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Abstract

Background: Medication noncompliance is a critical issue because of the increased number of drugs sold on the web. Web-based
drug distribution is difficult to control, causing problems such as drug noncompliance and abuse. The existing medication
compliance surveys lack completeness because it is impossible to cover patients who do not go to the hospital or provide accurate
information to their doctors, so a social media–based approach is being explored to collect information about drug use. Social
media data, which includes information on drug usage by users, can be used to detect drug abuse and medication compliance in
patients.

Objective: This study aimed to assess how the structural similarity of drugs affects the efficiency of machine learning models
for text classification of drug noncompliance.

Methods: This study analyzed 22,022 tweets about 20 different drugs. The tweets were labeled as either noncompliant use or
mention, noncompliant sales, general use, or general mention. The study compares 2 methods for training machine learning
models for text classification: single-sub-corpus transfer learning, in which a model is trained on tweets about a single drug and
then tested on tweets about other drugs, and multi-sub-corpus incremental learning, in which models are trained on tweets about
drugs in order of their structural similarity. The performance of a machine learning model trained on a single subcorpus (a data
set of tweets about a specific category of drugs) was compared to the performance of a model trained on multiple subcorpora
(data sets of tweets about multiple categories of drugs).

Results: The results showed that the performance of the model trained on a single subcorpus varied depending on the specific
drug used for training. The Tanimoto similarity (a measure of the structural similarity between compounds) was weakly correlated
with the classification results. The model trained by transfer learning a corpus of drugs with close structural similarity performed
better than the model trained by randomly adding a subcorpus when the number of subcorpora was small.

Conclusions: The results suggest that structural similarity improves the classification performance of messages about unknown
drugs if the drugs in the training corpus are few. On the other hand, this indicates that there is little need to consider the influence
of the Tanimoto structural similarity if a sufficient variety of drugs are ensured.
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Introduction

Medication compliance, a type of health literacy defined as a
patient’s use of medications [1], is a critical issue because an
increased number of drugs have been sold on the web.
Web-based drug distribution is difficult to control, causing
problems such as drug noncompliance and abuse [2]. Thus, the
importance of medication compliance surveys, such as what
kinds of medications tend to be abused, is increasing. However,
medication compliance surveys are unreliable because it is
impossible to cover patients who do not go to the hospital or
provide accurate information to their doctors. This situation
motivates a social media–based approach because some patients
provide information about drug usage. Therefore, social media
is attracting attention for collecting knowledge about drug use
information [3-6].

We attempted to use social media to catch medication
compliance, people’s understanding of drugs, and other
health-related information to understand the patients’medication
status and knowledge. This information should be useful as an
early signal for the dissemination and understanding of
regulations and safety information from drug regulatory
authorities and drug suppliers. There are many potential ways
to use social media; drug regulatory authorities and drug
suppliers might detect specific drugs that are likely to be
misused by automatically classifying comments. Some studies
have linked other compliant use statistics to the number of
medication noncompliance tweets, and real-time message
collection might be expected to expedite drug regulation [7].
Ru et al [8] mentioned some patients reported serendipitous
new indications for the drugs they were using for comorbidity,
which is valuable information for drug repositioning on social
media sites.

In addition, social media is expected to be one of the methods
to catch the voice of patients for the supplement of traditional
questionnaire-based surveys. There are 2 methods of information
extraction from social media, which is manual annotation and
machine learning method. As research examples of manual
annotation, Sinnenberg et al [9] and Golder et al [6] used it in
tweets to categorize the statements about drugs for certain kinds
of drugs such as drugs for cardiovascular disease or statins.
Gkotsis et al [10] used it in Reddit posts to understand the

characteristics of users diagnosed with dementia. Wexler et al
[11] and Beusterien et al [12] used manual coding to study
certain forums related to health. As examples of machine
learning methods, Mao et al [13] studied how users discussed
the side effects of aromatase inhibitors and concerns about
risk-benefit balance. Burkhardt et al [14] used a semisupervised
learning method to detect side effects reported in tweets.
Rastegar-Mojarad et al [15] and Zhao and Yang [16] use
machine learning approaches to detect potential candidates for
drug repositioning. Weissenbacher et al [17] created an ensemble
learning classifier that can identify tweets mentioning drugs
and dietary supplements. Sarker and Gonzalez [18] created a
corpus to identify drugs on Twitter, with potential applications
for monitoring drug efficacy, side effects, and user sentiment
toward drugs.

