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Abstract

Adaptive designs are increasingly developed and used to improve all phases of clinical trials and in biomedical studies in various
ways to address different statistical issues. We first present an overview of adaptive designs and note their numerous advantages
over traditional clinical trials. In particular, we provide a concrete demonstration that shows how recent adaptive design strategies
can further improve an adaptive trial implemented 13 years ago. Despite their usefulness, adaptive designs are still not widely
implemented in clinical trials. We offer a few possible reasons and propose some ways to use them more broadly in practice,
which include greater availability of software tools and interactive websites to generate optimal adaptive trials freely and effectively,
including the use of metaheuristics to facilitate the search for an efficient trial design. To this end, we present several web-based
tools for finding various adaptive and nonadaptive optimal designs and discuss nature-inspired metaheuristics. Metaheuristics
are assumptions-free general purpose optimization algorithms widely used in computer science and engineering to tackle all kinds
of challenging optimization problems, and their use in designing clinical trials is just emerging. We describe a few recent such
applications and some of their capabilities for designing various complex trials. Particle swarm optimization is an exemplary
nature-inspired algorithm, and similar to others, it has a simple definition but many moving parts, making it hard to study its
properties analytically. We investigated one of its hitherto unstudied issues on how to bring back out-of-range candidates during
the search for the optimum of the search domain and show that different strategies can impact the success and time of the search.
We conclude with a few caveats on the use of metaheuristics for a successful search.

(J Med Internet Res 2023;25:e44171) doi: 10.2196/44171
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Introduction

There is active research on adaptive designs and their many
applications in different areas of research. In particular, many
types of adaptive designs and their variants have been proposed
in the literature for different purposes in clinical trials. Adaptive
designs are highly flexible and can address a multitude of
important issues in clinical trials. They use accumulating data
to modify various aspects of the study design to address
emerging statistical problems in an ongoing trial in a preplanned

manner. The planned interim data analysis can monitor the
progress of the trial and can use various strategies to preempt
having an underpowered study, covariate imbalance, or ethical
concerns. For example, in the simplest case, when there are 2
treatment groups to be compared and both treatments are equally
effective or equally ineffective, a lot of cost and labor could
have been saved if the trial is adaptively designed for early
termination and patients are not put in trials needlessly. Jennison
and Turnbull [1] present the fundamentals of design and analysis
of various adaptive trials, including details on the flexibility to
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stop the trial during interim looks either for efficacy or futility
to decrease the original sample size for ethical and cost reasons.
In particular, the seamless phase 2/3 designs allow treatment
or dose selection at an interim analysis and use data from both
phases to conduct a final comparative evaluation of efficacy
with a single protocol [2]. Another monograph on sequential
experimentation in clinical trials is the study by Bartroff et al
[3].

Chow and Chang [4] summarized adaptive designs into the
following types: adaptive randomization, group sequential
designs, sample size re-estimation designs, drop-the-loser
designs, adaptive dose-finding designs, biomarker-adaptive
designs, adaptive treatment-switching designs,
hypothesis-adaptive designs, adaptive seamless phase 2/3 trial
designs (ASDs), and multiple adaptive designs. Rosenberger
and Lachin [5] distinguished the randomization procedures into
4 classes: complete randomization, restricted randomization,
covariate-adaptive randomization, and response-adaptive
randomization (RAR). Complete randomization is unbiased
coin tossing. Restricted randomization is used to balance the
treatment assignments. Covariate-adaptive randomization is
used to ensure the balance between treatment arms regarding
specific known covariates.

RAR is used to address ethical concerns, such as allocating
patients to more effective treatment groups, making inferences
more efficiently, and saving costs. Interestingly, despite the
large number of publications in adaptive methodology, many
clinical trials are not adaptively designed. We offer some
possible reasons: (1) many clinical trialists may not be familiar
with the many benefits of modern adaptive approaches; (2) there
is very limited software for implementing and analyzing
adaptive designs, and when they are available, they can be
prohibitively expensive; (3) compared with nonadaptive trials,
the statistical planning for adaptive trials requires more technical
work; (4) their administration is also more time-consuming
because a participant or participants have to be randomized
carefully and monitored throughout the trial; and (5) people
tend to use well-established design methods and have concerns
whether the regulatory agencies will accept results from an
innovative adaptive design. Finally, and more importantly, there
is no gold standard for adequately and fairly comparing the
adaptive strategies. The problem is compounded by a plethora
of new adaptive designs being proposed frequently, and they
are invariably supported by simulations in a restricted setting
only. Trial integrity, which includes strict adherence to all
aspects of the protocol, and implementation complexity can still
add time and cost to running an adaptive trial, despite fewer
patients being required. We have proposed several ways to
facilitate the broader use of adaptive designs in practice. They
include promoting greater awareness of the capabilities of
various adaptive designs over traditional designs with concrete
illustrations using easy-to-use and free, modern web-based tools
for finding optimal adaptive designs for different clinical
settings. To this end, this paper has 4 aims. The first is to provide
an overview of adaptive designs, and the second aim is to
demonstrate the usefulness of recent adaptive strategies using
the notable Indacaterol to Help Achieve New Chronic
Obstructive Pulmonary Disease Treatment Excellence

(INHANCE) trial [6] as an example. Third, we present several
interactive websites for finding optimal designs, adaptive or
not. Presently, they are scattered throughout the literature, and
collecting some of them in one place in the internet era can be
helpful to promote interest in adaptive designs and facilitate
practitioners to find efficient clinical trial designs after a few
strokes on the keyboard. The fourth purpose of this paper is to
introduce nature-inspired metaheuristic algorithms to solve
increasingly challenging design problems and recognize their
emerging applications in designing biomedical studies. Particle
swarm optimization (PSO) is an exemplary algorithm, and we
have described some of its recent applications in the design of
clinical trials. Similar to other algorithms, it has intriguing
properties, and we investigated one of its hitherto unstudied,
interesting features.

