiple inflammatory pathways and attenuate the inflammatory
response through recruitment of neutrophils [50]. Some studies
have shown that colchicine may reduce the hospitalization rate,
the death rate, and the incidence of serious adverse events in
patients with COVID-19 [51].

Niclosamide-DISRUPTS-Virus Maturation

The main antiviral mechanism of niclosamide (NCL) involves
neutralizing endosomal pH and inhibiting viral protein
maturation. NCL exerts its anti-SARS-CoV-2 effect by blocking
the viral life cycle and inducing cytopathic effects [52]. In
addition, studies have shown that NCL has a significant
inhibitory effect on SARS-CoV [53]. Immunoblotting results
showed that the synthesis of viral antigen was completely
inhibited when NCL was used at a concentration of 1.56 μm.
NCL has been shown to have significant anti-inflammatory and
antiviral effects [54].

Methylprednisolone-AFFECTS-RNA Replication

A survival analysis of critical patients with COVID-19 treated
with methylprednisolone has been performed. Analysis of
clinical outcomes and laboratory results revealed significant
differences in recovery time and transfer to intensive care
between the experimental and control groups [55].
Methylprednisolone may be an effective treatment for critical
patients with COVID-19 [56]. Lung-protective ventilation and
methylprednisolone infusion therapy have also been certified
to be useful in the management of acute respiratory distress
syndrome in patients with severe MERS and SARS [57].
However, a retrospective study of patients with SARS showed

an overall increase in phosphatidylinositol and
lysophosphatidylinositol levels in recovered patients who had
received methylprednisolone. High-dose methylprednisolone
pulses may cause long-term systemic injury associated with
altered serum metabolism [58].

Potential Therapeutic Drugs
The Anatomical Therapeutic Chemical (ATC) classification
system, providing the therapeutic and pharmacological
classification of drugs, is the official drug classification system
of the World Health Organization [59]. Here, 11 coronavirus
drugs recorded in DrugBank and 18 potential therapeutic drugs
predicted by the KG embedding models have been discussed
combined with the ATC system. In the ATC system, the
predicted drugs are concentrated in 4 categories, namely, “P01B:
ANTIMALARIALS,” “J05A: DIRECT ACTING
ANTIVIRALS,” “J01F: MACROLIDES, LINCOSAMIDES
AND STREPTOGRAMINS,” and “L03A:
IMMUNOSTIMULANTS.” Most of the drugs are
“ANTIMALARIALS” or “DIRECT ACTING ANTIVIRALS.”
Drugs in the “ANTIMALARIALS” category include
hydroxychloroquine, quinine, amodiaquine, and chloroquine.
Drugs in the “DIRECT ACTING ANTIVIRALS” category
include nelfinavir, lopinavir, asunaprevir, fosamprenavir,
daclatasvir, tipranavir, telaprevir, boceprevir, ombitasvir,
paritaprevir, atazanavir, ritonavir, elbasvir, darunavir,
remdesivir, and umifenovir.

ANTIMALARIALS Category

Hydroxychloroquine, used to treat malaria and some
autoimmune disorders, was effective in inhibiting SARS-CoV-1
and SARS-CoV-2 infections in cell culture studies [60].
However, human clinical trials of hydroxychloroquine failed
to establish its effectiveness in the treatment of COVID-19, but
hydroxychloroquine and chloroquine may easily cause adverse
drug reactions [61]. Some recent studies have pointed out that
the extracts of quinine and Artemisia annua inhibit
SARS-CoV-2 infection [62,63]. Further studies would determine
in vivo efficacy to assess whether quinine and A. annua could
provide a cost-effective treatment for SARS-CoV-2 infection
[64].

DIRECT-ACTING ANTIVIRALS Category

The most concerned drugs in current research are lopinavir,
ritonavir, nelfinavir, and darunavir [65]. The combination of
lopinavir and ritonavir used to treat and prevent HIV infection
has been adopted in hospitals to treat COVID-19 [66]. However,
some randomized controlled trials found no evidence that
lopinavir and ritonavir are associated with improved mortality
or other clinical outcomes [67]. Several studies have shown that
the transient expression of the SARS CoV-2 S glycoprotein in
Vero cells leads to extensive cell fusion. Nelfinavir mesylate
(Viracept) significantly inhibited S-o-mediated cell fusion with
complete inhibition at a concentration of 10 μM. In addition,
nelfinavir may inhibit S proteolytic processing intracellularly
[68]. These results warrant further investigations of the potential
of nelfinavir mesylate to inhibit virus spread at early times after
the onset of the symptoms of SARS CoV-2 infection.
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We also found some drugs and corresponding genes associated
with coronavirus infection through link prediction. The RotatE
model predicted a high correlation between ivermectin and the
coronavirus. By using the evidence-based mechanism, we found
a study stating that ivermectin appears to be efficacious in
providing clinical benefits in the randomized treatment of
asymptomatic SARS-CoV-2–positive subjects, effectively
resulting in fewer symptoms, lower viral load, and reduced
hospital admissions [69]. Four linkage prediction models
predicted that asunaprevir could inhibit SARS gene expression.
Some studies have found that asunaprevir displays
broad-spectrum antiviral activity. Asunaprevir markedly
inhibited SARS-CoV-2–induced cytopathic effects in Vero E6
cells. Both the RNA and protein levels of SARS-CoV-2 were
significantly reduced after treatment with asunaprevir [70]. The
TransE model predicted that resveratrol has an effect on the
angiotensin converting enzyme 2 (ACE2) gene. Resveratrol has
been shown to mitigate the major pathways involved in the
pathogenesis of SARS-CoV-2, including modulation of the
renin-angiotensin system and expression of ACE2, stimulation
of the immune system, and downregulation of proinflammatory

cytokine release [71]. The TransE model predicted that
tylophorine could treat MERS-CoV. Several studies suggested
that tylophorine-based compounds exert broad spectrum and
potent inhibitory effects against coronaviruses. In previous
studies, combination treatment, wherein a tylophorine-based
compound targeted transmissible gastroenteritis virus and a
Janus kinase 2 (JAK2) inhibitor blocked the alternative dominant
nuclear factor κB (NF-κB) activation mediated by JAK2, was
more effective and comprehensive than either treatment alone,
and constituted a feasible approach for the treatment of
SARS-CoV and MERS-CoV infections [72]. After the outbreak
of COVID-19, 3 tylophorine-based compounds were further
examined for their antiviral activities on SARS-CoV-2, with
inhibition of SARS-CoV-2 at EC50 values of up to 2.5-14 nM
[73].