Moreover, some attempts have been made to detect drug abuse
and medication compliance in patients [19-26]. Abdellaoui et
al [24] performed tweet classification using a topic model for
2 drugs: escitalopram and aripiprazole. Weinssenbacher et al
[19] proposed a method for detecting drug dosage changes in
noncompliant patients. Bigeard et al [26] attempted to detect
drug misuse and found that using Anatomical Therapeutic
Chemical (ATC) codes and text in the classification task
improved the accuracy of misuse detection. However, the
existing methods do not fully use information on drugs, such
as the structure of the active ingredients.

In our approach, the method of developing a corpus is practically
a big issue because the corpus highly depends on the drug type.
This means that we are suffering from covering all drug types
because the nature of the text varies widely from drug to drug.
As shown in Figure 1, medication noncompliance tweets of
drugs classified as sleeping pills and anxiolytics, such as
Lexotan, stand out as overdosed (Figure 1, left and middle). On
the other hand, diuretics such as Lasix stand out in tweets
suggesting that they are used for dieting (Figure 1, right). Thus,
the messages differed for each drug type. This makes
classification more difficult and results in lower accuracy. In
such cases, supervised learning is optimal for classifying tweets
about various drugs with high accuracy [19,27-29], and a corpus
for each drug is necessary. However, building such a corpus is
time- and money-consuming.

Figure 1. Our approach, transfer learning based on chemical structures, assumes similarly structured corpora are transferable.

To make use of the limited data, we attempted transfer learning
to reuse the data for training, in which a corpus created for a
specific drug is used for other medications. We used drug
structural similarity as a training method. Drugs with similar

chemical structures are likely to have similar mechanisms of
action and can be used for similar purposes. Specifically, Martin
et al [30] demonstrated that structurally similar drugs have
similar mechanisms of action. Meyer et al [31] used the
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structural information of a drug to predict its usage. Therefore,
it is conceivable that tweets which mention similar drugs about
medication noncompliance are also expected to be similar
[19,27-29]. For example, the drug Flunitrazepam, which has a
chemical structure similar to Lexotan, is likely to be used
effectively as training data (Figure 1).

Therefore, we performed transfer learning of a corpus for drugs
with similar chemical structures. To conduct transfer learning,
we prepared a MediA corpus data set to monitor medication
noncompliance. In this corpus, we defined noncompliance as a
message that indicates the speaker’s incorrect perception of
handling a drug. Specifically, messages showing noncompliance
were labeled as “Noncompliant use or mention (NC-u/m),”
among which messages about buying and selling were marked
as “Noncompliant sales (NC-s),” and messages about medication
that was not noncompliant were labeled as “General use (G-u).”
All other messages were labeled as “General mention (G-m).”

The contributions of this study are as follows:

1. Construction of a corpus labeled for medication
noncompliance.

2. We propose a transfer learning method that uses chemical
structures. Language processing can use these features, but
this has not yet been addressed in the existing research.

In this study, we performed transfer learning to classify tweets
about different drugs using a model trained on tweets about
specific drugs in our corpus and discussed the results in terms
of drug characteristics. In addition, we focused on the chemical
structure of the drugs and verified their learning efficiency using
the similarity of chemical structures. These results suggest that
learning efficiency improves with limited drug data.

Methods

Materials
The corpus consisted of 22,022 tweets referring to 20 drugs
labeled according to noncompliance. The 20 drugs included
Loxonin (Loxoprofen) and Voltaren (Diclofenac) for pain relief;
Myslee (Zolpidem), Flunitrazepam, Lexotan (Bromazepam),
Lunesta (Eszopiclone), Depas (Etizolam), and Belsomra
(Suvorexant) for sleep and antianxiety; Paxil (Paroxetine),
Lexapro (Escitalopram), Sertraline, Abilify (Aripiprazole),
Contomin (Chlorpromazine), Zyprexa (Olanzapine), and
Risperdal (Risperidone) for antipsychotic drugs; Restamine

