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Abstract

Background: Digital misinformation, primarily on social media, has led to harmful and costly beliefs in the general population.
Notably, these beliefs have resulted in public health crises to the detriment of governments worldwide and their citizens. However,
public health officials need access to a comprehensive system capable of mining and analyzing large volumes of social media
data in real time.

Objective: This study aimed to design and develop a big data pipeline and ecosystem (UbiLab Misinformation Analysis System
[U-MAS]) to identify and analyze false or misleading information disseminated via social media on a certain topic or set of related
topics.

Methods: U-MAS is a platform-independent ecosystem developed in Python that leverages the Twitter V2 application
programming interface and the Elastic Stack. The U-MAS expert system has 5 major components: data extraction framework,
latent Dirichlet allocation (LDA) topic model, sentiment analyzer, misinformation classification model, and Elastic Cloud
deployment (indexing of data and visualizations). The data extraction framework queries the data through the Twitter V2 application
programming interface, with queries identified by public health experts. The LDA topic model, sentiment analyzer, and
misinformation classification model are independently trained using a small, expert-validated subset of the extracted data. These
models are then incorporated into U-MAS to analyze and classify the remaining data. Finally, the analyzed data are loaded into
an index in the Elastic Cloud deployment and can then be presented on dashboards with advanced visualizations and analytics
pertinent to infodemiology and infoveillance analysis.

Results: U-MAS performed efficiently and accurately. Independent investigators have successfully used the system to extract
significant insights into a fluoride-related health misinformation use case (2016 to 2021). The system is currently used for a
vaccine hesitancy use case (2007 to 2022) and a heat wave–related illnesses use case (2011 to 2022). Each component in the
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system for the fluoride misinformation use case performed as expected. The data extraction framework handles large amounts
of data within short periods. The LDA topic models achieved relatively high coherence values (0.54), and the predicted topics
were accurate and befitting to the data. The sentiment analyzer performed at a correlation coefficient of 0.72 but could be improved
in further iterations. The misinformation classifier attained a satisfactory correlation coefficient of 0.82 against expert-validated
data. Moreover, the output dashboard and analytics hosted on the Elastic Cloud deployment are intuitive for researchers without
a technical background and comprehensive in their visualization and analytics capabilities. In fact, the investigators of the fluoride
misinformation use case have successfully used the system to extract interesting and important insights into public health, which
have been published separately.

Conclusions: The novel U-MAS pipeline has the potential to detect and analyze misleading information related to a particular
topic or set of related topics.

(J Med Internet Res 2023;25:e44356) doi: 10.2196/44356
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Introduction

Background
Big data refers to large volumes of internet data produced and
consumed by people with varying levels of complexity and
ambiguity and generated at varying velocities, which includes
health data [1]. In this scenario, Eysenbach [2] proposed the
concept of infodemiology, described as “the science of
distribution and determinants of information in an electronic
medium and its effects on individual and public health.”
Specifically, the big data originating from users’ health
information–seeking behavior on search queries and social
media may inform the planning and implementation of public
health measures [3,4]. Interestingly, social media data are
constantly increasing, which supports the users’ interest in
expressing their concerns, doubts, and advice about health
conditions [4,5]. Moreover, the assessment of real-time health
content has substantially contributed to the surveillance and
forecasting of diseases, outbreaks, and epidemics [6]. Previous
studies [4,7-11] have demonstrated that the primary
infodemiological social media data sources arise from Twitter,
Facebook, and Instagram despite established limitations such
as user demographics, time-specific data extraction, and data
samples representative of the entire user population [12-14].
Nevertheless, these data can rarely be processed and analyzed
using traditional methods, algorithms, or commercial
frameworks, which often results in a gap between the
epidemiological capacity of these data and the public health
officials who do not have immediate access to these data [15].

Concurrently, the overabundance of digital health content makes
it difficult for the public to distinguish trustworthy from false
or misleading information [16]. It is noteworthy that most users
consume and share social media content without checking its
trustworthiness in depth [17,18]. Furthermore, people exposed
to health-related falsehoods have a propensity to develop
harmful health beliefs, which negatively influence personal
decision-making and public health outcomes [19]. For example,
it is estimated that vaccine hesitancy that originated from
immunization-related misinformation caused a loss of at least
US $50 million each day in the United States since the vaccines
became widely available, in addition to the loss of thousands
of lives [20].