Adaptive Designs section briefly reviews selected adaptive
design methods, and the following Section demonstrates how
recent adaptive design techniques can be used to further improve
the adaptive INHANCE trial [6] conducted approximately 13
years ago. Section 4 (Web-based tools) discusses interactive
websites with various abilities to find various types of trial
designs. Section 5 (Metaheuristics) presents an overview of
nature-inspired metaheuristic algorithms, which are a modern
class of assumptions-free general purpose optimization tools.
We focused on one such exemplary algorithm called PSO and
some of its recent applications to design studies for biomedical
studies. In addition, we investigated, for the first time, one aspect
of its many moving parts and have shown when search particles
for the optimum move beyond the search domain, how they are
brought back into the search domain can be consequential. The
last section concludes with a summary of the benefits of adaptive
designs and metaheuristics along with commentaries on their
cautionary use in practice.

Adaptive Designs
There are many types of adaptive designs, and we reviewed
only a few in this paper. The selected ones are either commonly
used or viewed as being more cutting-edge.

Sequential Multiple Assignment Randomized Trial
Design
Diseases such as HIV and cancer require a series of treatments
over time. We call such a treatment sequence a dynamic
treatment regime (DTR). These DTRs are often tailored to an
individual’s treatment and disease history, their response to
treatments, and the patient’s characteristics.

There are 3 components for a DTR. The first is the treatment
options. The second is the critical decision stage when future
treatments are decided based on earlier results. The third
component is to tailor variables that can be used to develop
personalized medicine.

The Sequential Multiple Assignment Randomized Trial
(SMART) design [7] that follows specific DTRs to randomize
individuals multiple times has been proposed to develop the
DTR and detect the treatment effects of these DTRs. A typical
SMART design consists of 2 stages. In the first stage,
individuals are randomized to different treatments. On the basis
of the responses and patient characteristics, these individuals
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are subsequently randomized to the treatment options in the
second stage. If the disease or the treatment has a long
assessment period, the SMART design and other adaptive
designs are likely going to be inappropriate.

A special feature of the SMART design is that it adapts the
individual’s future treatment based on the individual’s previous
responses. This is different from other adaptive designs, where
treatment assignment depends on the cumulative results from
other patients.

Adaptive Seamless Phase 2/3 Clinical Trial Designs
Traditionally, clinical trials are conducted in a sequential
manner, with phase 1 trials evaluating the safety, phase 2 trials
determining efficacy and identifying the optimal dose, and phase
3 trials confirming the efficacy and assessing safety in larger
populations. This approach has proven to be successful in
identifying new treatments for a wide range of diseases.
However, sequential trials can be lengthy and expensive, and
they may not provide the most efficient means of evaluating
new interventions.

Combining the different phases of a clinical trial seamlessly
into one trial is one way to quicken the process. For example,
they may be a seamless phase 1/2 trial or a seamless phase 2/3
trial. Since the US Food and Drug Administration (FDA) has
promoted streamlining clinical trials [8], it has been desirable
to develop new treatments quickly without compromising the
integrity and validity of the development process. To this end,
the FDA drafted guidelines to encourage seamless clinical trials
[9]. Recently, Project Optimus was initiated by the FDA
Oncology Center of Excellence to transform the current
approach to dose selection for cancer treatments in the field of
oncology, which will surely bring a new wave of research on
ASD. With ASD, a single protocol for the entire seamless
clinical trial is sufficient, which eliminates the lag time between
the 2 phases and can save ≥6 months. This approach also avoids
the need to design separate trials for each experimental treatment
and enables the use of data from both phases in the final
analysis, resulting in a significant reduction in sample size. The
upshot is tremendous savings in cost and time for pharmaceutical
companies.

A typical seamless phase 2/3 clinical trial compares multiple
experimental treatments or drug doses with a control in the
phase 2 trial, and the best candidates based on certain criteria
will be chosen to enter the phase 3 trial [2]. The data analysis
and hypothesis testing are based on data from both the phases.
Because we choose the best in the middle of the procedure and
there are multiplicity issues, it is important to control the type
1 error rate. We typically use the closure principle [10] with the
combination test [11] and multiple testing approaches, such as
the Simes test [12] and Dunnett test [13] to control the
familywise type 1 error rate.

A seamless clinical trial requires a protocol for the whole
procedure, resulting in no lead time between the 2 phases and
often saving ≥6 months of trial time. In addition, we do not have
to design different trials for each experimental treatment and
can use data from both phases for the final data analysis, thereby
reducing the sample size noticeably. The upshot is that
pharmaceutical companies can save costs considerably.

Ma et al [14] studied seamless phase 2/3 clinical trials with
covariate-adaptive randomization and provided a theoretical
foundation for the complex procedure. On the basis of their
work, a simple modified version of the t test can be used, and
the power of detecting the treatment effect can be increased by
approximately 10% compared with the traditional approach.

Group Sequential Designs
A group sequential trial determines whether the trial should be
terminated early based on interim evidence of efficacy, harm,
or futility while preserving statistical error rates. It is appealing
based on ethical, administrative, and economic considerations
[1]. A group sequential trial can detect unsafe treatment
regimens earlier and take action as soon as possible (ethical);
it can ensure that the experiment is executed as required in the
protocol (administrative); and it can stop the trial earlier so that
fewer patients are required and there are savings in terms of
time and money (economic).

A group sequential study typically consists of K analyses and
hypothesis testing. Thus, we have presented a sequence of K
test statistics. Following a unified approach, we can construct
such test statistics for various types of responses for which these
statistics share a common joint canonical distribution.
Furthermore, by a simple transformation, these sequential
statistics will follow the Brownian motion. In the literature,
various approaches have been proposed to control the type 1
error rate for Brownian motion. Subsequently, the validity of
the group sequential design is guaranteed.