(Diphenhydramine) for antiallergic drugs; Medicon
(Dextromethorphan) for a cough suppressant; Zithromax
(Azithromycin) for an antibiotic; Metformin for diabetes
treatment; and Lasix (Furosemide) for a diuretic. Flunitrazepam,
Sertraline, and Metformin are generic names. The words used
as drug queries were “Loxonin,” “Voltaren,” “Myslee,”
“Flunitrazepam,” “Lexotan,” “Lunesta,” “Depas,” “Belsomra,”
“Paxil,” “Lexapro,” “Sertraline,” “Abilify,” “Contomin,”
“Zyprexa,” “Risperdal,” “Restamin,” “Medicon,” “Zithromax,”
“Metformin,” and “Lasix,” respectively. The 20 drugs were
selected based on the following criteria: (1) they are commonly
prescribed drugs or used as over-the-counter drugs, and the
query is a brand name or generic name, and (2) the number of
tweets in the past 3 years must be more than 1000 to ensure
sufficient volume. We manually selected the 20 drug queries
with less advertisements and promotional messages. Tweets
were collected using 20 drug queries from January 1, 2017, to
December 31, 2020, before random sampling 1000 tweets for
each drug.

In this corpus, noncompliance was defined as a tweet that could
be read as the writer’s incorrect perception of handling a drug
and was categorized into four types: noncompliant use or
mention, noncompliant sales, general use, and general mention,
as shown in Textbox 1. Specifically, tweets that could be read
as noncompliant were marked as “Noncompliant use or mention
(NC-u/m),” tweets related to buying and selling were labeled
as “Noncompliant sales (NC-s),” tweets related to medication
that were not noncompliant were labeled as “General use (G-u),”
and tweets other than those are marked as “General mention
(G-m).” Even if it is not a definitive noncompliance, a statement,
including exaggeration, is defined as noncompliance. For
instance, we judged the first example is doubted as
noncompliance because it is doubted that the user took more
drugs than he needed. The reason why we set the criteria if the
statement is possibly doubted as noncompliance is for capturing
the small signal of noncompliance. Textbox 1 presents a part
of examples of the MediA corpus. The detailed examples and
guidelines of the corpus are shown in Multimedia Appendix 1.

As for the annotation results, of 22,022 cases, 4630 were
“NC-u/m,” 1577 were “NC-s,” 8326 were “G-u,” and 7489 were
“G-m.” The Cohen kappa coefficient was 0.695, indicating a
substantial agreement [32]. Annotation was performed by 3
persons, 1 with pharmacological knowledge and 2 with sufficient
experience in annotating biomedical documents.
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Textbox 1. Examples of MediA corpus.

Noncompliant use or mention (NC-u/m)

• デパス多めに飲んだ (I took more Depas)

• デパスの処方やめるって言われたら生きていかれないと思う (I don’t think I could live with myself if they told me to stop prescribing
Depas)

• 眠剤とデパスに依存症になって，カー！！デパス効いてきてふわふわ気持ちいい (I’ve become addicted to sleeping pills and Depas, I
feel lightheaded and comfortable as Depas is working)

Noncompliant sales (NC-s)

• レクサプロ⋅ジェネリック抗うつ剤のレクサプロジェネリック医療品でうつ病や、パニック障害、対人恐怖症、不安障害に有効的
です 20 mg × 200錠 ¥14,000 (US $104) (Lexapro Generic: Antidepressant Lexapro generic medical product effective for depression, panic
disorder, interpersonal phobia, anxiety disorder 20 mg × 200 tablets ¥14,000 [US $104])

General use (G-u)

•
リスパダール飲んだ ぞ。(I took Risperdal)

General mention (G-m)

• ラシックスなしで着順上げながら三冠完走って只者じゃなかったね (He was not a simpleton to finish the Triple Crown without Lasix
while improving his finishing order)

Experiment Design
We conducted an experiment to compare the learning efficiency
of text classification for drug noncompliance. The objective of
the study was to clarify how the structural similarity of drugs
affects the learning models for the text classification of drugs.
The motivation for this experiment was as follows: Each active
ingredient in a drug has a unique structure. We hypothesized
that texts whose drugs had similar chemical structures would
be similar. Therefore, we expected that the similarity of the
chemical structures of the drugs would help train a model for
text classification.