Information disorders have a range of definitions in the
literature, which include misinformation, malinformation,
disinformation, fake news, and conspiracy theories [21]. For
this paper, the authors used “misinformation” as an umbrella
term, covering any false or misleading information regardless
of the source or intent [18,19]. In this way, the authors proposed
a feasible classification model as the distinction of types of
information disorder requires the definition of distinct subjective
information aspects, potentially decreasing accuracy and
increasing false positives [21,22].

Objective
It is necessary to develop an expert system for researchers,
public health officials, and related policy makers that can handle
large amounts of data related to health information and can
identify and predict trends in public health misinformation,
allowing for government intervention before public health crises
emerge [23,24]. To address this need, this study aimed to design
and develop a big data pipeline and ecosystem named UbiLab
Misinformation Analysis System (U-MAS) to identify and
analyze falsehood regarding distinct health issues on social
media. Although this architecture was developed to detect and
understand misinformation trends for public health outcomes,
it can be used for misinformation related to any topic if a small
subset of expert-validated data exists.

Methods

Technology Framework
U-MAS is a platform-agnostic ecosystem built primarily in
Python and relies on the Twitter V2 application programming
interface (API) [25] as well as the Elastic Stack [26], specifically
Elasticsearch and Kibana. Moreover, U-MAS has been designed
and developed to run on a virtual machine (VM) with modest
memory and computing requirements. The user can choose the
keywords, search time frame, and data properties of tweets to
be extracted into JSON [27] files using the developed big data
U-MAS. In addition, the raw JSON files are stored in a
repository in Azure Binary Large Objects (BLOB) storage [28].
Finally, the Python libraries Pandas [29] and NumPy [30] have
been used to clean the system and preprocess the data for better
accuracy in the analysis stage.
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Data Set Used
This study relied on 2 sets of data, one from Instagram and the
other from Twitter. During the conception of U-MAS, the
previously expert-validated Instagram data set (N=500) collected
using CrowdTangle was used to design and validate the system
architecture [4]. Initially, the system architecture involved
uploading a CSV or JSON data file for further analysis. As each
system component was developed, the study moved to direct
querying from the Twitter V2 API [25]. Both data sets were
related to fluoride misinformation and had 500 instances each.
However, because the Twitter data set is under qualitative
review by the investigators, some system components are still
previously developed components using the Instagram data set.
We do not anticipate this to have an impact on the system’s
accuracy because the search strategies of both data sets were
designed to ensure that the data and components developed
from the data could be compared and integrated with one another
accurately despite having different userbases.

System Design and Architecture

Overview
This infodemiological and methodological study describes the
design and development of a big data pipeline and ecosystem
called U-MAS to identify and analyze false or misleading health
information on social media. The U-MAS pipeline comprises
five components: (1) data extraction framework, (2) latent
Dirichlet allocation (LDA) topic model, (3) sentiment analyzer,
(4) misinformation classification model, and (5) Elastic Cloud
deployment (indexing of data and visualizations). Initially, the
expert-validated data are used to train and load an LDA model,
a sentiment analyzer, and a misinformation detection model
into the U-MAS pipeline. The defined models are applied to
the preprocessed data, and the results are added to the data saved
in the Newline Delimited JSON (NDJSON) files. Finally, the
NDJSON files are parsed and loaded into an index on the Elastic
Cloud deployment component. Hence, the index data can be
displayed in dashboards with advanced visuals and analytics
relevant to the misinformation analysis. Figure 1 illustrates how
the ecosystem will be provided with data from Twitter about a
specific overarching topic using a data extraction framework.

Figure 1. Sequence diagram representing the working of UbiLab Misinformation Analysis System (U-MAS). API: application programming interface;
BLOB: Binary Large Objects; LDA: latent Dirichlet allocation.
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It is noteworthy that the Instagram data informed the initial
training of the models [4]. Although the LDA topic model
trained from the Twitter data (N=500) related to fluoride
misinformation had been validated, the sentiment analyzer and
misinformation classifier were awaiting manual qualitative
analysis to be validated against. Thus, this study used the
previously validated Instagram models for sentiment analysis
and misinformation classification.

