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Abstract

Background: Convolutional neural networks (CNNs) have produced state-of-the-art results in meningioma segmentation on
magnetic resonance imaging (MRI). However, images obtained from different institutions, protocols, or scanners may show
significant domain shift, leading to performance degradation and challenging model deployment in real clinical scenarios.

Objective: This research aims to investigate the realistic performance of a well-trained meningioma segmentation model when
deployed across different health care centers and verify the methods to enhance its generalization.

Methods: This study was performed in four centers. A total of 606 patients with 606 MRIs were enrolled between January 2015
and December 2021. Manual segmentations, determined through consensus readings by neuroradiologists, were used as the
ground truth mask. The model was previously trained using a standard supervised CNN called Deeplab V3+ and was deployed
and tested separately in four health care centers. To determine the appropriate approach to mitigating the observed performance
degradation, two methods were used: unsupervised domain adaptation and supervised retraining.

Results: The trained model showed a state-of-the-art performance in tumor segmentation in two health care institutions, with
a Dice ratio of 0.887 (SD 0.108, 95% CI 0.903-0.925) in center A and a Dice ratio of 0.874 (SD 0.800, 95% CI 0.854-0.894) in
center B. Whereas in the other health care institutions, the performance declined, with Dice ratios of 0.631 (SD 0.157, 95% CI
0.556-0.707) in center C and 0.649 (SD 0.187, 95% CI 0.566-0.732) in center D, as they obtained the MRI using different scanning
protocols. The unsupervised domain adaptation showed a significant improvement in performance scores, with Dice ratios of
0.842 (SD 0.073, 95% CI 0.820-0.864) in center C and 0.855 (SD 0.097, 95% CI 0.826-0.886) in center D. Nonetheless, it did
not overperform the supervised retraining, which achieved Dice ratios of 0.899 (SD 0.026, 95% CI 0.889-0.906) in center C and
0.886 (SD 0.046, 95% CI 0.870-0.903) in center D.

Conclusions: Deploying the trained CNN model in different health care institutions may show significant performance degradation
due to the domain shift of MRIs. Under this circumstance, the use of unsupervised domain adaptation or supervised retraining
should be considered, taking into account the balance between clinical requirements, model performance, and the size of the
available data.
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J Med Internet Res 2023 | vol. 25 | e44119 | p. 1https://www.jmir.org/2023/1/e44119
(page number not for citation purposes)

Chen et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:drjianguoxu@gmail.com
http://dx.doi.org/10.2196/44119
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

meningioma segmentation; magnetic resonance imaging; MRI; convolutional neural network; model test and verification; CNN;
radiographic image interpretation

Introduction

Meningioma is now recognized as the most common intracranial
lesion with an annual incidence of 5/100,000, accounting for
30% of primary central nervous system tumors. It is a type of
slow-growing tumor that needs relatively frequent monitoring
as its rapid growth indicates a malignant transformation [1,2].
Clinically, a magnetic resonance (MR) scan is the most
important examination for tumor diagnosis, assessment, and
follow-up [3,4].

Computer-aided diagnostic (CAD) studies are developing
rapidly with recent advances in artificial intelligence
technologies. Recent results have reported that well-trained
convolutional neural network (CNN) models can show
state-of-the-art performance for meningioma segmentation on
MR imaging (MRI) with a Dice ratio of more than 0.900 [5-10].
On the one hand, these studies provided a series of CNN models
for automated tumor detection and volumetric assessment,
indicating convenient radiological tools to facilitate patient
management in clinical practice. On the other hand, they
provided an important image preprocessing method for
subsequent oncological analysis (eg, Ki-67 prediction and
grading prediction), presenting a time-saving method that can
be applied to numerous downstream tasks [10-19].

To date, all of the CAD research investigating meningioma
segmentation tested the robustness of CNN models using images
that were similar to the training data set. However, the objectives
in medical images, especially MRIs, can vary substantially in
image pattern when acquired by different scanning protocols.
Unlike computed tomography scanning, in which the individual
tissues and adjacent structures have their own typical computed
tomography numbers (Hounsfield unit), the signal intensity of
tissue on MRIs is determined by various factors, including the
scanner manufacturers; imaging parameters such as contrast
administration, repetition, and echo time; k-space filling
strategy; and reconstruction algorithm. Therefore, images
obtained from different protocols or scanners may show a
significant domain shift, leading to model performance
degradation and challenging its deployment in public health
care institutions [20,21]. Given the importance of image

segmentation of meningioma, how the well-trained model would
realistically perform when used in different public health care
centers should be investigated.

To mitigate this limitation and meet the clinical needs, we
deployed and tested the well-trained meningioma segmentation
model in four public medical centers. Furthermore, we explored
the efficacy of retraining and transfer learning, as these are
widely used techniques when the model exhibits a significant
decline in performance. This study is the first investigation
focused on meningioma segmentation model deployment and
testing, and will provide detailed statistics for clinicians who
may benefit the most from CAD research.