Potential Therapeutic Targets
Based on the link prediction models, 33 potential targets of
coronavirus infection were found. Here, we have discussed 3
common targets in model predictions. Figure 8 visually shows
the viruses, drugs, targets, and their interactions of interest in
this study.

Figure 8. Potential target discovery and drug repurposing for coronaviruses with knowledge graphs. The thickness of the edge between 2 entities
indicates the credibility of the triple.
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ACE2

The key link between the renin-angiotensin system and
COVID-19 is ACE2, which increases the tissue
anti-inflammatory response and has been reported to be the
primary host-cell receptor for 3 other coronaviruses, namely,
HCoV-NL63, SARS-CoV, and SARS-CoV-2 [74]. The
interaction between the SARS-CoV-2 spike-in protein and the
human receptor ACE2 is influenced by the disulfide-thiol
balance in the host cell, and both proteins contain several
cysteine residues. Because of an imbalance between reactive
oxygen/nitrogen species and antioxidants, the host cell redox
status would be affected [75]. Recent studies have shown that
vitamin D supplementation reduces oxidative stress and is
protective against viral infections, including COVID-19 [76].

TMPRSS2

Transmembrane serine protease 2 (TMPRSS2) efficiently
activates the SARS-CoV spike protein [77]. SARS-CoV cellular
receptors ACE2 and TMPRSS2 were co-expressed in type II
pneumocytes, which are important viral target cells, suggesting
that SARS S was cleaved by TMPRSS2 in the lungs of
SARS-CoV–infected individuals [78]. TMPRSS2 may
contribute to virus transmission and pathogenesis by neutralizing
antibodies to reduce virus recognition and activating SARS S
for cell-cell and virus-cell fusion [79]. Ribavirin inhibits the
TMPRSS2 enzyme, as measured by proteolytic activity, thereby
interfering with the expressions of TMPRSS2 and ACE2 [80].

M Protein

The M protein in coronaviruses plays an important role in viral
assembly by bringing together viral and host factors and making
the cell membrane the site for viral replication [81,82]. It has
been shown that MERS-CoV and SARS-CoV evade host
antiviral responses by using their M proteins to inhibit type I
IFN expression at the level of tbk1-dependent phosphorylation
and IRF3 activation [83,84]. M protein stabilized B-cell
lymphoma 2 (BCL-2) ovarian killer (BOK) by inhibiting its
ubiquitination and promoted BOK mitochondria translocation.
It activated the BOK-dependent apoptotic pathway and thus
exacerbated SARS-CoV-2–associated lung injury in vivo. These
findings suggest a proapoptotic role for M protein in
SARS-CoV-2 pathogenesis, which may provide potential targets
for the treatment of COVID-19 [85,86].

Limitations and Future Work
In this study, we used an off-the-shelf extraction tool to extract
relevant information from biomedical text. Thus, the
effectiveness of knowledge discovery depends to a certain extent
on the accuracy of the predications automatically extracted by
SemRep. The accuracy of SemRep in extracting triple relations
in the biomedical literature is about 60% [24]. Although
evidence-based mechanisms support checking the accuracy of

prediction results, inaccurate data still affect the performance
of predicted models. In future work, we will consider annotating
part of the biomedical text and training a predicate extraction
model based on this corpus to improve the automatic extraction
performance. Moreover, the source evidence of biomedical
knowledge could be further enriched with fine-grained
information. For example, different weights can be assigned
according to article types, such as randomized controlled trial,
review, and meta-analysis, to provide a better evidence base.

Through KG construction and a series of computational methods
proposed in this study, potential targets and candidate drugs
related to coronaviruses were found, but further laboratory
experiments and clinical assessments are still needed.

Conclusion
In this study, we proposed a heterogeneous knowledge
integration approach for potential target discovery and drug
repurposing for coronaviruses, using KGs. Different from
existing efforts that mainly focused on the knowledge of
COVID-19, we not only expanded the scope of the research
object to the entire coronavirus family, but also extracted
coronavirus-related knowledge of interest from the huge amount
of biomedical literature and realized knowledge integration with
2 authoritative knowledge bases (ie, DrugBank and GO). As
all these multi-source biomedical data were associated with
each other, it helps to improve the reusability of knowledge. To
discover unrecorded mechanisms of drug action as well as
potential targets and drug candidates, state-of-the-art KG
embedding models were evaluated. We identified 33 potential
targets and 18 drug candidates for coronaviruses, and the results
were validated and discussed with evidence-based support. The
approach proposed here is not specific to coronaviruses and can
be extended to other viruses or diseases for potential target
discovery and drug repurposing, and the knowledge of
PharmGKB, OpenTargets, and other typical databases can be
integrated to discover unrevealed underlying biomedical
knowledge with the improvement of the reusability of
knowledge on a larger scale.

Throughout the epidemiological histories of SARS, MERS, and
COVID-19, each outbreak has caused panic among human
beings and has had a huge impact on the economy.
Coronaviruses are constantly evolving, and it is unknown which
new coronavirus will emerge and when the next coronavirus
will sweep across the world. KG technologies and novel
computational methods are expected to discover the
pathogenicity and transmission mechanism of viruses. This
study provides a reference for the prevention and treatment of
diseases caused by coronaviruses, and the proposed methods
and research results are beneficial to promote the repurposing
of effective antiviral drugs.
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Enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes for potential targets.
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Multimedia Appendix 2
Gene set enrichment analysis of the discovered targets of coronaviruses. (A) ACE2; (B) TMPRSS2; (C) SARS; (D) SARS2; (E)
ITGA2B; (F) ATM; (G) AGTR1; (H) CD69; (I) ACE. The X-axis indicates the level of gene expression, and the Y-axis indicates
the enrichment score. ACE: angiotensin I converting enzyme; ACE2: angiotensin converting enzyme 2; AGTR1: angiotensin II
receptor type 1; ATM: ATM serine/threonine kinase; CD69: cluster of differentiation 69; ITGA2B: integrin subunit alpha 2b;
TMPRSS2: transmembrane serine protease 2.
[PNG File , 4320 KB-Multimedia Appendix 2]

References

1. Majumder J, Minko T. Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19. AAPS J 2021
Jan 05;23(1):14 [FREE Full text] [doi: 10.1208/s12248-020-00532-2] [Medline: 33400058]

2. Yüce M, Filiztekin E, Özkaya K. COVID-19 diagnosis -A review of current methods. Biosens Bioelectron 2021 Jan
15;172:112752 [FREE Full text] [doi: 10.1016/j.bios.2020.112752] [Medline: 33126180]