Zhu and Hu [15,16] studied the sequential monitoring of 2
families of RAR designs, doubly adaptive biased coin design
(DBCD) and urn models. Zhu and Hu [17] investigated the
sequential monitoring of covariate-adaptive randomized clinical
trials. These studies successfully combined the adaptive
randomization procedures and adaptive analysis approaches in
one clinical trial and achieved various design objectives.

As expected, adaptive strategies are motivated differently and
have their own unique properties. Thus, the user should carefully
select an appropriate adaptive design with the main objective
or objectives of the trial in mind. Table 1 lists some of the
advantages and disadvantages of the 3 adaptive strategies
described.
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Table 1. Advantages and disadvantages of 3 adaptive clinical trial designs in Section 2.

DisadvantagesAdvantagesDesign

SMARTa design •• Can be complex and require more resources to imple-
ment

Allows for multiple interventions
• To be tested within 1 trial

• May require a longer trial period• Provides the ability to adapt treatment based on patient
response and lead to a more personalized approach to
treatment

• May result in more dropouts owing to multiple inter-
vention changes

• Requires careful planning to ensure statistical validity
• Can be more challenging to analyze and interpret re-

sults

ASDb •• Requires careful planning to ensure statistical validityAllows for the use of phase 2 data in the final data
analysis for filing • Modeling the relationship between short and long end

points in trials with time-to-events end points might
be challenging

• Allows for the possibility of early termination, espe-
cially for futility

• Can reduce the overall trial duration, cost, and sample
size

• The type 1 error rate control requires careful design
and planning

• Can compare multiple treatment arms and drop inferi-
or ones early

• The testing approaches may not be the most powerful
ones

• May result in more changes to the trial protocol
• Can be more challenging to analyze and interpret re-

sults

GSDc •• Requires careful planning to ensure statistical validityAllows for early termination of the trial for superiority
and futility • May require a larger maximum sample size to achieve

statistical power• Allows for early termination for safety issues
•• May result in more changes to the trial protocolAllows for early termination for protocol violation

• •Can reduce the trial duration Can be more challenging to analyze and interpret re-
sults• Can reduce the cost

• Can reduce sample size
• Can allow for comparison of multiple treatment arms

aSMART: Sequential Multiple Assignment Randomized Trial.
bASD: adaptive seamless phase 2/3 trial design.
cGSD: group sequential design.

How Adaptive Strategies Can Improve Clinical Trials

Overview
The INHANCE trial [6] is a double-blinded, adaptive seamless
phase 2/3 clinical trial of inhaled indacaterol to treat chronic
obstructive pulmonary disease that is a chronic lung
inflammation disease leading to poor airflow from the lungs
and long-term breathing problems. The INHANCE trial
implements stratification randomization to randomly allocate
patients to ensure a balance in smoking status. In the
dose-finding stage, patients were enrolled and randomly
allocated to 7 treatment arms containing 4 doses of indacaterol,
a placebo, and 2 active controls (formoterol and tiotropium).
After 770 patients had completed 2 weeks of treatment, an
interim analysis was performed by an independent statistician,
and 2 indacaterol doses, the placebo and tiotropium, were
selected by an independent data monitoring committee based
on unblinded data.

The criteria for choosing treatment arms include efficacy, early
bronchodilator effect, and safety. Finally, in the efficacy
confirmation stage, 1683 patients were randomly allocated to
the chosen treatment arms. With stratification randomization,
the concern about the apparent confounding factor, smoking
status, was addressed, and the results are more persuasive. With
the adaptive seamless design, the data from the 2 stages can be

used for the final analysis, leading to fewer required patients
and a shorter overall duration compared with the traditional
separate phase 2/3 trials. This means that such a trial saves costs
and is efficient and ethical. This trial has significantly promoted
the development of adaptive seamless phase 2/3 clinical trials
and has received attention from the New England Journal of
Medicine [18].

Example: An Enhanced Design for the INHANCE Trial
In the INHANCE trial, stratification randomization was used
in the seamless phase 2/3 clinical trials to ensure balance across
specific covariates. The advantage of stratified randomization
in improving the efficiency of estimators and power of tests is
more evident in a small trial (even with stratified analysis) than
in large trials, but such an advantage will fade away as the
difference in the size of strata becomes larger [19]. Although
equal allocation at the outset of a trial may be appropriate in
light of a clinical equipoise principle, it may become unethical
if accumulating data suggest that one treatment is inferior. To
address this ethical concern, RAR can be used, which
sequentially assigns patients based on their previous treatment
assignments and responses. This approach can alleviate the
issue and offers appealing features. Here, we proposed an
adaptive seamless trial design with a type of RAR to further
achieve ethical objectives by assigning more patients to better
treatments and reducing the number of failures.
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The concept of RAR can be traced back to the Thompson [20]
proposition that patients should be randomized to a treatment
based on the probability that the treatment would be the most
effective. Subsequently, RAR evolved into 2 families of
frequentist methodologies, namely urn models and DBCDs [21].

For space consideration, we focused on the DBCD [21] that can
target any theoretically optimal allocation proportions based on
certain optimal criteria. Specifically, we first formulated the
main objectives mathematically to reflect the trial objectives
that could be maximizing the power for a fixed sample size or
minimizing the total number of failures for a preselected level
of power of a test. We derived the theoretically optimal
allocation proportion that is a function of unknown parameters
to achieve these objectives. Using the DBCD, we sequentially
estimated these unknown parameters and updated the estimated
targeted allocation proportions for each patient. Finally, we
used the DBCD’s allocation probability function that considers
both the estimated optimal allocation proportion and the actual
allocation proportion to assign the next patient.

In this application, we used a simpler version of the DBCD by
only using the estimated targeted allocation proportion to
demonstrate its application to improve ethical benefits. We
assumed that the outcome is binary and the trial has 3
experimental treatment arms and 1 control arm. The proposed
step-by-step design procedure is as follows:

1. In the first stage, m0 patients are assigned to each of the 4
treatments by fixed design to obtain initial parameter
estimates. When the mth (m>4m0) patient enters the trial,

calculate , where is the
estimated failure rate of treatment j based on all the previous
responses and treatment assignments.