There are 2 methods, single-subcorpus transfer learning and
multi-subcorpus incremental learning, which we designed in
this study. In the single subcorpus transfer learning, we classified
tweets mentioning other drug queries using a model trained on
every single drug. We compared the structural similarity and
model classification performance to investigate the relationship
between the similarity and classification metrics. In
multi-subcorpus incremental learning, we checked the
classification performance of models trained by tweets
mentioning the drug query selected in order of similarity. We
demonstrate the usefulness of similarity by comparing it with
a randomly trained model.

This learning method comes from the idea of the following
usage: When pharmaceutical companies and authorities use
social media to catch the potential signal from social media of
medication noncompliance for each drug, they use models
trained. To evaluate medication noncompliance in a
low-resource language, it is necessary to begin with the creation
of a corpus. However, the size of the corpus and the drugs
selected should be limited because corpus creation is costly. A
certain drug corpus is essential if it can be used for other drug
texts by transfer learning.

Classifier
Experiments were conducted using bidirectional encoder
representations from transformer (BERT)–based classifiers. A
pretrained model of BERT (we adopted the pretrained BERT
model “bert-base-Japanese-whole-word-masking” downloaded
from Huggingface Hub [33]) using Japanese Wikipedia was
exploited and fine-tuned using the MediA corpus. The model
consisted of 12 layers, 768-dimensional hidden layers, and 12
attention heads. We used the CLS token of the last layer to
classify texts. A classification task was performed to evaluate
the usefulness of this corpus.

We used BERT as a text classification model since the BERT
model achieved better results compared to light-weighted models
such as Word2vec embedding+LSTM and N-gram+traditional
models. Specifically, Al-Garadi et al [34] compared BERT and
the model used Twitter Glove embeddings + BiLSTM model
in tweet classification of drug use and showed BERT was a
better performance than the BiLSTM-based model. Tassone et
al [35] also compared the model of BERT and XGBoost for
tweet classification and showed BERT obtained better results.

Initial Settings
The labeled data set of the MediA corpus was divided into 3
parts in an 80:10:10 ratio; the larger set was used for training
and the 2 smaller sets for development and testing. For all the
models trained in this study, the training was stopped at the
point where the validation loss was the smallest.

Single Subcorpus Transfer Learning
Let us say that a pair of drug queries i and j are given labels of
tweets Dj that mention drug query j predicted by using model
Mi built with tweets Di that mention drug query i. In the case
of i ≠ j, the data set Di was partitioned into a 90:10 ratio, and
the larger set was used for training and the smaller set for
development, and Dj was the test set. In the case of i = j, the
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data set Di was divided into 3 parts in an 80:10:10 ratio, and
the larger set was used for training and the 2 smaller sets for
development and testing. Because the data set was small, and
data bias was considerable, random oversampling was performed
to ensure an equal proportion of the 4 labels.

Multi-subcorpus Incremental Learning
We predicted the labels of tweets Dj mentioning drug query K
= {ki} using the model MK built with tweets DK mentioning
drug query K. K was the set of drug queries shown in the
Methods section, containing 1 to 19 drugs, except drug query
j. We divided the data set DK into 90:10 and used the larger set
for training and 2 smaller sets for developing DK as the test set.
We obtained the accuracy for the 20 drugs from this experiment
and calculated the mean of the values. When adding the training
data, we compared models trained using data chosen at random
with models trained using data selected from those with similar
structures. We defined simX as the result of a model trained
with X drugs of similar structure and rndX as the result of a
model trained with X drugs selected randomly.

Drug Structure Similarity
To quantitatively calculate drug structure similarity, we used
the Tanimoto similarity, which indicates the degree of similarity
of chemical structures [36]. It was calculated by dividing the
size of the product set of compound A and compound B
fingerprints by the size of the sum set of compounds A and B.
It is calculated as the percentage of bits in the substructure
common to the 2 compounds.

To calculate the Tanimoto similarity, the chemical formula of
each drug was converted into a simplified molecular input line
entry system (SMILES) [37] to obtain the Morgan fingerprint
vector. The radius size and the number of bits were set to 2 and
1024 bits, respectively.