Data Extraction Framework
The dependencies of the Python-based data extraction script
primarily consist of two files: (1) twitter-keys.txt (which holds
the bearer token for authorization) and (2) twitter_meta.txt
(which contains information on each of the 1-month time frames
that the API will query for improved file storage and computing
power). Figure 2 depicts the complete process performed by
the Python-based data extraction script as it runs on the VM.

Academic researchers are given special access to the Twitter
V2 API, which provides accounts with a researcher level of
access to Twitter’s real-time and historical public data, as well

as additional features and functionality that allow for the
collection of more precise, complete, and unbiased data sets.
Furthermore, the researcher level of access allows for (1) a
monthly tweet cap of 10 million tweets; (2) up to 1000 streaming
query rules of up to 1024 characters; (3) streaming rates of 50
requests per 15 minutes per app; and (4) entire range of search
operators, allowing for searches of up to 1024 characters [25].

A basic framework has been created to retrieve tweets from the
full-archive search end point. On the basis of the search query,
the end point enables researchers to programmatically access
public tweets from the entire archive dating back to the first
tweet in March 2006. The end point can send up to 500 tweets
in reverse chronological order per request, with pagination
tokens available for paging through huge collections of matching
tweets. At the same time as the full-archive search, if the user
specifies the option, a real-time stream is also set up using the
filtered stream end point. The raw results are saved in JSON
files and uploaded into a designated storage container in Azure
BLOB storage.

Figure 2. Working flow diagram of the data extraction framework. API: application programming interface; BLOB: Binary Large Objects; ETL:
Extract, Tranform, Load; NDJSON: Newline Delimited JSON.
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Following the subsequent storage in the repository, the raw data
are further preprocessed in accordance with the user’s
requirements. The user may specify the exclusion of non-English
language tweets, retweets, or duplicate tweets (which have the
same content but may be authored at different times or by
different people). Moreover, the user may also specify the
inclusion of tweets from geolocations such as Toronto, Ontario;
Vancouver, British Columbia; or Canada as a whole. A basic
performance metric that assigns weights to each public metric,
such as like count, reply count, quote count, and retweet count,
can be computed at this stage. This allows the filtering of
duplicate tweets by retaining the one with the highest
performance score associated with it.

After the validation by a subject matter expert, a data set
including N instances of the highest-performing tweets was
created to inform the training of the LDA and misinformation
classification models. Further preprocessing of the words was
performed to assure the quality of the topic modeling analysis,
including the removal of symbols, special characters,
punctuation, URLs, digits, personal pronouns, other stop words,
query keywords, and platform-specific language.

Topic Modeling (LDA Analysis)
Topic modeling is an unsupervised learning algorithm that is
used in the realm of machine learning to extract groupings of
keywords from a large corpus of unstructured and unlabeled
documents, including health information [31,32]. These
groupings can be loosely termed as topics, where each topic is
a probability distribution of how often particular keywords may
appear together in a document that falls under that topic. The
LDA is a topic modeling algorithm that can be used to determine
the salient terms of a corpus as well as the topics within that
corpus [31]. Given the number of topics K, the LDA algorithm
will generate a probability distribution of the relevancy of the
words attributed to the topic for each topic. The U-MAS pipeline
used the framework for LDA analysis developed for Twitter
data to train K LDA models for K topics by using a sample of
the 500 highest-performing tweets. This framework first
determines the best range of K values within a larger range of
K values, from K=2 to K=50, using 5-fold cross-validation, a
process in which the training data are split into 5 subsets, and
the model is trained on all but one of these subsets; the
remaining subset is used to validate the model [31]. After
identifying a smaller range of possibly optimal K values, the
topic models for each of these K values and their respective
coherence scores are computed. The Python-based Gensim [33]
and spaCy [34] libraries have been used for topic modeling and
advanced natural language processing (NLP). In addition, an
expert on the topic of discussion validates the topic model with
the highest coherence value by rating the model on the
meaningfulness of its topics, how well publications within a
single topic are related, and how publications of different topics
are distinct from each other [35,36]. The remaining data set is
automatically categorized using the model once a satisfactory
topic model has been created. Each tweet is assigned a topic
classification and the likelihood that the tweet will fall under
that category.