2. Assign the mth patient to treatment j with probability Pj.
This RAR design will assign more patients to the
better-performing treatments.

3. At the end of the first stage, choose the best-performing
treatment arm (eg, treatment M) and the control arm to enter
the second stage.

4. In the second stage, assign each new patient to treatment j

with probability .

At the end of the trial, we tested

H0: pM = p0 versus H1: pM > p0

using the closure principle [10] combined with the inverse
chi-square method [22] and the Simes test [12].

We conducted a numerical study to evaluate this design strategy.
We used 10,000 replications and assumed that there are 200
patients in the first stage and 300 patients in the second stage.
Patients enter the trial sequentially and are randomly assigned
to the treatment groups using the abovementioned randomization
procedure. Table 2 compares the performance of our method
with complete randomization (CompR). We found that, under
the null hypothesis, our method can effectively control the type

1 error rate (α). We reported  to demonstrate the accuracy
and precision of the parameter estimators following our method.
We also demonstrated the ethical advantages of our design by
reporting the actual allocation proportion to the control group
(ρ0) and the total number of failures (failure). The SDs are
shown in parentheses. We observed that our method is ethically
more advantageous than the traditional design by assigning
approximately 7% more patients to the treatment arms instead
of the control arm and reducing up to 7 failures while keeping
the power at the same level as complete randomization under
the alternative hypothesis.

In conclusion, the incorporation of innovative adaptive
randomization into the novel adaptive seamless design has
enabled us to achieve the ethical objective of assigning more
patients to the better treatment arm, resulting in fewer failures.
This achievement was accomplished without sacrificing the
efficient objective and the original advantages of the adaptive
seamless design. In addition, the adaptive randomization design
has been found to aid patient enrollment and accelerate clinical
trials, as noted by Tehranisa and Meurer [23]. This is particularly
important in rare disease trials and for pharmaceutical companies
seeking to secure funding for new trials.
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Table 2. Performance of the proposed design procedure for an adaptive phase 2/3 clinical trial design with response adaptive randomization with 3

treatments and a placebo group relative to that in a complete randomization (CompR) procedure.a.

Failure, n (SD)Proportion, ρ0 (SD)
(SD)

Type 1 error rate or powerDesign(p1,p2,p3,p0)

300 (11)0.400 (0.018)0.399 (0.034).023DBCDb(0.4, 0.4, 0.4, 0.4)

300 (11)0.400 (0.021)0.400 (0.035).026CompR(0.4, 0.4, 0.4, 0.4)

250 (11)0.400 (0.021)0.499 (0.036).025DBCD(0.5, 0.5, 0.5, 0.5)

250 (11)0.400 (0.021)0.500 (0.035).025CompR(0.5, 0.5, 0.5, 0.5)

200 (11)0.400 (0.024)0.598 (0.035).025DBCD(0.6, 0.6, 0.6, 0.6)

200 (11)0.400 (0.021)0.600 (0.035).023CompR(0.6, 0.6, 0.6, 0.6)

247 (13)0.345 (0.023)0.400 (0.038).91DBCD(0.45, 0.55, 0.6, 0.4)

253 (12)0.400 (0.021)0.400 (0.035).90CompR(0.45, 0.55, 0.6, 0.4)

194 (13)0.332 (0.027)0.499 (0.039).91DBCD(0.6, 0.65, 0.7, 0.5)

201 (12)0.400 (0.021)0.500 (0.035).91CompR(0.6, 0.65, 0.7, 0.5)

192 (12)0.332 (0.026)0.499 (0.039).93DBCD(0.65, 0.65, 0.7, 0.5)

199 (11)0.400 (0.021)0.500 (0.035).93CompR(0.65, 0.65, 0.7, 0.5)

aThe simulated results in the first 6 rows are obtained under the null hypothesis using a significance level of 0.025. The remaining rows are simulated
results obtained under the alternative hypothesis, along with the power attained. The ρ0's are the proportions of patients assigned to the control group.
bDBCD: doubly adaptive biased coin design.

Web-Based Tools
In the internet age, it is helpful to have interactive websites
enabled with programs that can quickly generate the results the
user is looking for after they provide input to the problem of
their interest. Although this is common in engineering and
computer science, it is less common in biostatistical and
statistical research areas. We reviewed some areas in this paper
by describing some websites and their capabilities and
limitations.

A most remarkable website that seems to contain the most codes
for generating many optimal designs and analyzing various
types of clinical trials is housed at the Biostatistics Department
at MD Anderson [24]. There are more than 70 programs
available for free download. It has nearly 25,000 visitors to date,
which makes it probably the most visited site for biomedical
researchers interested in finding efficient designs and performing
various analyses for phase 1, phase 2, and phase 3 clinical trials.
The analysis methods include both frequentist and Bayesian
approaches; an example of the latter is one that uses the
Bayesian chi-square test to evaluate the goodness of fit for 7
common models for right-censored time-to-event data. Both
the design and analysis methods are available for clinical trials
with a single arm, 2 arms, or multiple arms, including many
codes for performing various adaptive randomization schemes.
Some of the programs are aimed at pedagogy; for example,
there are codes that show how the beta-binominal densities vary
when the parameters are changed or sample size calculations
for various common situations.

Another useful site, albeit on a smaller scale, is Professor
Ivanova’s home page [25] in the Department of Biostatistics at
the University of North Carolina at Chapel Hill [26]. It is one
of a few interactive websites, where the visitor inputs the design

parameters and the site returns the desired design. For instance,
the celebrated Simon 2-stage designs for phase trials [27] are
displayed after one inputs the type 1 and 2 error rates and the
values of the binary response rates under the null and alternative
hypotheses. The site also allows the user to generate other types
of designs useful for phase 1 and 2 trials, and they include (1)
the 2-stage design by Fleming [28]; (2) a Simon-like design
with relaxed futility stopping [29]; (3) a 2-stage design for
ordinal outcomes; (4) rapid enrollment design for phase 1 trials;
and (5) continuous monitoring for toxicity using a Pocock-type
boundary.