Ethical Considerations
This study did not require participants to be involved in any
physical or mental intervention. As this research did not use
personally identifiable information, it was exempt from
institutional review board approval in accordance with the
Ethical Guidelines for Medical and Health Research Involving
Human Subjects stipulated by the Japanese national government.

Results

Single Subcorpus Transfer Learning
The results of the validation using transfer learning are shown
in Figure 2. The vertical and horizontal axes of the heatmap
represent drug queries for the training and test data, respectively.
The color intensity corresponds to the macro F1 values. The
overall trend is that the values in the diagonal lines are the
highest, indicating that learning using the corresponding query
is the most efficient. However, Myslee, Flunitrazepam, Lexotan,
Depas, Belsomra, Paxil, Lexapro, Sertraline, Abilify, Contomin,
and Risperdal had darker areas that corresponded to the same
drugs as well as the specific type of drugs. These drugs are
classified into sleeping pills, anxiolytics, and antipsychotics.
The darker colors of the areas suggest that tweets including
these drug queries are available to each other for transfer
learning, indicating a high possibility of transfer learning for
drugs in similar categories.

The Tanimoto similarity between the drugs is shown in Figure
3. This value is a numerical measure of the structural similarity
of compounds, with a similarity of 1.0 for the same drug. Drugs
used for similar purposes such as Loxonin and Voltaren are
often structurally similar.

The relationship between the Tanimoto similarity and F1 values
for each drug is shown in Figure 4. The vertical and horizontal
axes were standardized with a mean of 0 and a variance of 1.
The correlation between the Tanimoto similarity and the F1
value was 0.278 (P<.05). This result indicates that structural
similarity is weakly correlated with the classification results.
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Figure 2. Value of F1 score for transfer learning.

Figure 3. The Tanimoto similarity between each drug.
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Figure 4. Relationship between the Tanimoto similarity and F1 value for each drug.

Multi-subcorpus Incremental Learning
The results of tweet classification by BERT and validation by
transfer learning are presented in Table 1. The left panel of
Table 1 (initial setting) shows the case where all data were used
for training, whereas the right panel of Table 1 (transfer
learning) shows the training results without data from the target
drug query. SimX results from a model trained with X drugs of
similar structures.

Table 1 shows that the Rnd3 and Sim3 results using 3 queries
varied for each drug; however, Sim3, which was trained from
drugs with high structural similarity, showed better overall
values. Looking at each accuracy, the value of Sim3 for more
drugs is 0.3 points higher than Rnd3, and the average value is
higher. On the other hand, some values are higher for Rnd1 than
Sim1, even for randomly selected. This is due to the following
factors. First, some drugs with different mechanisms have high
structural similarity, such as Voltaren and Lasix, which have
the highest structural similarity in this corpus. Voltaren is used
as an antipyretic analgesic and Lasix is a prescription drug used
as a diuretic. Thus, the textual properties are very different. The
results of Voltaren, 0.618 for Rnd1 and 0.454 for Sim1, show
that the method of using a high-similarity drug for training does
not work well. Second, even when drugs have other mechanisms
and high structural similarity, selecting multiple drugs increases

the likelihood that those with similar action mechanisms will
be chosen. For example, drugs with high structural similarity
to Voltaren include Lasix, Sertraline, and Loxonin. Loxonin is
the same antipyretic analgesic, and adding Loxonin significantly
improves the results (Lasix:0.454; Lasix + Sertraline:0.418;
Lasix + Sertraline + Loxonin:0.634). Thus, selecting multiple
drugs with high structural similarity implies that it is more likely
that drugs with similar usage can be selected as training data
rather than selecting a single drug.

Figure 5 shows a comparison of the accuracies of the 2 models.
For Sim, the classification model using these similarities is
trained by transfer with a data set created from drugs with close
similarities. On the other hand, for Rnd, the model is trained by
transferring a data set created from drugs selected at random.
Sim showed better results than Rnd in the middle of the learning
process; when approximately 10 drugs were added to the training
data, there was no significant difference between the results
learned randomly and the similarity.