Sentiment Analysis

Overview

Sentiment analysis is a category of NLP tasks under opinion
mining [37]. It entails classifying the text as positive, neutral,
or negative and can be dichotomized into positive and negative
for class imbalance considerations [38]. For simple sentences
such as, “This class is great!” (positive) and “I wish this class
would just get over already” (negative), the average sentiment
analyzer should be able to correctly classify the emotion behind
these texts. There are a few major hurdles to sentiment analysis
in the context of social media. First, most sentiment analyzers
struggle with sarcasm (“Wow! You’re so smart”). Second,
sentiment analyzers may be unable to determine whether the
people or things mentioned in a text are liked or disliked.
Finally, in the setting of social media, people are more inclined
to express strong views than neutral ones and may be
overwhelmingly more positive than negative, depending on the
platform [39,40]. In the initial stages of the development of the
U-MAS pipeline, 2 of the current main possibilities of
NLP-grounded sentiment analysis have been applied, that is,
the Valence Aware Dictionary and Sentiment Reasoner
(VADER) and the Bidirectional Encoder Representations from
Transformers (BERT). One study [41] showed that other
commonly used sentiment analysis methods, such as
lexicon-based approaches (eg, Sentiwordnet) or machine
learning approaches (eg, TextBlob), fail to perform well on the
slang, sarcasm, and negation that frequently appears on social
media. The first approach represents the classifier commonly
used in web-based health information sentiment analysis
[39,40,42], whereas the second approach has become more
successful and has been adopted in more recent literature
[43-45].

VADER Algorithm

The VADER algorithm is a lexicon- and rule-based sentiment
analysis tool that is specifically attuned to sentiments expressed
in social media [46]. It responds to the polarity and strength of
sentiment in a publication, handling conventional internet
language, emoji, and the use of punctuations and capitalization
for sentiment modification. Although VADER presented a
limited accuracy compared with deep learning sentiment
analyzers, its interpretability is friendly to nonspecialists [47].
In contrast, when we performed an exploratory analysis using
VADER on the studied data set [4], we found that despite
classifying positive sentiment well, the algorithm fell short in
recognizing negative or neutral sentiments. In fact, the Matthews
correlation coefficient (MCC) [48,49] was generated (which
was approximately 0.327) to assess the algorithm’s accuracy
owing to the data set’s extreme class imbalance. Moreover,
posts that were categorized as political misinformation and
nonpolitical misinformation had their MCC calculated. The
correlation coefficient for nonpolitical misinformation posts
was only 0.149. The correlation coefficient for political
misinformation posts was comparable with its VADER
counterpart (0.327). However, it is important to note that from
the qualitative analysis, it was found that nonpolitical
misinformation posts were largely positive in nature, whereas
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political misinformation posts were often negative or neutral
[4].

BERT Algorithm

Another approach was using a small subset of independently
validated data to create a BERT model specifically for the data
set’s sentiment analysis. The BERT model can handle a wide
range of NLP tasks, including language inference, question
answering, and text detection [50,51]. As a result of its training
process, the BERT model develops an understanding of word
contextual embeddings (word embeddings and position
embeddings). In other words, BERT [50] learns the connotation
of each word based on its position in the sentence. The BERT
model can be modified to learn specific tasks using transfer
learning, with only minor changes to the model’s actual
architecture. In this situation, a simple BERTBASE [50,51]
(uncased) model was trained with some fine-tuning of the last
layers for the sentiment analysis task. At the BERTBASE
(uncased) model output, a simple rectified linear unit (ReLu)
activation function [52] classifier was applied to produce either

positive (0) or negative results (1). ReLu [52] is a simple
piecewise linear function that returns 0 for all negative values
v and is equal to p × v for positive values of v, where v is the
value at each neuron and p is the learnable parameter (in this
case, whether the text is negative or not). Therefore, ReLu is
more computationally efficient than other popular activation
functions and mitigates the vanishing gradient problem. The
architectural design for this model is illustrated in Figure 3.