Methods

Study Population
This is a multicenter study conducted in four health care centers.
All patients underwent tumor resection and were pathologically
diagnosed with meningioma between January 2015 and
December 2021. The inclusion criteria were as follows: had a
pathological diagnosis of meningioma and underwent
pretreatment MR scans and had high-quality MRIs. The patients
were excluded from this research if the MRIs had noticeable
motion, aliasing, or rippling artifacts; untraceable treatment
history, including radiotherapy or surgery; multiple
meningiomas; and a recorded intracranial disease history,
including subarachnoid hemorrhage, ischemic stroke, and other
types of intracranial tumor. We also checked their pathological
records, ensuring the diagnosis complied with the latest
guidelines, which were released in 2021 [22].

Patients were examined using both 3.0 T and 1.5 T MR
machines from different manufacturers with various scanning
protocols, as summarized in Multimedia Appendix 1. It should
be mentioned that the MR scans were obtained by using similar
scanning protocols in centers A and B (magnetization-prepared
rapid gradient echo [MPR-AGE]), while centers C and D used
a separate protocol (fat-suppressed fast or turbo spin echo
[FSE/TSE]). A flowchart covering the detailed inclusion and
exclusion criteria for patients is provided in Figure 1.
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Figure 1. Flow diagram of the study population. MRI: magnetic resonance imaging.

Image Preprocessing and Ground Truth Segmentation
The MRIs closest to the surgery date were exported, checked,
and collected via picture archiving and communication systems.
Spatial resolution was resampled to 1 × 1 × 1 (centers A and
B) or 1 × 1 × 5 (centers C and D), and the intensity was
normalized to [0,1]. The tumor masks were manually reviewed
and segmented by 5 neuroradiologists (with 10 years of working
experience in image reading) in a consensus reading together
by using ITK-SNAP software (version 3.8.0; Penn Image
Computing and Science Laboratory). Following the software
instructions, the radiologists were asked to accurately delineate
the region of interest (ROI) along the tumor boundary slice by
slice on axial view images. Enhanced vessels and darkened
necrosis inside the tumors were included in the ROI, while
adjacent structure invasion and peritumoral edema band were
separated from the ROI by the different enhanced patterns in
contrast enhancement. When the authors were in disagreement
with each other, they consulted senior radiologists or physicians
and asked the corresponding author (who has 20 years of
working experience in image reading) to make the final decision.
The corresponding author and 3 senior neuroradiologists also
reviewed and checked all masks.

Model Test of the Well-Trained CNN (Model 1)
The well-trained CNN (model 1) was constructed based on a
state-of-the-art semantic segmentation network called Deeplab
V3+, a state-of-the-art deep learning architecture for semantic
image segmentation [23]. This model was trained by using the
images of 735 cases collected from center A and showed good
performance in the internal test. More detailed information,

including network structure, data augmenting strategy, and
hyperparameter settings are shown in Multimedia Appendix 2
[23].

The performance of this model was independently tested on the
four health care institutions. Manual ROI labels were set as the
ground truth. The performance was analyzed using the following
metrics: Dice ratio, Jaccard ratio, Hausdorff distance of 95%
percentile (95% HD), and true-positive rate (TPR). Their
definitions are provided in Multimedia Appendix 3.

Performance Enhancement With Unsupervised
Domain Adaptation (Model 2)
For the institutions where model 1 showed significantly
degraded performance, the unsupervised domain adaptation
method and supervised retraining were used to enhance the
results. Specifically, model 2 was generated using the
unsupervised domain adaptation method, which was designed
by our team exclusively for meningioma segmentation. The
main purpose of this network is to adjust the features by
minimizing the distributions of the source and target domains.
Detailed descriptions of the network structure, data argument,
and hyperparameter settings are provided in Multimedia
Appendix 4 [24]. All images from center A with manual labels
were set as the source, and 80% of the randomly selected cases
from centers C and D without labels were set as the target
domains for generative adversarial learning. The rest of the
cases from centers C and D were set as the test group.
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Performance Enhancement With Supervised
Retraining (Model 3)
Model 3 was also trained by using Deeplab V3+, just like model
1. From centers C and D, 80% of cases were randomly selected
and used as the training cohort, and 20% were used as the test
cohort (the same split previously mentioned). Dice ratio, Jaccard
ratio, 95% HD, and TPR were used as the metrics for the
performance evaluation. All CNN models were programmed
using the Python programming language (PyTorch 1.3.1; Meta
AI), and the hardware platform was a workstation equipped
with an NVIDIA Tesla P100 data center accelerator.