3. Fernandes Q, Inchakalody VP, Merhi M, Mestiri S, Taib N, Moustafa Abo El-Ella D, et al. Emerging COVID-19 variants
and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines. Ann Med 2022 Dec 08;54(1):524-540 [FREE Full
text] [doi: 10.1080/07853890.2022.2031274] [Medline: 35132910]

4. Schalk AF, Hawn MC. An apparently new respiratory disease of baby chicks. Journal of the American Veterinary Medical
Association 1931;78:413-423

5. Habas K, Nganwuchu C, Shahzad F, Gopalan R, Haque M, Rahman S, et al. Resolution of coronavirus disease 2019
(COVID-19). Expert Review of Anti-infective Therapy 2020 Aug 04;18(12):1201-1211 [doi:
10.1080/14787210.2020.1797487]

6. Sreepadmanabh M, Sahu AK, Chande A. COVID-19: Advances in diagnostic tools, treatment strategies, and vaccine
development. J Biosci 2020 Nov 24;45(1):148 [FREE Full text] [doi: 10.1007/s12038-020-00114-6] [Medline: 33410425]

7. Dai L, Zheng T, Xu K, Han Y, Xu L, Huang E, et al. A Universal Design of Betacoronavirus Vaccines against COVID-19,
MERS, and SARS. Cell 2020 Aug 06;182(3):722-733.e11 [FREE Full text] [doi: 10.1016/j.cell.2020.06.035] [Medline:
32645327]

8. Hussain A, Rafeeq H, Asif HM, Shabbir S, Bilal M, Mulla SI, et al. Current scenario of COVID-19 vaccinations and immune
response along with antibody titer in vaccinated inhabitants of different countries. Int Immunopharmacol 2021 Oct;99:108050
[FREE Full text] [doi: 10.1016/j.intimp.2021.108050] [Medline: 34426120]

9. Mouliou DS, Gourgoulianis KI. False-positive and false-negative COVID-19 cases: respiratory prevention and management
strategies, vaccination, and further perspectives. Expert Rev Respir Med 2021 Aug 25;15(8):993-1002 [FREE Full text]
[doi: 10.1080/17476348.2021.1917389] [Medline: 33896332]

10. Pradhan M, Shah K, Alexander A, Ajazuddin, Minz S, Singh MR, et al. COVID-19: clinical presentation and detection
methods. J Immunoassay Immunochem 2022 Jan 02;43(1):1951291 [doi: 10.1080/15321819.2021.1951291] [Medline:
34355645]

11. Ilkhani H, Hedayat N, Farhad S. Novel approaches for rapid detection of COVID-19 during the pandemic: A review. Anal
Biochem 2021 Dec 01;634:114362 [FREE Full text] [doi: 10.1016/j.ab.2021.114362] [Medline: 34478703]

12. Mahmoudinobar F, Britton D, Montclare J. Protein-based lateral flow assays for COVID-19 detection. Protein Eng Des
Sel 2021 Feb 15;34:gzab010 [FREE Full text] [doi: 10.1093/protein/gzab010] [Medline: 33991088]

J Med Internet Res 2023 | vol. 25 | e45225 | p. 16https://www.jmir.org/2023/1/e45225
(page number not for citation purposes)

Lou et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v25i1e45225_app1.docx&filename=53acf91554d72ba94dc5da5acf029f3d.docx
https://jmir.org/api/download?alt_name=jmir_v25i1e45225_app1.docx&filename=53acf91554d72ba94dc5da5acf029f3d.docx
https://jmir.org/api/download?alt_name=jmir_v25i1e45225_app2.png&filename=610c6fda47474559231889e2caef713e.png
https://jmir.org/api/download?alt_name=jmir_v25i1e45225_app2.png&filename=610c6fda47474559231889e2caef713e.png
https://europepmc.org/abstract/MED/33400058
http://dx.doi.org/10.1208/s12248-020-00532-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33400058&dopt=Abstract
https://europepmc.org/abstract/MED/33126180
http://dx.doi.org/10.1016/j.bios.2020.112752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33126180&dopt=Abstract
https://boris.unibe.ch/id/eprint/176178
https://boris.unibe.ch/id/eprint/176178
http://dx.doi.org/10.1080/07853890.2022.2031274
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35132910&dopt=Abstract
http://dx.doi.org/10.1080/14787210.2020.1797487
https://www.ias.ac.in/article/fulltext/jbsc/045/01/0148
http://dx.doi.org/10.1007/s12038-020-00114-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33410425&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0092-8674(20)30812-6
http://dx.doi.org/10.1016/j.cell.2020.06.035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32645327&dopt=Abstract
https://europepmc.org/abstract/MED/34426120
http://dx.doi.org/10.1016/j.intimp.2021.108050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34426120&dopt=Abstract
https://europepmc.org/abstract/MED/33896332
http://dx.doi.org/10.1080/17476348.2021.1917389
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33896332&dopt=Abstract
http://dx.doi.org/10.1080/15321819.2021.1951291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34355645&dopt=Abstract
https://europepmc.org/abstract/MED/34478703
http://dx.doi.org/10.1016/j.ab.2021.114362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34478703&dopt=Abstract
https://europepmc.org/abstract/MED/33991088
http://dx.doi.org/10.1093/protein/gzab010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33991088&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


13. Cheerkoot-Jalim S, Khedo KK. Literature-based discovery approaches for evidence-based healthcare: a systematic review.
Health Technol (Berl) 2021 Oct 25;11(6):1205-1217 [FREE Full text] [doi: 10.1007/s12553-021-00605-y] [Medline:
34722102]

14. Gopalakrishnan V, Jha K, Jin W, Zhang A. A survey on literature based discovery approaches in biomedical domain. J
Biomed Inform 2019 May;93:103141 [FREE Full text] [doi: 10.1016/j.jbi.2019.103141] [Medline: 30857950]

15. Lardos A, Aghaebrahimian A, Koroleva A, Sidorova J, Wolfram E, Anisimova M, et al. Computational Literature-based
Discovery for Natural Products Research: Current State and Future Prospects. Front Bioinform 2022 Mar 15;2:827207
[FREE Full text] [doi: 10.3389/fbinf.2022.827207] [Medline: 36304281]

16. Preiss J. Avoiding background knowledge: literature based discovery from important information. BMC Bioinformatics
2023 Mar 14;23(Suppl 9):570 [FREE Full text] [doi: 10.1186/s12859-022-04892-8] [Medline: 36918777]