Because most social media data are positive in nature, the model
has been trained to be more sensitive to negative or neutral
sentiments. Table 1 displays the initial results of the 2 sentiment
analyzers on the data set. The BERT sentiment analyzer clearly
outperformed the VADER model in the model’s initial run. It
initially had an MCC of 0.478, with equally high coefficients
for the dichotomized groups of misinformation posts (0.33) and
political misinformation (conspiracy theory) posts (0.35). After
further training, the BERT sentiment analyzer model’s overall
correlation coefficient value increased to 0.72. The sentiment
analyzer model was applied to the entire data set in the U-MAS
pipeline.

Figure 3. The architectural design of sentiment analysis model, where x is the text and y is the sentiment. BERT: Bidirectional Encoder Representations
from Transformers; ReLU: Rectified Linear Unit.

Table 1. Comparison of the initial performance of Valence Aware Dictionary and Sentiment Reasoner (VADER) and Bidirectional Encoder
Representations from Transformers (BERT) for sentiment analysis.

Matthews correlation coefficientAlgorithm

Political misinformationNonpolitical misinformationAll

0.3270.1490.327VADER

0.350.330.478BERT
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Misinformation Classification
The second modeling task involved misinformation
classification. As mentioned above, U-MAS can identify
real-time health misinformation on social media about a specific
topic from an initial expert-based analysis. This evaluation
allows for the characterization of these falsehoods grounded on
the social media users’ interests. The definition of the users’
interests enables the dichotomization of health misinformation
between nonpolitical and political [4]. This differentiation is
desirable because spreading falsehoods relates to users’
ideological motivations and political polarization [18,53,54].
Specifically, misinformation is often formulated to discourage
the use of public health policies, such as vaccine campaigns
and supply water fluoridation [4,19,55]. In this sense, the
distinction of political misinformation can provide a selection
of falsities that singularly affect public health outcomes.

In the Instagram data set, the dichotomization was also
incredibly imbalanced, with 413 posts categorized as

misinformation and the remaining 77 posts categorized as
political misinformation by independent experts [4]. As a result,
the classifier was trained to learn to predict political
misinformation (1) over misinformation (0). Again, a simple
BERTBASE (uncased) model [50,51] was trained with the last
fine-tuned layers. The output of the BERT model was fed into
a simple hyperbolic tangent (tanh) classifier, which determines
whether the text’s misinformation is due to political
disinformation or general misinformation. Tanh activation is
preferred to sigmoid solely because it is centered at the origin
and thus has a gradient 4 times the sigmoid function’s gradient,
mitigating the vanishing gradient problem. Because the data set
was class imbalanced, the MCC was again computed between
the human classification and the model’s predictions, which
produced a result of 0.819 instead of a confusion matrix or
F1-score. U-MAS used this classification model to categorize
the data as either political misinformation or not once the
sentiments of the texts in the data set had been categorized. The
architectural design of this model is shown in Figure 4.

Figure 4. The architectural design of the misinformation classification model, where x is the text and y is the category of misinformation. BERT:
Bidirectional Encoder Representations from Transformers.

Elastic Cloud Deployment
Elastic Cloud is the managed cloud deployment variant of the
Elastic Stack, which consists of Elasticsearch and Kibana as its
2 primary system features [26,56,57]. Elasticsearch is a
distributed, RESTful search and analytics engine that supports
strong analytics and quick accurate search [56]. It can easily
store massive amounts of data, including numbers, text,
geolocation, and structured and unstructured data. It is ideally
suited for analyzing social media data mapped to various data
models (ie, from different social media platforms).