Figure 6 shows the plot of each drug pair for each drug name.
All plots are categorized into 3 major types: OTC-rel type
contains an over-the-counter (OTC) drug in one of the pairs;
antipsycho type is a combination of antipsychotic medications
such as sleeping pills, anxiolytics, and antischizophrenics; and
other type is any other combination.
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Table 1. Comparison of initial setting and transfer learning.

Transfer learning, accuracyInitial setting, F1 score

Sim10Rnd10Sim3Rnd3Sim1Rnd1AverageG-mdG-ucNC-SbNC-U/Ma

64.963.365.8 e60.663.664.865.645.376.10.041.7Loxonin

66.166.063.448.845.461.871.065.777.333.350.0Voltaren

60.561.053.252.645.144.458.969.654.370.652.6Myslee

68.869.066.565.357.453.573.384.569.296.044.4Flunitrazepam

69.168.261.361.954.142.574.160.677.7100.066.7Lexotan

68.266.257.858.652.854.463.158.567.475.053.3Lunesta

59.459.957.150.051.445.874.471.775.293.364.0Depas

66.364.164.861.151.255.470.574.673.40.054.5Belsomra

68.265.660.160.849.751.680.687.578.175.054.5Paxil

65.466.656.558.058.829.177.175.081.895.748.6Lexapro

67.965.758.564.655.358.670.165.078.640.050.0Sertraline

72.374.769.062.563.356.971.364.978.3100.046.7Abilify

67.266.461.964.030.551.074.776.978.883.356.2Contomin

67.366.763.753.763.253.963.071.467.30.016.7Zyprexa

69.670.459.362.057.556.263.071.060.080.048.0Risperdal

51.651.749.436.233.540.871.175.565.10.072.2Resutamine

49.052.045.749.634.536.670.067.764.358.876.2Medicon

66.375.755.555.548.862.287.090.571.495.70.0Zithromax

78.874.474.869.271.460.087.393.766.788.247.1Metformin

47.554.340.648.426.247.779.584.248.593.775.3Lasix

65.164.759.257.150.751.472.376.673.186.459.7Average

aNC-u/m: noncompliant use or mention.
bNC-s: noncompliant sales.
cG-u: general use.
dG-m: general mention.
eValues individually at least 3 points higher than the corresponding value and averages at least 2 points higher than the corresponding value are in italics.
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Figure 5. Comparison of the accuracy of the 2 models. Sim is a model transfer learned from a data set of drugs with close similarity; Rnd is a model
transfer learned from a data set of randomly selected drugs.

Figure 6. The Tanimoto similarity and F1 score pairs for each drug. OTC-rel type contains an over-the-counter (OTC) drug in one of the pairs; antipsycho
type is a combination of antipsychotic medications such as sleeping pills, anxiolytics, and antischizophrenics; and other type is any other combination.).

Discussion

Principal Results
This study observed that the learning efficiency in transfer
learning is better for drugs with similar structures in a small
corpus. Creating a large drug corpus is costly because it requires

expertise and renewing the corpus because new drugs are often
introduced. Therefore, the efficient usage of a small corpus is
essential. A small drug corpus conveys information about the
drugs themselves, such as their names and the structures of their
active ingredients. Based on our findings, a drug-based metric,
such as structural similarity, will contribute to model training,
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especially when resources such as corpora and budget are
limited, such as in low-resource languages.

In Figure 6, OTC-rel type includes Voltaren, Loxonin, and
Restamine in one of the pairs, and the F1 score tends to be lower
overall. We hypothesize that the reason for the low F1 score is
that pairs containing these drugs are less likely to have personal
remote drug transactions classified as NC-s, and the tendency
of their messages is different from that of prescribed drugs. In
fact, OTC drug messages are more about individual transfers
than remote drug transactions. Figure 6 shows the macro average
of the F1 scores, but the scores of NC-s might lower the overall
results. Additionally, the similarity tended to be relatively low.
This is possibly because the analgesic drugs Voltaren and
Loxonin and the antiallergic drug Restamine tend to have
different structures than benzodiazepines and tricyclic
antidepressants, which are the primary drugs selected in this
study. Under the current experimental conditions, it is
challenging to use transfer learning across prescription and OTC
drugs.