17. Gao Z, Ding P, Xu R. KG-Predict: A knowledge graph computational framework for drug repurposing. J Biomed Inform
2022 Aug;132:104133 [FREE Full text] [doi: 10.1016/j.jbi.2022.104133] [Medline: 35840060]

18. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development.
Drug Discov Today 2021 Jan;26(1):80-93 [FREE Full text] [doi: 10.1016/j.drudis.2020.10.010] [Medline: 33099022]

19. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, et al. Applications of machine learning in drug discovery
and development. Nat Rev Drug Discov 2019 Jun 11;18(6):463-477 [FREE Full text] [doi: 10.1038/s41573-019-0024-5]
[Medline: 30976107]

20. Batool M, Ahmad B, Choi S. A Structure-Based Drug Discovery Paradigm. Int J Mol Sci 2019 Jun 06;20(11):2783 [FREE
Full text] [doi: 10.3390/ijms20112783] [Medline: 31174387]

21. Ratajczak F, Joblin M, Ringsquandl M, Hildebrandt M. Task-driven knowledge graph filtering improves prioritizing drugs
for repurposing. BMC Bioinformatics 2022 Mar 04;23(1):84 [FREE Full text] [doi: 10.1186/s12859-022-04608-y] [Medline:
35246025]

22. Ioannidis, Vassilis N. DRKG - Drug Repurposing Knowledge Graph for Covid-19. GitHub. 2020. URL: https://github.com/
gnn4dr/DRKG/ [accessed 2022-05-05]

23. Zhu H, Wang X, Jiang Y, Fan H, Du B, Liu Q. FTRLIM: Distributed Instance Matching Framework for Large-Scale
Knowledge Graph Fusion. Entropy (Basel) 2021 May 13;23(5):602 [FREE Full text] [doi: 10.3390/e23050602] [Medline:
34068208]

24. MacLean F. Knowledge graphs and their applications in drug discovery. Expert Opin Drug Discov 2021 Sep
12;16(9):1057-1069 [doi: 10.1080/17460441.2021.1910673] [Medline: 33843398]

25. Zhang R, Hristovski D, Schutte D, Kastrin A, Fiszman M, Kilicoglu H. Drug repurposing for COVID-19 via knowledge
graph completion. J Biomed Inform 2021 Mar;115:103696 [FREE Full text] [doi: 10.1016/j.jbi.2021.103696] [Medline:
33571675]

26. Ochani R, Asad A, Yasmin F, Shaikh S, Khalid H, Batra S, et al. COVID-19 pandemic: from origins to outcomes. A
comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management. Infez Med
2021 Mar 01;29(1):20-36 [FREE Full text] [Medline: 33664170]

27. Salian VS, Wright JA, Vedell PT, Nair S, Li C, Kandimalla M, et al. COVID-19 Transmission, Current Treatment, and
Future Therapeutic Strategies. Mol Pharm 2021 Mar 01;18(3):754-771 [doi: 10.1021/acs.molpharmaceut.0c00608] [Medline:
33464914]

28. V'kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2.
Nat Rev Microbiol 2021 Mar 28;19(3):155-170 [FREE Full text] [doi: 10.1038/s41579-020-00468-6] [Medline: 33116300]

29. White J. PubMed 2.0. Med Ref Serv Q 2020 Oct 21;39(4):382-387 [doi: 10.1080/02763869.2020.1826228] [Medline:
33085945]

30. Wishart D, Feunang Y, Guo A, Lo E, Marcu A, Grant J, et al. DrugBank 5.0: a major update to the DrugBank database for
2018. Nucleic Acids Res 2018 Jan 04;46(D1):D1074-D1082 [FREE Full text] [doi: 10.1093/nar/gkx1037] [Medline:
29126136]

31. Gene Ontology Consortium T. Gene Ontology Consortium: going forward. Nucleic Acids Res 2015 Jan 26;43(Database
issue):D1049-D1056 [FREE Full text] [doi: 10.1093/nar/gku1179] [Medline: 25428369]

32. Kilicoglu H, Rosemblat G, Fiszman M, Shin D. Broad-coverage biomedical relation extraction with SemRep. BMC
Bioinformatics 2020 May 14;21(1):188 [FREE Full text] [doi: 10.1186/s12859-020-3517-7] [Medline: 32410573]

33. Schuyler PL, Hole WT, Tuttle MS, Sherertz DD. The UMLS Metathesaurus: representing different views of biomedical
concepts. Bull Med Libr Assoc 1993 Apr;81(2):217-222 [FREE Full text] [Medline: 8472007]

34. Kashyap V. The UMLS Semantic Network and the Semantic Web. AMIA Annu Symp Proc 2003;2003:351-355 [FREE
Full text] [Medline: 14728193]

35. Rada EC, Andreottola G. RDF/SRF: which perspective for its future in the EU. Waste Manag 2012 Jun;32(6):1059-1060
[doi: 10.1016/j.wasman.2012.02.017] [Medline: 22524950]

36. RDFLib documentation. RDFLib. URL: https://rdflib.readthedocs.io/en/stable/index.html [accessed 2022-05-12]
37. GraphDB. URL: https://graphdb.ontotext.com [accessed 2022-05-10]
38. Bordes A, Usunier N, Garcia-Durán A, Weston J, Yakhnenko O. Translating embeddings for modeling multi-relational

data. In: NIPS'13: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume

J Med Internet Res 2023 | vol. 25 | e45225 | p. 17https://www.jmir.org/2023/1/e45225
(page number not for citation purposes)