Kibana is a graphical user interface–based analytics and
management platform that enables the diverse analysis of data
stored in Elasticsearch through complex visualizations,
dashboards, machine learning tasks, and cloud deployment
management. Standard visualizations such as charts, tables,
metrics, and gauges are supported by Kibana, along with
geospatial analysis using maps, time series analysis, anomaly
detection, and graphs or networks [57]. Kibana also supports
Vega Lite, a scripting language that can design custom
visualizations including a word cloud.
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The analyzed data are stored in NDJSON files after the model
analyses are completed, and each NDJSON file is parsed using
the Elastic Indexing Framework. The developed Python script
depends on elastic-cloud.txt, which contains the Cloud ID and
password required to access the Elastic deployment from the
VM. The VM connects to the deployment after reading the data
from the elastic-cloud.txt file. The process then loops through
the NDJSON files, indexing each JSON file into the appropriate
Elastic index. Once the data have been properly indexed into
the Elastic Cloud deployment, a secure, real-time, interactive
analytics front end of the system can be built using Kibana’s
dashboard functionalities. The Kibana dashboard can be
designed such that both novice and experienced users can readily
understand the visualizations and metrics. For the specific
purpose of misinformation analysis, the dashboard can include
time series data visualizations and analysis, topic distributions
and explanations from the results of the LDA analysis, and pie
chart visualizations of the distribution of sentiment analysis
results and misinformation classification models. Moreover,
the dashboards (Multimedia Appendix 1) can illustrate
correlations between any of these variables and a word cloud
of salient terms in the data.

Expert Validation
There are 4 phases of expert validation used in this study. First,
the subject matter experts performed a manual qualitative
analysis on a subset of N instances from the data set. For the
fluoride misinformation use case, this sample of data was the
500 highest-performing posts collected from Instagram and 500
highest-performing tweets collected from Twitter [4]. We define
performance based on the total number of interactions on the
publication, that is, the performance metric. The qualitative
analysis for the fluoride misinformation use case performed by
trained subject matter experts included identifying the type of
misinformation (political or nonpolitical) present in the
publication as well as determining the sentiment (positive,
negative, or neutral) of the publication [4]. These results acted
as the training labels for the misinformation classification model
and sentiment analyzer. The next phase involved validating the
topics identified by the LDA topic models by determining
whether the topics were semantically meaningful and the
overarching themes of each topic from the publications

categorized within them. Details on the expert validation
performed on the Instagram data set of the fluoride
misinformation use case are further elaborated in a separate
publication [4]. The third phase concerned the overall testing
of the system for ease of use and automated analysis capabilities.
This included the design of visualizations for dashboards,
metrics displayed as part of the analytics, and ease of navigation
on the Elastic Cloud deployment. Finally, the experts would
periodically evaluate a sample of new publications collected
through the system to ensure the validity of the automated
analysis of the system.

Evaluation Metrics
The coherence score and MCC are the evaluation metrics used
to determine the performance of the U-MAS components.

Coherence Score
Topic coherence is a measure of how semantically similar
high-scoring words within a single topic are to each other [36].
A high coherence score is generally a good indication of
human-interpretable topics compared with other performance
metrics associated with topic modeling. One popular metric is
perplexity [58], which can be summarized as a measure of how
well a topic model would perform on new data it has not seen
before. Although perplexity has been commonly used in the
literature, recent studies have shown that perplexity and human
judgment are poorly correlated and can sometimes be
anticorrelated [59].

MCC Evaluation
Deep learning models in the literature are usually assessed using
common performance metrics such as accuracy and F1-score
[60]. Unfortunately, both measures may be hyperinflated
indicators of performance when the data set on which the model
is trained on is severely class imbalanced [61], such as the data
set of the fluoride misinformation use case [4]. In the case of
class-imbalanced data sets, MCC, Cohen κ score [62], and Brier
Loss score [63] are the most frequently used performance
metrics. However, recent studies comparing the efficacy of these
3 metrics across important border cases have indicated that the
MCC should be the preferred evaluation metric for binary
classification problems on imbalanced data sets (Table 2) [64].

J Med Internet Res 2023 | vol. 25 | e44356 | p. 8https://www.jmir.org/2023/1/e44356
(page number not for citation purposes)

Morita et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Summary of the evaluation metrics and their respective interpretation.

InterpretationDefinitionRange of valuesEvaluation metric

Measures how semantically similar words within a
topic are to each other

0 to 1C_va • A good and generally achievable range is
0.5<C_v<0.8.

Indicates the ratio between the number of correct pre-
dictions and the total number of predictions

0 to 1Accuracy • Accuracy=1 indicates no incorrect predictions.