However, there are other web-based tools scattered elsewhere
with limited capacity for finding a few types of optimal designs.
For instance, in the study by Collins et al [30], there is a web
link [31] that finds locally D-optimal designs or Bayesian
nonadaptive D-optimal designs for estimating parameters or a
user-selected percentile in a beta regression model. It is one of
the rare sites that allow the user to find dual-objective optimal
designs that compromise on 2 objectives according to their
relative importance; this is accomplished by assigning a weight
(W) between 0 and 1, with a larger weight representing a greater
interest in that objective. If the weight is 0 or 1, it reduces to
finding a single-objective optimal design. In addition, the
reported optimal approximate designs are shown to be optimal
using a plot over the dose range that theoretically confirms the
optimality of the design. Because the model is nonlinear,
nominal values are required for the model parameters. Up to 5
sets of nominal values are allowed, and the user finds a Bayesian
optimal design by assigning a prior distribution to the 5 sets of
nominal values. If a single set of nominal values is used, we
obtain the usual locally optimal designs. Such self-created web
links for solving selected types of design problems and
conducting specific data analyses for clinical trials are available
but not systematically documented in the literature. Another
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interactive site that uses R-based shiny apps is provided [32].
The site is relatively new and is now continuously enhanced
with additional features. It is oriented toward toxicology studies
but some of the models are also appropriate for clinical trials.
The capabilities of the sites include model fitting and finding
locally optimal designs for studies with 2 objectives, and one
is equally or more important than the other.

Another useful link is available via the rpact R package [33]
created by Wassmer and Pahlke [34]. It provides a
comprehensive tutorial on confirmatory adaptive clinical trial
designs, simulations, and analyses for clinical studies. It consists
of a validated, open-source, and free-of-charge R software
package for clinical trial planning, simulation tools, design
evaluation, and data analysis. It can be used to perform sample
size and power calculation for both fixed sample designs and
designs with interim analysis stages. In addition, it offers
simulation tools for means, rates, and survival data to evaluate
the adaptive sample size or event number recalculations based
on conditional power, treatment selection strategies in multiarm
trials, and enrichment designs. Ryeznik et al [35] provided a
software package for designing randomized response-adaptive
clinical trials with time-to-event outcomes, and codes were
downloaded directly from the journal website [35].

Commercial statistical packages also provide built-in commands
for searching different types of designs and a myriad of data
analytical tools for making inferences in different types of
clinical trials. For example, in STATA, there is a single
command that finds a phase 1 design using the continual
assessment method. A skeleton has to be specified, along with
a single parameter toxicity model, where after each response,
the single parameter is updated using a Bayesian paradigm. If
there are 5 doses at 0.05, 0.1, 0.17, 0.3, and 0.4 to be explored
for finding the maximum tolerated dose; the assumed probability
of having a toxic response at these levels is 1, 2.5, 5, 10, and
15; and an exponential prior is used for the single parameter in
the power model for toxicity using a set of 90 grid points for
integration, one simply types “crm y dose, s(0.05 0.1 0.17 0.3
0.4) dose(1 2.5 5 10 15) target(0.3) model(power) inv(power)
prior(exponential) pmean(1) quad(90) g” and the simulated
results are displayed in tabular and graphical forms.

In summary, interactive websites are useful because they allow
users to input design parameters and the design appears quickly
after a few strokes on the keyboard. They are especially helpful
for biomedical researchers who understand what the designs do
and want to find the designs quickly and have little interest in
their technical construction. Unlike MD Anderson’s website,
they do not require the user to install new programs and read
help manuals before the codes are run to find the desired
designs. In the era of digital health, such web-based tools can
now blunt the old and common criticism that adaptive designs
require a statistician to randomize patients or cohorts of patients
in the trial since the process can now be safely automated.
However, interactive websites generally need to be thoughtfully
constructed and can be costly to maintain as technology changes
and old programs may become security threats and need to be
taken down or totally revamped. This was the experience of one
of the coauthors.

Metaheuristics for Designing Efficient Clinical Studies

Overview
Increasingly, metaheuristics is used to tackle all types of
optimization problems, particularly in engineering and computer
science. Algorithms motivated by nature behavior are called
nature-inspired metaheuristic algorithms, and they are especially
popular because of the voluminous reports of their flexibility
and successes in tackling all kinds of challenging optimization
problems. There are many monographs on metaheuristics, such
as the studies by Yang [36] and Engelbrecht [37], and how they
may be hybridized with other algorithms for a more effective
search [38]. Recent review papers on metaheuristic algorithms
include the studies by Bonyadi and Michalewicz [39] and Korani
and Mouhoub [40]. Metaheuristics with a focused application
area is also available. For example, Nakib et al [41] cataloged
applications of metaheuristics in a book for medicine and
biology, the study by Yang [36] was concerned with engineering
applications, Sun et al [42] focused on estimation problems in
systems biology, and Mendes et al [43] focused on agricultural
problems. The meteoric rise of metaheuristics is well
documented in the studies by Whitacre [44,45].

Exemplary nature-inspired algorithms are PSO proposed by
Kennedy and Eberhart [46] and differential evolutionary
proposed by Storn and Price [47]. The first is swarm based and
simulates how a flock of birds searches for food on the ground,
and the other is evolutionary, based on the evolution of genetics.
These algorithms, as the names suggest, are motivated by nature
and are intriguing because they tend to, with repeated runs, be
able to find the global optimum or close to it, although they
rarely have rigorous mathematical proofs of convergence to the
global optimum. All nature-inspired metaheuristic algorithms
are literally free of assumptions; they have tuning parameters
and stochastic elements in the 2 or 3 relatively simple equations
that define how the algorithm works to simulate the movement
of animals. Increasingly, there are calls to apply metaheuristics
and machine learning tools for pharmaceutical research and
they include past studies [48-50].