Lou et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://europepmc.org/abstract/MED/34722102
http://dx.doi.org/10.1007/s12553-021-00605-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34722102&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(19)30059-0
http://dx.doi.org/10.1016/j.jbi.2019.103141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30857950&dopt=Abstract
https://europepmc.org/abstract/MED/36304281
http://dx.doi.org/10.3389/fbinf.2022.827207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36304281&dopt=Abstract
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04892-8
http://dx.doi.org/10.1186/s12859-022-04892-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36918777&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(22)00149-6
http://dx.doi.org/10.1016/j.jbi.2022.104133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35840060&dopt=Abstract
https://europepmc.org/abstract/MED/33099022
http://dx.doi.org/10.1016/j.drudis.2020.10.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33099022&dopt=Abstract
https://europepmc.org/abstract/MED/30976107
http://dx.doi.org/10.1038/s41573-019-0024-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30976107&dopt=Abstract
https://www.mdpi.com/resolver?pii=ijms20112783
https://www.mdpi.com/resolver?pii=ijms20112783
http://dx.doi.org/10.3390/ijms20112783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31174387&dopt=Abstract
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04608-y
http://dx.doi.org/10.1186/s12859-022-04608-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35246025&dopt=Abstract
https://github.com/gnn4dr/DRKG/
https://github.com/gnn4dr/DRKG/
https://www.mdpi.com/resolver?pii=e23050602
http://dx.doi.org/10.3390/e23050602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34068208&dopt=Abstract
http://dx.doi.org/10.1080/17460441.2021.1910673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33843398&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(21)00025-3
http://dx.doi.org/10.1016/j.jbi.2021.103696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33571675&dopt=Abstract
https://www.infezmed.it/index.php/article?Anno=2021&numero=1&ArticoloDaVisualizzare=Vol_29_1_2021_20
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33664170&dopt=Abstract
http://dx.doi.org/10.1021/acs.molpharmaceut.0c00608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33464914&dopt=Abstract
https://europepmc.org/abstract/MED/33116300
http://dx.doi.org/10.1038/s41579-020-00468-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33116300&dopt=Abstract
http://dx.doi.org/10.1080/02763869.2020.1826228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33085945&dopt=Abstract
https://europepmc.org/abstract/MED/29126136
http://dx.doi.org/10.1093/nar/gkx1037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29126136&dopt=Abstract
https://europepmc.org/abstract/MED/25428369
http://dx.doi.org/10.1093/nar/gku1179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25428369&dopt=Abstract
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-3517-7
http://dx.doi.org/10.1186/s12859-020-3517-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32410573&dopt=Abstract
https://europepmc.org/abstract/MED/8472007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8472007&dopt=Abstract
https://europepmc.org/abstract/MED/14728193
https://europepmc.org/abstract/MED/14728193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14728193&dopt=Abstract
http://dx.doi.org/10.1016/j.wasman.2012.02.017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22524950&dopt=Abstract
https://rdflib.readthedocs.io/en/stable/index.html
https://graphdb.ontotext.com
http://www.w3.org/Style/XSL
http://www.renderx.com/


2. 2013 Presented at: 26th International Conference on Neural Information Processing Systems; December 5-10, 2013;
Lake Tahoe, Nevada [doi: 10.5555/2999792.2999923]

39. Lin Y, Liu Z, Sun M, Liu Y, Zhu X. Learning entity and relation embeddings for knowledge graph completion. In: AAAI'15:
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015 Presented at: Twenty-Ninth AAAI
Conference on Artificial Intelligence; January 25-30, 2015; Austin, Texas [doi: 10.5555/2886521.2886624]

40. Sun Z, Deng ZH, Nie JY, Tang J. RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space. arXiv.
2019. URL: https://arxiv.org/pdf/1902.10197.pdf [accessed 2023-09-27]

41. Nickel M, Tresp V, Kriegel HP. A three-way model for collective learning on multi-relational data. In: ICML'11: Proceedings
of the 28th International Conference on International Conference on Machine Learning. 2011 Presented at: 28th International
Conference on International Conference on Machine Learning; June 28, 2011-July 2, 2011; Bellevue, Washington p.
809-816 [doi: 10.5555/3104482.3104584]

42. Yang B, Yih W, He X, Gao J, Deng L. Embedding entities and relations for learning and inference in knowledge bases.
arXiv. 2015. URL: https://arxiv.org/pdf/1412.6575.pdf [accessed 2023-09-27]

43. Trouillon T, Welbl J, Riedel S, Gaussier E, Bouchard G. Complex Embeddings for Simple Link Prediction. arXiv. 2016.
URL: https://arxiv.org/pdf/1606.06357.pdf [accessed 2023-09-27]

44. Zhou T. Progresses and challenges in link prediction. iScience 2021 Nov 19;24(11):103217 [FREE Full text] [doi:
10.1016/j.isci.2021.103217] [Medline: 34746694]

45. Huang L, Luo H, Li S, Wu F, Wang J. Drug-drug similarity measure and its applications. Brief Bioinform 2021 Jul
20;22(4):bbaa265 [doi: 10.1093/bib/bbaa265] [Medline: 33152756]

46. McCoy K, Gudapati S, He L, Horlander E, Kartchner D, Kulkarni S, et al. Biomedical Text Link Prediction for Drug
Discovery: A Case Study with COVID-19. Pharmaceutics 2021 May 26;13(6):794 [FREE Full text] [doi:
10.3390/pharmaceutics13060794] [Medline: 34073456]

47. Lu Y, Guo Y, Korhonen A. Link prediction in drug-target interactions network using similarity indices. BMC Bioinformatics
2017 Jan 17;18(1):39 [FREE Full text] [doi: 10.1186/s12859-017-1460-z] [Medline: 28095781]

48. He C, Duan L, Zheng H, Song L, Huang M. An explainable framework for drug repositioning from disease information
network. Neurocomputing 2022 Oct;511:247-258 [doi: 10.1016/j.neucom.2022.09.063]

49. Islam MK, Amaya-Ramirez D, Maigret B, Devignes M, Aridhi S, Smaïl-Tabbone M. Molecular-evaluated and explainable
drug repurposing for COVID-19 using ensemble knowledge graph embedding. Sci Rep 2023 Mar 04;13(1):3643 [FREE
Full text] [doi: 10.1038/s41598-023-30095-z] [Medline: 36871056]

50. Angelidis C, Kotsialou Z, Kossyvakis C, Vrettou A, Zacharoulis A, Kolokathis F, et al. Colchicine Pharmacokinetics and
Mechanism of Action. Curr Pharm Des 2018 May 10;24(6):659-663 [doi: 10.2174/1381612824666180123110042] [Medline:
29359661]

51. Mikolajewska A, Fischer A, Piechotta V, Mueller A, Metzendorf M, Becker M, et al. Colchicine for the treatment of
COVID-19. Cochrane Database Syst Rev 2021 Oct 18;10(10):CD015045 [FREE Full text] [doi:
10.1002/14651858.CD015045] [Medline: 34658014]

52. Wu C, Jan J, Chen C, Hsieh H, Hwang D, Liu H, et al. Inhibition of Severe Acute Respiratory Syndrome Coronavirus
Replication by Niclosamide. Antimicrob Agents Chemother 2004 Jul;48(7):2693-2696 [doi:
10.1128/aac.48.7.2693-2696.2004]

53. De Clercq E. Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert Rev Anti Infect Ther
2006 Apr 10;4(2):291-302 [FREE Full text] [doi: 10.1586/14787210.4.2.291] [Medline: 16597209]