Antipsycho type tends to have high F1 scores and similarity,
possibly due to the similar textual properties and structures of
antipsychotic drugs. The combination of these benzodiazepine
sleep medications is the most common type of antipsychotic.
Among antipsychotics, benzodiazepine sleep medications are
most likely to be textually similar.

Figure 7 compares the results of single-corpus transfer learning
for drugs with similar structure and drugs with similar
indications. In this figure, we visualize the results as pairs of
sleeping pills as drugs with the same indication, pairs of sleeping
pills and antipsychotics as drugs with similar indications, and
pairs of sleeping pills and others as drugs with no similar
indications. We also defined pairs of structural similarity as
having a structural similarity greater than 0.15 and pairs without
a structural similarity as having a structural similarity smaller
than 0.03. As can be seen from this figure, the results of transfer
learning are comparable for drug pairs with similar indications

and drug pairs with high structural similarity. It also clearly
shows the inefficiency of transfer learning for drugs with low
structural similarity. These results indicate the usefulness of
transfer learning by using structural similarity.

In our study, it is assumed that drugs with similar chemical
structures can be used for similar purposes. This is based on the
result demonstrated by Martin et al [30] that structurally similar
drugs have similar mechanisms of action. The usage of drugs
can also be considered similar. The similarity in usage means
that the noncompliance of the drugs is similar and the texts are
also similar. Through our study, we believe that we have shown
that the structural similarity of drugs is useful for transfer
learning of these textual classifications.

In addition, Jo et al [38] used deep learning to predict usage
from SMILES transformed from chemical structures. Since
most of the drugs selected in this study are antipsychotics
classified as drugs for the nervous system, and they predicted
several uses of drugs, including the nervous system, with about
90% accuracy, better results could be obtained by using models
that can handle structural information in more detail, such as
deep learning models, rather than just simple similarity.

Figure 8 plots the relationship between the number of labeled
tweets and the F1 value for each drug in the corpus, indicating
that the F1 value increases with the number of tweets. On the
other hand, the F1 scores of NC-s, unlike the different categories,
do not depend significantly on the number of tweets, and tweets
classified as NC-s are similar in content, even if the type of drug
mentioned differs. The F1 score for categorizing a tweet as
abuse was 0.53 [29], which is considered adequate. The overall
F1 score was 0.723, which is also a favorable result compared
to those in previous studies [29]. Since the F1 score reached its
peak when the number of tweets with the corresponding label
reached approximately 500, this inferred that 500 tweets are
one of the guidelines when preparing training data for each
query.
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Figure 7. Comparison of the results of transfer learning for drugs with similar structure and drugs with similar indications.

Figure 8. Scatterplot showing the relationship between the number of tweets and F1 value for each drug. G-m: general mention; G-u: general use;
NC-s: noncompliant sales; NC-u/m: noncompliant use or mention.
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Limitations
In this study, the experiments were conducted using only 20
different types of drugs. The categories of drugs included
analgesics, sleeping pills and anxiolytics, antipsychotics and
antidepressants, antiallergics, antitussives, antibiotics,
antidiabetics, and diuretics. Not all types were covered;
expansion of the drug category is a significant issue for the
future. Additionally, most drugs were categorized as
antipsychotics. This bias may have affected the study results.

The relatively low interannotator agreement limited the
performance of the models. Annotation schemes could be
improved to obtain better metrics. Furthermore, the correlations
did not necessarily indicate any higher-level associations
between structural similarity and metrics from the results.

We only used the Tanimoto similarity as the structural similarity
without considering the 3D structure. Considering that the action

of the mechanism was based on the 3D structure, calculating
the similarity with the 3D structure can be improved. A detailed
investigation of this learning method is required.

Conclusions
In this study, we assessed the usefulness of the structural
similarity of drugs by using a corpus annotated with medication
noncompliance. It was found that structural similarity can be
used for more efficient learning of training data with a limited
number of drugs. On the other hand, using a corpus in the case
of a new drug introduction or learning in a low-resource
language with a small corpus, it is possible to provide a
guideline for using training data from drugs with a similar
structure. We believe that this can provide a procedure for
training data for learning in low-resource languages where the
differences are slight, and the corpus is limited.
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