The harmonic mean of a model’s ability to correctly
predict positive instances (recall) and minimize predict-
ing negative instances as positive (precision)

0 to 1F1-score • F1-score=1 indicates that the model perfectly
predicts positive instances and does not misclas-
sify negative instances as positive.

Measures the relationship between the number of
positive instances correctly classified, the number of
negative instances correctly classified, and the number
of positive and negative instances misclassified

−1 to 1MCCb • MCC=−1 indicates a perfectly inaccurate classi-
fier.

• MCC=0 indicates a perfectly random classifier.
• MCC=1 indicates a perfectly accurate classifier.

Measures the interrater agreement of 2 raters (in ma-
chine learning, this is the classifier and the ground
truth)

0 to 1Cohen κ • Cohen κ=0 indicates no agreement.
• Cohen κ=1 indicates perfect agreement.

A cost function that measures the difference between
the predicted probability and the ground truth

0 to 1Brier Loss • Brier Loss=0 indicates perfect accuracy.
• Brier Loss=1 indicates perfect inaccuracy.

aC_v: coherence score.
bMCC: Matthews correlation coefficient.

Data Security and Confidentiality
U-MAS ensures data security through Kibana’s built-in user
roles and permissions management system. A limited group of
individuals with administrator privileges and read or write access
to Elasticsearch (which manages the actual storage of the data)
and Kibana (which handles the analytics and visualizations of
the data) can configure and administer the system. In addition,
the users with administrative privileges may be able to add users
to the deployment and define their roles. However, users who
will only interact with the dashboard to make informed decisions
about the misinformation identified and analyzed can be
assigned a role that allows them to only read the data or interact
with the visualizations and analytics.

Ethical Considerations
This study did not require institutional review board approval
from the University of Waterloo, Office of Research Ethics
because federal regulations do not apply to research using
publicly available data that do not involve human participants.

Results

At its most current iteration, U-MAS is being used to detect and
analyze fluoride-related misinformation [4]. In addition, U-MAS
is currently being adapted to analyze vaccine- and heat
wave–related misinformation, providing real-time insights about
their trends. Table 3 summarizes the current iteration of the
system components performance with respect to the fluoride
misinformation use case, as discussed in the earlier chapters
[4]. The data extraction framework for Twitter has been used
to collect thousands of documents in a relatively short period
(from 30 s to 15 min depending on the number of documents).
For the fluoride misinformation use case, the data extraction
framework successfully extracted 32,000 documents, spanning
a period of 5 years, in approximately 1 minute. The LDA models
have attained relatively high coherence scores. The sentiment
analyzer and misinformation classifier also performed well but
could be improved in future iterations.
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Table 3. Summary of the system components performance with respect to fluoride misinformation.a

TwitterInstagramComponent

Data extraction framework

Complete and in useIn developmentStatus

Satisfactory, extracted over 32,000 tweets from a period
spanning 5 years in 1 minute

—bPerformance

LDAc topic model

Complete and validatedComplete and validatedStatus

Performance

0.540.54Coherence score

37Number of topics

Sentiment analysis

In developmentCompleteStatus

Performance

—0.717Matthews correlation coefficient

—0.92Accuracy

—0.765F1-score

—0.08Brier Loss score

—0.717Cohen κ score

Misinformation classification

In developmentCompleteStatus

Performance

—0.819Matthews correlation coefficient

—0.95Accuracy

—0.848F1-score

—0.05Brier Loss score

—0.819Cohen κ score

aComplete system design and pipeline: status—integrated for Twitter data; performance—satisfactory, meaningful insights extracted by independent
investigator.
bNot available.
cLDA: latent Dirichlet allocation.

Discussion

Principal Findings and Practical Implications
This paper highlights the design and development of a novel
big data pipeline and ecosystem for detecting and analyzing
misinformation related to a particular topic or set of related
topics. Using a data extraction methodology, the ecosystem
ingested information from Twitter regarding a particular
overarching topic. In this context, preprocessing techniques and
topic modeling (LDA analysis) have been applied to the given
data to categorize the topics quickly. Furthermore, the sentiment
analysis and misinformation detection BERT models have also
been used, and when combined, these models have been used
to monitor real-time trends in the dissemination of information
about specific topics. In addition, a sample of the data has been
periodically validated by independent experts, enabling the
retraining of the corresponding models (LDA, sentiment, and

misinformation detection) for increased accuracy within the
ecosystem. The ecosystem has been implemented for the fluoride
misinformation use case, and the details of the insights extracted
using the system by the independent expert have been published
separately [4].