Ethical Considerations
This multicenter study was conducted at West China Hospital,
Sichuan University (center A); the Third Peoples’ Hospital of
Mianyang (center B); Shangjin Nanfu Center of West China
Hospital, Sichuan University (Center C); and Leshan City No.2

People’s Hospital (center D). This retrospective study is
approved by the Institutional Review Board of the West China
Hospital, Sichuan University (ID: 2021-S-851), and written
informed consent were waived due to its retrospective nature.

Results

Characteristics of the Study Cohort
A total of 606 patients from 606 examinations were enrolled in
this study. More specifically, 247 cases from center A, 124
cases from center B, 153 cases from center C, and 82 cases from
center D were included in this research. The average age of
patients was 51.5 (range 22-83) years, and 360 (59.4%) of them
were female. The majority of patients were diagnosed with
low-grade tumors (n=526, 86.8%). The baseline information of
patients is provided in Table 1, and sample images of each
scanner are represented in Figure 2.

Table 1. Baseline information of the cases collected in multiple centers.

Center DCenter CCenter BCenter A

82153124247Cases, n

51.7 (28-75)49.6 (28-63)50.1 (22-81)53.2 (32-83)Age (years), mean (range)

Gender, n

409277151Female

32614796Male

World Health Organization grade, n

8191734High-grade tumor

74134107211Low-grade tumor

Figure 2. The examples of magnetic resonance imaging from four databases. (A) Center A (magnetization-prepared rapid gradient echos [MPR-AGEs]);
(B-C) center B (MPR-AGEs); (D-G) center C (fat-suppressed fast or turbo spin echos [FSEs/TSEs]); (H) center D (FSEs/TSEs). Tumor boundary is
more clear in MPR-AGEs as they present high spatial resolution (red arrow). Moreover, the cerebral cortex is rather obvious in MPR-AGEs but not in
FSEs/TSEs, as FSEs/TSEs are fat suppressed (yellow arrow).
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Model Test in Four Public Health Care Institutions
Generally, the model showed good performance in centers A
and B, but centers C and D had significantly degraded
performance, as illustrated in Figure 3. Specifically, the
performance of the model in center A had a Dice ratio of 0.887
(SD 0.108, 95% CI 0.903-0.925), Jaccard ratio of 0.811 (SD
0.143, 95% CI 0.767-0.855), 95% HD of 3.287 (SD 3.630, 95%
CI 2.170-4.404) mm, and TPR of 0.873 (SD 0.118, 95% CI
0.837-0.909). The performance of the model in center B had a
Dice ratio of 0.874 (SD 0.800, 95% CI 0.854-0.894), Jaccard
ratio of 0.784 (SD 0.118, 95% CI 0.754-0.814), 95% HD of

4.114 (SD 4.106, 95% CI 3.080-5.148) mm, and TPR of 0.869
(SD 0.107, 95% CI 0.842-0.896; Figure 4). However, it showed
significantly decreased performance in center C, with a
performance Dice ratio of 0.631 (SD 0.157, 95% CI
0.556-0.707), Jaccard ratio of 0.478 (SD 0.157, 95% CI
0.402-0.554), 95% HD of 12.685 (SD 18.824, 95% CI
3.613-21.758) mm, and TPR of 0.629 (SD 0.278, 95% CI
0.495-0.763), and center D’s performance had a Dice ratio of
0.649 (SD 0.187, 95% CI 0.566-0.732), Jaccard ratio of 0.505
(SD 0.191, 95% CI 0.421-0.590), 95% HD of 12.062 (SD
17.539, 95% CI 4.286-19.838) mm, and TPR of 0.643 (SD
0.280, 95% CI 0.518-0.767; Table 2).

Figure 3. Performance of the well-trained model (model 1) in 4 health care institutions, illustrated by using Dice ratio and 95% HD. The model kept
its good performance in centers A and B but significantly degraded in centers C and D. 95% HD: Hausdorff distance of 95% percentile.

Figure 4. The examples of magnetic resonance imaging from 4 databases. (A) Center A (magnetization-prepared rapid gradient echos [MPR-AGEs]);
(B-C) center B (MPR-AGEs); (D-G) center C (fat-suppressed fast or turbo spin echos [FSEs/TSEs]); (H) center D (FSEs/TSEs). Tumor boundary is
more clear in MPR-AGEs as they present high spatial resolution (red arrow). Moreover, the cerebral cortex is rather obvious in MPR-AGEs but not in
FSEs/TSEs, as FSEs/TSEs are fat suppressed (yellow arrow). MR: magnetic resonance.
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Table 2. Model 1 performance when tested in four institutions.

TPRb (SD)95% HDa (mm; SD)Jaccard ratio (SD)Dice ratio (SD)Institution

0.873 (0.118)3.287 (3.630)0.811 (0.143)0.887 (0.108)Center A

0.869 (0.107)4.114 (4.106)0.784 (0.118)0.874 (0.800)Center B

0.629 (0.278)12.685 (18.824)0.478 (0.157)0.631 (0.157)Center C

0.643 (0.280)12.062 (17.539)0.505 (0.191)0.649 (0.187)Center D

a95% HD: Hausdorff distance of 95% percentile.
bTPR: true-positive rate.