54. Al-Kuraishy H, Al-Gareeb AI, Alzahrani KJ, Alexiou A, Batiha GE. Niclosamide for Covid-19: bridging the gap. Mol Biol
Rep 2021 Dec 18;48(12):8195-8202 [FREE Full text] [doi: 10.1007/s11033-021-06770-7] [Medline: 34664162]

55. Pinzón M, Ortiz S, Holguín H, Betancur JF, Cardona Arango D, Laniado H, et al. Dexamethasone vs methylprednisolone
high dose for Covid-19 pneumonia. PLoS One 2021 May 25;16(5):e0252057 [FREE Full text] [doi:
10.1371/journal.pone.0252057] [Medline: 34033648]

56. Khalid I, Alraddadi BM, Dairi Y, Khalid TJ, Kadri M, Alshukairi AN, et al. Acute Management and Long-Term Survival
Among Subjects With Severe Middle East Respiratory Syndrome Coronavirus Pneumonia and ARDS. Respir Care 2016
Mar 23;61(3):340-348 [FREE Full text] [doi: 10.4187/respcare.04325] [Medline: 26701365]

57. Lau A, So L, Miu F, Yung R, Poon E, Cheung T, et al. Outcome of coronavirus-associated severe acute respiratory syndrome
using a standard treatment protocol. Respirology 2004 Jun;9(2):173-183 [FREE Full text] [doi:
10.1111/j.1440-1843.2004.00588.x] [Medline: 15182266]

58. Wu Q, Zhou L, Sun X, Yan Z, Hu C, Wu J, et al. Altered Lipid Metabolism in Recovered SARS Patients Twelve Years
after Infection. Sci Rep 2017 Aug 22;7(1):9110 [FREE Full text] [doi: 10.1038/s41598-017-09536-z] [Medline: 28831119]

59. Bodenreider O, Rodriguez L. Analyzing U.S. prescription lists with RxNorm and the ATC/DDD Index. AMIA Annu Symp
Proc 2014;2014:297-306 [FREE Full text] [Medline: 25954332]

60. Bansal P, Goyal A, Cusick A, Lahan S, Dhaliwal HS, Bhyan P, et al. Hydroxychloroquine: a comprehensive review and
its controversial role in coronavirus disease 2019. Ann Med 2021 Dec 02;53(1):117-134 [FREE Full text] [doi:
10.1080/07853890.2020.1839959] [Medline: 33095083]

J Med Internet Res 2023 | vol. 25 | e45225 | p. 18https://www.jmir.org/2023/1/e45225
(page number not for citation purposes)

Lou et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.5555/2999792.2999923
http://dx.doi.org/10.5555/2886521.2886624
https://arxiv.org/pdf/1902.10197.pdf
http://dx.doi.org/10.5555/3104482.3104584
https://arxiv.org/pdf/1412.6575.pdf
https://arxiv.org/pdf/1606.06357.pdf
https://linkinghub.elsevier.com/retrieve/pii/S2589-0042(21)01185-8
http://dx.doi.org/10.1016/j.isci.2021.103217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34746694&dopt=Abstract
http://dx.doi.org/10.1093/bib/bbaa265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33152756&dopt=Abstract
https://www.mdpi.com/resolver?pii=pharmaceutics13060794
http://dx.doi.org/10.3390/pharmaceutics13060794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34073456&dopt=Abstract
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1460-z
http://dx.doi.org/10.1186/s12859-017-1460-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28095781&dopt=Abstract
http://dx.doi.org/10.1016/j.neucom.2022.09.063
https://doi.org/10.1038/s41598-023-30095-z
https://doi.org/10.1038/s41598-023-30095-z
http://dx.doi.org/10.1038/s41598-023-30095-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36871056&dopt=Abstract
http://dx.doi.org/10.2174/1381612824666180123110042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29359661&dopt=Abstract
https://europepmc.org/abstract/MED/34658014
http://dx.doi.org/10.1002/14651858.CD015045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34658014&dopt=Abstract
http://dx.doi.org/10.1128/aac.48.7.2693-2696.2004
https://europepmc.org/abstract/MED/16597209
http://dx.doi.org/10.1586/14787210.4.2.291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16597209&dopt=Abstract
https://europepmc.org/abstract/MED/34664162
http://dx.doi.org/10.1007/s11033-021-06770-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34664162&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0252057
http://dx.doi.org/10.1371/journal.pone.0252057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34033648&dopt=Abstract
http://rc.rcjournal.com/lookup/pmidlookup?view=short&pmid=26701365
http://dx.doi.org/10.4187/respcare.04325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26701365&dopt=Abstract
https://europepmc.org/abstract/MED/15182266
http://dx.doi.org/10.1111/j.1440-1843.2004.00588.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15182266&dopt=Abstract
https://doi.org/10.1038/s41598-017-09536-z
http://dx.doi.org/10.1038/s41598-017-09536-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28831119&dopt=Abstract
https://europepmc.org/abstract/MED/25954332
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25954332&dopt=Abstract
https://europepmc.org/abstract/MED/33095083
http://dx.doi.org/10.1080/07853890.2020.1839959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33095083&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


61. Self WH, Semler MW, Leither LM. Effect of Hydroxychloroquine on Clinical Status at 14 Days in Hospitalized Patients
With COVID-19: A Randomized Clinical Trial. JAMA 2020 Dec 01;324(21):2165-2176 [FREE Full text] [doi:
10.1001/jama.2020.22240] [Medline: 33165621]

62. Große M, Ruetalo N, Layer M, Hu D, Businger R, Rheber S, et al. Quinine Inhibits Infection of Human Cell Lines with
SARS-CoV-2. Viruses 2021 Apr 09;13(4):647 [FREE Full text] [doi: 10.3390/v13040647] [Medline: 33918670]

63. Fuzimoto AD. An overview of the anti-SARS-CoV-2 properties of Artemisia annua, its antiviral action, protein-associated
mechanisms, and repurposing for COVID-19 treatment. J Integr Med 2021 Sep;19(5):375-388 [FREE Full text] [doi:
10.1016/j.joim.2021.07.003] [Medline: 34479848]

64. Stipa P, Marano S, Galeazzi R, Minnelli C, Laudadio E. Molecular dynamics simulations of quinine encapsulation into
biodegradable nanoparticles: A possible new strategy against Sars-CoV-2. Eur Polym J 2021 Sep 05;158:110685 [FREE
Full text] [doi: 10.1016/j.eurpolymj.2021.110685] [Medline: 34366437]

65. Ng TI, Correia I, Seagal J, DeGoey DA, Schrimpf MR, Hardee DJ, et al. Antiviral Drug Discovery for the Treatment of
COVID-19 Infections. Viruses 2022 May 04;14(5):961 [FREE Full text] [doi: 10.3390/v14050961] [Medline: 35632703]