Nature-inspired metaheuristic algorithms are not without
problems, and they include how to skillfully choose the values
of the tuning parameters and how to choose the type of
stochastic components in them. In addition, search candidates
can move outside the search domain and must be returned to
the domain judiciously. This issue can affect the performance
of PSO, particularly when solving high-dimensional optimal
design problems. Unlike the first 2 problems concerning the
choice of values for the tuning parameters and the choice of
stochastic components, where some progress has been made,
the third issue of how to bring back out-of-bounds candidate
solutions to the search domain has not been investigated. After
we briefly review some recent uses of metaheuristics in clinical
trials, the following subsection investigates this important issue
when PSO is used to find various types of optimal designs for
nonlinear models with 3 to 4 parameters useful for biomedical
studies.

We have cited some recent applications of PSO to identify more
flexible or efficient designs for clinical trials. Lange and
Schmidli [51] and Qiu et al [52] were among the first to use
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optimal design theories and PSO to construct efficient designs.
The first set of authors focused on applications for biological
clinical trials, and the latter set of authors provided several
applications for finding optimal designs for a variety of models
useful for biomedical studies. For more complicated design
problems, Chen et al [53] demonstrated how PSO can be
modified or hybridized with another algorithm to search for an
optimal design that best discriminates among nonlinear models
under various error distributional assumptions with applications
in toxicology. In all cases, the abovementioned studies focused
on optimal approximate designs, which are large-sample optimal
designs, and view designs as probability measures in a design
space. An advantage of working with such designs is that when
the design criterion is convex as a function of the information
matrix of the design, we have a convex optimization problem,
and the optimality of an approximate design can be readily
verified [54]. An overview of how to use PSO to solve various
design problems in statistics is present in the study by Chen et
al [55].

To elaborate, we provide 2 recent applications of PSO to identify
more flexible and efficient designs for medical problems. The
first application used PSO to provide more flexibility to the
celebrated Simon Two-Stage Design for a phase 2 trial [27],
and the second application used PSO to solve a challenging
design problem to estimate the most efficacious dose (MED)
for the continuation ratio (CR) model.

At stage 1 of the original Simon design, the drug is tested to
determine whether there is potential usefulness of the drug. If
there are too few responders, the drug is deemed ineffective and
the trial is terminated. If there are enough responders in stage
1, the trial moves on to the second stage, where additional
patients will be recruited and tested. If the cumulative percentage
of responders at the end of stage 2 is large enough, the drug will
progress to phase 3 for large-scale testing; otherwise, the drug
is deemed ineffective and the trial is terminated at stage 2. The
null hypothesis at stage 1 is to test whether the response rate is
equal to a user-specified value of p0, and at the second stage,
we used the cumulative data and tested a second null
hypothesis—whether the response rate is equal to p1 where
p1>p0. The statistical questions to be answered are the given
type 1 and 2 errors for testing the 2 hypotheses, what is the
sample size (n1 for stage 1) and how many responders (r1) are
needed in stage 1 to advance to the second stage? There are also
questions about the number of additional participants (n − n1)
to recruit for stage 2 and whether additional responders (r − r1)
are needed in stage 2 to reject the null hypothesis.

The optimization problem is to find the optimal integer values
of n1, n, r1, and n that meet the 2 sets of error constraints, which
can be solved by a greedy search using binomial probabilities.
Subsequent criticism concerns how p1 is selected in practice.
To overcome this difficulty, Lin and Shih [56] proposed 2 null
values, p10 and p20, for testing in stage 2, and only one of them
will be tested, depending on the stage 1 results. There are now
6 integer values to optimize subject to 6 error constraints. The
authors noted that their greedy search approach exhausted all
the computing resources at that time. To further mitigate the

uncertainty of specifying the value of p1 in the second stage,
Kim and Wong [57] proposed specifying in advance 3 possible
values of p1, and only one of the null hypotheses will be tested,
depending on the stage 1 result. Using a hybrid version of PSO,
they were able to verify that their results were the same as earlier
results when there were only 1 or 2 null hypotheses, and their
results satisfied the 4 sets of prespecified type 1 and 2 error
rates, which can vary depending on the set of hypotheses to be
tested; details are available in the study by Kim and Wong [57].

Increasingly, phases 1 and 2 are comingled to assess toxicity
and efficacy to save cost in a clinical trial. Many models have
been proposed to incorporate toxicity and efficacy concerns at
the onset of the study. Some have a model for modeling toxicity
and another for modeling efficacy and are then linked using
joint and conditional probabilities. An early work using this
approach is the study by Heise and Myers [58] and a recent
approach is the study by Aout and Seroutou [59]. More recently,
Fedorov et al [60] tackled a more challenging problem when
they sought a model-based optimal design to incorporate a
continuous (efficacy) and a discrete response (toxicity), and the
2 responses are correlated.

The CR model is a dose-response model that allows for a
3-category outcome as the dose levels vary. Fan and Chaloner
[61] discussed the optimal designs for estimating model
parameters or a selected function of the model parameters for
the CR model on an unbounded dose interval. Qui and Wong
[62] modified the PSO and applied it to find ≥2 objectives when
some are more important than others on any user-specified
interval for the CR model. Specifically, PSO was used to find
locally optimal designs for estimating the 4 parameters in the
CR model, MED, and the maximum tolerated dose. The latter
2 objectives are convex functions of the information matrices,
so equivalence theorems can be used to confirm the optimality
of the design.

Repair Mechanisms Comparison in PSO
There are 2 types of repair mechanisms commonly used in the
literature: random repair and boundary repair [63]. Let us
assume that PSO searches a J-dimensional dose space

where ubj and lbj are the upper and lower bounds of the jth
dimension, respectively.