The novel U-MAS pipeline has the potential to revolutionize
the public health space. Researchers, public health officials, and
policy makers can use this system to capitalize on the
ever-increasing number of people globally using social media
to discuss various important health topics. Moreover, this system
enables users without a technical background to focus on data
analysis concerning public health as opposed to concerning
themselves over the technical aspects of obtaining, transforming,
and storing the data for analysis. U-MAS has several uses for
governments to prevent misinformation in the infodemiology
and infoveillance context. At the present condition of the system,
U-MAS can easily be implemented to discover the most
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prevalent talking points of the subset of the population that
distrust or purposefully denigrate important public health
measures for financial or political interests [4]. Furthermore,
U-MAS can track the relevance of these topics over time and
provide insight into the campaigns against health misinformation
that should be targeted. Finally, U-MAS can determine the
efficacy of such campaigns through various time series analysis
and metrics on topic and keyword relevance.

The authors anticipate ongoing testing and validation of the
system even as it moves into production, as the users of this
expert ecosystem will be researchers and government entities
who aim to prevent public health disasters by ensuring that the
public receives accurate information on the web. Thus, this
system is currently being tested internally for several health use
cases, including vaccine hesitancy (2007-2022) and heat
illness–related misinformation analysis (2011-2022).

Limitations and Future Work
U-MAS faces several limitations that will be the focus of future
iterations of the system. First, the expert validation of the data
set is time-consuming, and measures must be taken to ensure
that the data sample is representative of the entire media
platform’s universe. As periodic validation of data is essential
to ensure the high performance of U-MAS, a data-independent
sentiment analyzer is currently being developed to reduce the
time spent on the manual evaluation process. Moreover,
although the system recognizes when the content of publications
has URLs to external sources, it currently does not extract
information on what these external sources contain. It also uses
public interactions as the metric for the relevancy of a
misinformation trend, but studies have shown that many social
media users are passive and scroll without necessarily publicly
interacting with the publication they encounter. Unfortunately,
most social media platforms do not publicly show the view
count or the reach of a textual publication. Future work could
include incorporating view counts from video publications, such
as Instagram reels or TikTok. However, studies have also shown
a positive correlation between the number of public interactions
and total reach of a publication. Hence, the authors believe that

the relevancy analysis provided by U-MAS is still accurate
despite this limitation.

Furthermore, the system does not account for automated
accounts that pose as real human users, or social bots, which
are known to proliferate misinformation about controversial
political and public health matters. For example, studies [65-67]
have shown that during the pandemic, COVID-19
misinformation on Twitter was more likely to come from social
bots than from human users and that they often pushed
conspiracy theories (political misinformation). It would be
prudent in the next iteration of the system to include bot
detection as a component in the U-MAS system to identify
prominent health misinformation trends. The system can also
only effectively identify misinformation pertaining to a single
health topic at a time, as determined by the keywords defined
by the users in the query for data extraction. As a result, the
system currently only pulls the publications that directly contain
the keywords of the health topic. In this iteration, it cannot
identify the publications that retain context when read within a
conversation stream but do not contain the actual keywords of
the health topic. It is also important to acknowledge that other
social media giants such as Facebook and YouTube are major
sources of digital misinformation. Future work will also focus
on integrating data from multiple social media giants through
custom data extraction frameworks into the dashboard for
multiplatform analysis. Such multiplatform analysis will involve
separate dashboards for each platform and a single dashboard
for all the platforms combined.

Conclusions
The novel U-MAS pipeline has the potential to collect, detect,
and analyze the rapidly increasing amounts of misinformation
proliferated on social media related to a particular topic or set
of related topics. Once an ecosystem of expert systems is in
place, analytics dashboards and anomaly or risk detection alerts
may be used to determine when specific topics are experiencing
considerable trends of health misinformation, assisting in
identifying and mitigating falsehoods through prompt
governmental intervention.
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