66. Croxtall JD, Perry CM. Lopinavir/Ritonavir: a review of its use in the management of HIV-1 infection. Drugs 2010 Oct
01;70(14):1885-1915 [doi: 10.2165/11204950-000000000-00000] [Medline: 20836579]

67. Magro P, Zanella I, Pescarolo M, Castelli F, Quiros-Roldan E. Lopinavir/ritonavir: Repurposing an old drug for HIV
infection in COVID-19 treatment. Biomed J 2021 Mar;44(1):43-53 [FREE Full text] [doi: 10.1016/j.bj.2020.11.005]
[Medline: 33608241]

68. Musarrat F, Chouljenko V, Dahal A, Nabi R, Chouljenko T, Jois SD, et al. The anti-HIV drug nelfinavir mesylate (Viracept)
is a potent inhibitor of cell fusion caused by the SARSCoV-2 spike (S) glycoprotein warranting further evaluation as an
antiviral against COVID-19 infections. J Med Virol 2020 Oct 17;92(10):2087-2095 [FREE Full text] [doi: 10.1002/jmv.25985]
[Medline: 32374457]

69. Bryant A, Lawrie T, Dowswell T, Fordham E, Mitchell S, Hill S, et al. Ivermectin for Prevention and Treatment of COVID-19
Infection: A Systematic Review, Meta-analysis, and Trial Sequential Analysis to Inform Clinical Guidelines. Am J Ther
2021 Jun 21;28(4):e434-e460 [FREE Full text] [doi: 10.1097/MJT.0000000000001402] [Medline: 34145166]

70. Lim Y, Nguyen LP, Lee G, Lee S, Lyoo K, Kim B, et al. Asunaprevir, a Potent Hepatitis C Virus Protease Inhibitor, Blocks
SARS-CoV-2 Propagation. Mol Cells 2021 Sep 30;44(9):688-695 [FREE Full text] [doi: 10.14348/molcells.2021.0076]
[Medline: 34518443]

71. de Ligt M, Hesselink MKC, Jorgensen J, Hoebers N, Blaak EE, Goossens GH. Resveratrol supplementation reduces ACE2
expression in human adipose tissue. Adipocyte 2021 Dec 17;10(1):408-411 [FREE Full text] [doi:
10.1080/21623945.2021.1965315] [Medline: 34402717]

72. Wang Z, Ye F, Feng Y, Xiao W, Song H, Zhao L, et al. Discovery and Nanosized Preparations of (,)-Tylophorine Malate
as Novel anti-SARS-CoV-2 Agents. ACS Med Chem Lett 2021 Nov 11;12(11):1838-1844 [FREE Full text] [doi:
10.1021/acsmedchemlett.1c00481] [Medline: 34745429]

73. Yang C, Lee Y, Hsu H, Jan J, Lin Y, Chang S, et al. Inhibition of SARS-CoV-2 by Highly Potent Broad-Spectrum
Anti-Coronaviral Tylophorine-Based Derivatives. Front Pharmacol 2020 Dec 14;11:606097 [FREE Full text] [doi:
10.3389/fphar.2020.606097] [Medline: 33519469]

74. Pedrosa M, Valenzuela R, Garrido-Gil P, Labandeira C, Navarro G, Franco R, et al. Experimental data using candesartan
and captopril indicate no double-edged sword effect in COVID-19. Clin Sci (Lond) 2021 Feb 12;135(3):465-481 [FREE
Full text] [doi: 10.1042/CS20201511] [Medline: 33479758]

75. Beacon TH, Delcuve GP, Davie JR. Epigenetic regulation of ACE2, the receptor of the SARS-CoV-2 virus. Genome 2021
Apr;64(4):386-399 [FREE Full text] [doi: 10.1139/gen-2020-0124] [Medline: 33086021]

76. Abdrabbo M, Birch CM, Brandt M. Vitamin D and COVID-19: A review on the role of vitamin D in preventing and reducing
the severity of COVID-19 infection. Protein Sci 2021 Nov 04;30(11):2206-2220 [FREE Full text] [doi: 10.1002/pro.4190]
[Medline: 34558135]

77. Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. Efficient Activation of the Severe Acute Respiratory
Syndrome Coronavirus Spike Protein by the Transmembrane Protease TMPRSS2. J Virol 2010 Dec 15;84(24):12658-12664
[doi: 10.1128/jvi.01542-10]

78. Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, et al. Evidence that TMPRSS2 Activates the Severe
Acute Respiratory Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral Control by the Humoral
Immune Response. J Virol 2011 May;85(9):4122-4134 [doi: 10.1128/jvi.02232-10]

79. Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A Transmembrane Serine Protease Is Linked
to the Severe Acute Respiratory Syndrome Coronavirus Receptor and Activates Virus Entry. J Virol 2011 Jan
15;85(2):873-882 [doi: 10.1128/jvi.02062-10]

80. Unal MA, Bitirim CV, Summak GY, Bereketoglu S, Cevher Zeytin I, Besbinar O, et al. Ribavirin shows antiviral activity
against SARS-CoV-2 and downregulates the activity of TMPRSS2 and the expression of ACE2 in vitro. Can J Physiol
Pharmacol 2021 May;99(5):449-460 [FREE Full text] [doi: 10.1139/cjpp-2020-0734] [Medline: 33689451]

81. Malik YA. Properties of Coronavirus and SARS-CoV-2. Malays J Pathol 2020 Apr;42(1):3-11 [FREE Full text] [Medline:
32342926]

J Med Internet Res 2023 | vol. 25 | e45225 | p. 19https://www.jmir.org/2023/1/e45225
(page number not for citation purposes)