The ith particle’s position at time t is a vector

The random repair, as the name indicates, randomly assigns a
position within the dose space when a particle wanders outside
of the design space,
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where z(t) is the jth component of the ith particle’s position at
time t, and rand(lbj, ubj) is a random variable from a uniform
distribution on [lbj, ubj]. This repair mechanism has 2 direct
effects on the swarm movements: (1) increasing the ith particle’s

velocity v(t) at time t and (2) increasing |pi,j − z(t)| and |pg,j − z(t)|.
Both effects increase the energy of the swarm and “disturb the
swarm into chaos state,” thereby slow down the convergence
speed to the global optimum [63].

Another type of repair strategy in PSO is boundary repair. This
strategy pulls errant particles back to the nearest boundary of
the design space:

The effects of boundary repair on swarm movements are
opposite to what random repair does: (1) decreasing the velocity

v(t) and (2) decreasing |pi,j − z(t)| and |pg,j − z(t)|. Both effects
directly decrease the energy of the swarm. The boundary of the
dose space acts as a quasi-gravity center that attracts particles
current and the following positions until the population’s best
position is no longer at the boundary. Such a repair mechanism
“accelerates the swarm into an equilibrium state and may lead
to premature convergence” [63]. It is known that locally D and
c-optimal designs frequently have support points at or near the
boundary of the design space [64]. This suggests that bringing
back out-of-bounds particles to a random point in the boundary
may be a good strategy. We call this modification the boundary
repair mechanism.

To compare the performances of the 2 repair mechanisms, we
conducted simulation studies to investigate their choice of
locally finding D- and c-optimal designs for various statistical
models. This study was, in part, first motivated by their impact
on the search for a D-optimal design for a linear model with 2
variables, given in the following equation:

Ey = β0 + β1x1 + β2x2 + β11x1
2 + β12x1x2, x ∈ χ = [−1, 1] × [0,

1].

Figure 1A plots the fitness values of the D-optimality design
criterion versus the iteration numbers. For this linear model
with 2 interactive variables, we observed that the strategy of
randomly assigning out-of-boundary particles into the design
space clearly underperforms when compared to the other
strategy of pulling back articles to the boundary of the design
space. This finding is not surprising because D-optimal designs
for linear models invariably have design points at the boundary
[64]. This led us to investigate whether such underperformance

by one strategy applies to finding optimal designs for commonly
used nonlinear models and whether such an observation is
confined to D-optimality only.

We applied PSO to find various types of optimal designs for
3-parameter and 4-parameter nonlinear models. We locally
found D-optimal designs for estimating all parameters in the
model, and we constructed c-optimal designs for estimating (1)
the average time a drug stays in the targeted compartment; (2)
the time to reach its maximum concentration in a 3-parameter
compartmental model; and (3) the MED for a continuation
model that incorporates toxicity and efficacy probabilities in
the model as the drug concentration, on the log scale, varies.
The MED sought is the dose that produces the most efficacy at
a user-specified level of toxicity deemed acceptable. This design
problem is complicated because an analytical form of the
estimated MED is not available, and we have to resort to the
implicit function theorem to find the gradient of the MED
function, which is needed to find the local c-optimal design
[61]. In either case, we have a statistical model with one variable
x representing time or concentration dose levels, and we
compared the 2 pulling-back strategies in PSO for finding an
efficient design under the D or c-optimality criterion. These
models of various complexities are as follows:

1. Compartmental model [54]
Ey = θ3(exp(−θ2x) − exp(−θ1x)), x ∈ χ = [0, 20] (1)with
nominal values of θ1=0.05884, θ2=4.298, and θ3=21.8.

2. Logistic quadratic model

(2)
with nominal values of α=3, β=−5, and µ=0.

3. Heteroscedastic 4-parameter Hill model [65]

(3)
with nominal values of Econ=1.7, B=0.137, IC50=0.453,
m=−0.825 and λ=3.

4. CR model [61]
log(π3(x) / (1 − π3(x))) = a1 + b1x (4)
log(π2(x) / π1(x)) = a2 + b2x, x∈χ = [−10, 10] with nominal
values a1=0, b1=b2=1, a2=5 for the constant slope case, and
nominal values a1=−3.3, b1=0.5, a2=3.8, and b2=1 for the
non–constant slopes case.

We applied PSO to find the MED when the CR model in
equation 4 has a nonconstant slope and noted that the MED
sought is the solution to the equation b2(1 + exp(−a1 − b1x)) −
b1(1 + exp(a2 + b2x)) = 0, which does not have a closed form.
We also used PSO to find c-optimal designs for estimating 2
functions c(θ) of the model parameters θ. The 2 functions of
interest are the average time the drug spends in the target
compartment and the time required to reach the maximum
concentration in the target compartment. These 2 functions are
determined by integrating the mean response function from 0
to +∞ to obtain the area under the curve and using calculus to
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obtain the time (tmax) required to attain the maximum mean
response function of the compartmental model in (1). A direct
calculation shows the following:

or

The fitness values of the PSO-generated designs under the local
D and c-optimality criteria are, respectively, log(I(ξ, θ)) and

−log(−∇T c(θ)I−1(ξ, θ)∇c(θ)). We ran PSO 20 times with the
random or boundary repair mechanism to find the locally D-
and c-optimal designs for the above models. In each replicate,
the best fitness values found by the entire flock at every iteration
were recorded. Figures 1 and 2 show the average best fitness
values over 20 replicates versus the number of iterations for the

2 repair mechanisms for the different models using the D or
c-optimality criteria. The solid curves are generated by PSO
with the boundary repair mechanism, and the dotted curves are
generated by PSO with the random repair mechanism.