Lou et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://europepmc.org/abstract/MED/33165621
http://dx.doi.org/10.1001/jama.2020.22240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33165621&dopt=Abstract
https://www.mdpi.com/resolver?pii=v13040647
http://dx.doi.org/10.3390/v13040647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33918670&dopt=Abstract
https://europepmc.org/abstract/MED/34479848
http://dx.doi.org/10.1016/j.joim.2021.07.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34479848&dopt=Abstract
https://europepmc.org/abstract/MED/34366437
https://europepmc.org/abstract/MED/34366437
http://dx.doi.org/10.1016/j.eurpolymj.2021.110685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34366437&dopt=Abstract
https://www.mdpi.com/resolver?pii=v14050961
http://dx.doi.org/10.3390/v14050961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35632703&dopt=Abstract
http://dx.doi.org/10.2165/11204950-000000000-00000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20836579&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2319-4170(20)30203-1
http://dx.doi.org/10.1016/j.bj.2020.11.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33608241&dopt=Abstract
https://europepmc.org/abstract/MED/32374457
http://dx.doi.org/10.1002/jmv.25985
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32374457&dopt=Abstract
https://europepmc.org/abstract/MED/34145166
http://dx.doi.org/10.1097/MJT.0000000000001402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34145166&dopt=Abstract
https://europepmc.org/abstract/MED/34518443
http://dx.doi.org/10.14348/molcells.2021.0076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34518443&dopt=Abstract
https://europepmc.org/abstract/MED/34402717
http://dx.doi.org/10.1080/21623945.2021.1965315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34402717&dopt=Abstract
https://europepmc.org/abstract/MED/34745429
http://dx.doi.org/10.1021/acsmedchemlett.1c00481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34745429&dopt=Abstract
https://europepmc.org/abstract/MED/33519469
http://dx.doi.org/10.3389/fphar.2020.606097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33519469&dopt=Abstract
https://europepmc.org/abstract/MED/33479758
https://europepmc.org/abstract/MED/33479758
http://dx.doi.org/10.1042/CS20201511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33479758&dopt=Abstract
https://cdnsciencepub.com/doi/abs/10.1139/gen-2020-0124?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1139/gen-2020-0124
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33086021&dopt=Abstract
https://europepmc.org/abstract/MED/34558135
http://dx.doi.org/10.1002/pro.4190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34558135&dopt=Abstract
http://dx.doi.org/10.1128/jvi.01542-10
http://dx.doi.org/10.1128/jvi.02232-10
http://dx.doi.org/10.1128/jvi.02062-10
https://cdnsciencepub.com/doi/abs/10.1139/cjpp-2020-0734?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1139/cjpp-2020-0734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33689451&dopt=Abstract
http://www.mjpath.org.my/2020/v42n1/properties-of-coronavirus.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32342926&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


82. Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. A structural analysis of M protein in coronavirus
assembly and morphology. J Struct Biol 2011 Apr;174(1):11-22 [FREE Full text] [doi: 10.1016/j.jsb.2010.11.021] [Medline:
21130884]

83. Perrier A, Bonnin A, Desmarets L, Danneels A, Goffard A, Rouillé Y, et al. The C-terminal domain of the MERS coronavirus
M protein contains a trans-Golgi network localization signal. Journal of Biological Chemistry 2019 Sep;294(39):14406-14421
[doi: 10.1074/jbc.ra119.008964]

84. Marra MA, Jones SJM, Astell CR. The Genome sequence of the SARS-associated coronavirus. Science 2003 May
30;300(5624):1399-1404 [doi: 10.1126/science.1085953] [Medline: 12730501]

85. Yang Y, Wu Y, Meng X, Wang Z, Younis M, Liu Y, et al. SARS-CoV-2 membrane protein causes the mitochondrial
apoptosis and pulmonary edema via targeting BOK. Cell Death Differ 2022 Jul 12;29(7):1395-1408 [FREE Full text] [doi:
10.1038/s41418-022-00928-x] [Medline: 35022571]

86. Lu S, Ye Q, Singh D, Cao Y, Diedrich JK, Yates JR, et al. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually
exclusive condensates with RNA and the membrane-associated M protein. Nat Commun 2021 Jan 21;12(1):502 [FREE
Full text] [doi: 10.1038/s41467-020-20768-y] [Medline: 33479198]

87. CovKG. GitHub. URL: https://github.com/loupei/CovKG [accessed 2023-09-29]

Abbreviations
AbID: abstract ID
ACE2: angiotensin converting enzyme 2
ATC: Anatomical Therapeutic Chemical
BOK: B-cell lymphoma 2 ovarian killer
CovKG: coronavirus knowledge graph
CUI: concept unique identifier
ES: enrichment score
GO: Gene Ontology
GSEA: gene set enrichment analysis
JAK2: Janus kinase 2
KEGG: Kyoto Encyclopedia of Genes and Genomes
KG: knowledge graph
MERS: Middle East respiratory syndrome
MERS-CoV: Middle East respiratory syndrome coronavirus
MRR: mean reciprocal rank
NCL: niclosamide
PMID: PubMed ID
RDF: Resource Description Framework
SARS: severe acute respiratory syndrome
SARS-CoV: severe acute respiratory syndrome coronavirus
TCGA: The Cancer Genome Atlas
TiID: title ID
TMPRSS2: transmembrane serine protease 2
UMLS: Unified Medical Language System

Edited by A Mavragani; submitted 21.12.22; peer-reviewed by Y Li, Y Liu, Z Gao, F Ratajczak; comments to author 27.07.23; revised
version received 30.08.23; accepted 22.09.23; published 20.10.23

Please cite as:
Lou P, Fang A, Zhao W, Yao K, Yang Y, Hu J
Potential Target Discovery and Drug Repurposing for Coronaviruses: Study Involving a Knowledge Graph–Based Approach
J Med Internet Res 2023;25:e45225
URL: https://www.jmir.org/2023/1/e45225
doi: 10.2196/45225
PMID: 37862061

©Pei Lou, An Fang, Wanqing Zhao, Kuanda Yao, Yusheng Yang, Jiahui Hu. Originally published in the Journal of Medical
Internet Research (https://www.jmir.org), 20.10.2023. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

J Med Internet Res 2023 | vol. 25 | e45225 | p. 20https://www.jmir.org/2023/1/e45225
(page number not for citation purposes)

Lou et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://europepmc.org/abstract/MED/21130884
http://dx.doi.org/10.1016/j.jsb.2010.11.021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21130884&dopt=Abstract
http://dx.doi.org/10.1074/jbc.ra119.008964
http://dx.doi.org/10.1126/science.1085953
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12730501&dopt=Abstract
https://europepmc.org/abstract/MED/35022571
http://dx.doi.org/10.1038/s41418-022-00928-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35022571&dopt=Abstract
https://doi.org/10.1038/s41467-020-20768-y
https://doi.org/10.1038/s41467-020-20768-y
http://dx.doi.org/10.1038/s41467-020-20768-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33479198&dopt=Abstract
https://github.com/loupei/CovKG
https://www.jmir.org/2023/1/e45225
http://dx.doi.org/10.2196/45225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37862061&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly
cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright
and license information must be included.

J Med Internet Res 2023 | vol. 25 | e45225 | p. 21https://www.jmir.org/2023/1/e45225
(page number not for citation purposes)

Lou et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