Figures 1B and 2A show that PSO with boundary repair
consistently converges faster than PSO with a random repair
under the D-optimality criterion for the univariable models. The
linear model with 2 regressors exhibits a greater difference in
performance when different pull-back strategies are used in the
PSO (Figure 1A). For complicated models, our experience is
that PSO with a random repair is unable to find the optimal
design regardless of the maximum number of iterations and
flock size we chose. For the CR model, where we want to find
locally D-optimal designs for constant (Figure 2B) and
nonconstant slope models (Figure 2C) and a c-optimal design
for estimating MED (Figure 2D), we observed that although
PSO with boundary repair still outperforms the other strategy,
the difference in their performance seems to be increasingly
smaller as PSO progresses.

J Med Internet Res 2023 | vol. 25 | e44171 | p. 10https://www.jmir.org/2023/1/e44171
(page number not for citation purposes)

Zhu & WongJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Convergence rates of the two repair mechanisms in PSO for finding (A) the D-optimal design for the 2-variable linear model on χ=[-1,1] X
[0,1] and (B) the locally D-optimal designs for the logistic quadratic model with nominal parameters α=3, β = 5, and µ=0 on χ=[-1,1]; (C) locally area
under the curve optimal design for the compartmental model with nominal parameters θ1=0.05884, θ2=4.298; and θ3=21.8; and (D) the local tmax

optimal design for the compartmental model in (C).
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Figure 2. Convergence rates of the two repair mechanisms in PSO for finding D- and c-optimal designs for various 4-parameter nonlinear models: (A)
locally D-optimal design for the Hill model with Econ=1.7, b=0.137, IC50=0.453, m=0.825, λ=3 on χ=[0, 453]; (B) locally D-optimal design for the
continuation ratio (CR) model on χ=[-10, 10] with a constant slope and nominal parameters a1=0, b1=1, a2=5, b2=1; (C) locally D-optimal design for
the CR model on χ=[-10, 10] with unequal slopes with nominal parameters a1=3.3, b1=0.5, a2=3.8, b2=1; and (D) locally c-optimal design for estimating
the most efficacious dose for the CR model in (C).

Conclusions
We conclude with a summary of the benefits of adaptive designs
and metaheuristics and offer commentaries on their use in
practice.

Adaptive clinical trial designs provide numerous advantages
over traditional fixed designs, including increased efficiency,
enhanced ethical considerations, improved patient safety,
increased flexibility, increased probability of success in
identifying effective treatments, and the ability to address
multiple research questions. Specifically, adaptive designs can
increase the statistical power of a trial, reduce the number of
patients required, decrease trial duration, and lower overall
costs. Furthermore, adaptive designs can increase the likelihood
of patients receiving superior treatment and decrease the risk

of exposing them to unsafe or ineffective treatments. In addition,
adaptive designs allow for flexibility in adjusting the sample
size, randomization ratios, and end point analyses based on the
interim data analysis. The ability to adapt the design of a trial
also enables researchers to address multiple research questions
within the same trial by testing multiple hypotheses and can
increase the probability of identifying effective treatments.
When reporting results from adaptive clinical trials, it should
be clarified whether the adaptation was planned or unplanned,
what was the rationale behind the adaptation, when the
adaptation was made, and whether it was applied to some or all
data. Information regarding whether the data were blinded
should also be provided. One also needs to describe who made
the decision regarding adaptation, deviations from the planned
process, and consistency of results before versus after the
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adaptation. Finally, one needs to discuss the potential biases
induced by the adaptation, strategies to avoid operational bias,
and the effects on error control and multiplicity context.

To elaborate on the above remarks, consider RAR trials that
are, by construction, more ethical than traditional designs.
Compared with traditional designs, they are generally more cost
and time efficient. Another merit is that they can potentially
improve trial recruitment because more patients can be assigned
to better treatment. RAR trials also provide a fruitful area for
further research, and there are already some initial extensions
of RAR trials for multiarmed survival trials [35,66,67] or for
trials with a couple of objectives with competing interests [68].
It is also worth noting that Tehranisa and Meurer [23] found
that clinical trials that implement an RAR design will attract
significantly higher participation than standard randomization,
which might be particularly beneficial to rare disease clinical
trials. In summary, adaptive designs are flexible designs that
offer many benefits over traditional designs and should be more
widely implemented in practice.

Metaheuristics is already widely used across disciplines,
including in artificial intelligence research, and its use in finding
efficient studies is just beginning. Metaheuristic algorithms are
general purpose optimization algorithms with minimal or no
assumptions required, and they have been shown in the
engineering and computer science literature that they work well
in tackling complex optimization problems, including
high-dimensional problems that naturally occur in the internet
era. A common criticism is that there are many such algorithms
and almost all work similarly by exploring the search domain

for the optimum and exploiting the sites near a global optimum
in different ways. Because they are differently motivated, some
tend to be better in solving certain types of optimization
problems. Unfortunately, there is rarely a clear-cut answer, so
researchers should be familiar with many types of metaheuristic
algorithms, including mathematical programming tools, such
as semidefinite programming methods, and know the strengths
and weaknesses of each algorithm. Hybridization is a technique
to enhance the performance of a metaheuristic algorithm by
combining its best features with one or more other types of
algorithms that can compensate for some of its weaknesses.
Blum and Raidl [38] provide details and real examples.

There is no proof of convergence for almost all metaheuristic
algorithms, and there is no clear way of confirming the
optimality of a solution. Consequently, it is important to verify
the optimum found from a metaheuristic algorithm, particularly
when there is no theoretical tool to do so. At a minimum, we
recommend 2 checks. The first is to modify the algorithm by
changing its tuning parameters, flock size, the number of
iterations, and particular strategies of the algorithm to ascertain
whether the same or similar optimum is generated. For instance,
we demonstrated that different strategies for bringing back
out-of-domain particles can affect the quality of the found
optimum; in particular, Figure 1A shows that interestingly the
most marked difference in the 2 strategies was observed for the
linear model with 2 interacting variables. The second is to run
different metaheuristic algorithms and observe whether they
provide similar answers. In sum, they are intriguing algorithms,
and their use should be more widespread in clinical trial research
settings.
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