Performance Enhancement With Unsupervised
Domain Adaptation
Via the proposed transfer learning network, the performance of
CNN models was significantly enhanced (Figure 5). In center
C, the performance of the model had a Dice ratio of 0.842 (SD
0.073, 95% CI 0.820-0.864), Jaccard ratio of 0.733 (SD 0.103,
95% CI 0.703-0.645), 95% HD of 5.047 (SD 3.597, 95% CI
3.967-6.128) mm, and TPR of 0.841 (SD 0.121, 95% CI

0.804-0.877; Figure 6 A-P), and in Center D, the performance
of the model had a Dice ratio of 0.855 (SD 0.097, 95% CI
0.826-0.886), Jaccard ratio of 0.758 (SD 0.125, 95% CI
0.719-0.797), 95% HD of 4.880 (SD 4.186, 95% CI 3.575-6.184)
mm, and TPR of 0.866 (SD 0.103, 95% CI 0.834-0.898; Figure
6 Q-T). These results indicated that it was feasible for the
proposed transfer learning method to use existing data sets and
could generate a CNN model with good performance in dealing
with meningioma segmentation.

Figure 5. Performance enhancement of unsupervised domain adaptation (model 2) and supervised training (model 3), illustrated by using Dice ratio
and 95% HD. 95% HD: Hausdorff distance of 95% percentile.
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Figure 6. Representative images illustrating the performance degradation of model 1 and improvement of model 2. (A-P) Center C (four scanners);
(Q-T) center D. MR: magnetic resonance.

Performance Enhancement With Supervised
Retraining
Generally, the supervised-trained model 3 showed superior
performance compared to model 2, with the performance having
a Dice ratio of 0.899 (SD 0.026, 95% CI 0.889-0.906), Jaccard
ratio of 0.815 (SD 0.041, 95% CI 0.802-0.828), 95% HD of
3.615 (SD 2.407, 95% CI 2.835-4.395) mm, and TPR of 0.902

(SD 0.048, 95% CI 0.886-0.917) in center C (Figure 7 A-P),
and a Dice ratio of 0.886 (SD 0.046, 95% CI 0.870-0.903),
Jaccard ratio of 0.799 (SD 0.073, 95% CI 0.772-0.826), 95%
HD of 4.102 (SD 3.889, 95% CI 2.676-5.529) mm, and TPR
0.883 (SD 0.068, 95% CI 0.858-0.908) in center D (Figure 7
Q-T). The segmentation performance of models 2 and 3 are
summarized in Table 3.
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Figure 7. Representative images illustrating the performance degradation of model 1 and improvement of model 2. (A-P) Center C (four scanners);
(Q-T) center D. MR: magnetic resonance.
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Table 3. Model enhancement with unsupervised domain adaptation and supervised retraining.

TPRb (SD)95% HDa (mm; SD)Jaccard ratio (SD)Dice ratio (SD)Institution

Unsupervised domain adaptation (model 2)

0.841 (0.121)5.047 (3.597)0.733 (0.103)0.842 (0.073)Center C

0.866 (0.103)4.880 (4.186)0.758 (0.125)0.855 (0.097)Center D

Supervised retraining (model 3)

0.902 (0.048)3.615 (2.407)0.815 (0.041)0.899 (0.026)Center C

0.883 (0.068)4.102 (3.889)0.799 (0.073)0.886 (0.046)Center D

a95% HD: Hausdorff distance of 95% percentile.
bTPR: true-positive rate.

Discussion

Principal Findings
In this study, we tested the performance of a well-trained CNN
model for meningioma segmentation in four independent health
care institutions. The results suggested that the model could
only keep its clinical feasibility in institutions where the MR
scans were performed using similar protocols as the training
data set. Moreover, the unsupervised domain adaptation method
represented significantly improved performance yet could not
outperform the supervised models trained on the large-scale
data set. Compared to previous research, this study should be
considered as a secondary analysis of a model deployment to
provide insights into the significant importance of validating
artificial intelligence methods in clinical practice.

Related Work and Interpreting the Results of the
Model Test
The strong clinical implementation highlights the importance
of automated tumor segmentation as it enhances both diagnostic
evaluation and tumor growth monitoring. Reliable volumetric
detection of tumor enlargement is highly related to therapeutic
decisions, but conventional diameter methods tend to rely
heavily on subjective experience [25], and manual volumetric
assessment of meningiomas is time-consuming and laborious.
Therefore, the majority of the latest research aimed to
automatically perform tumor volume measurement for
calculating the tumor growth rate [5-7,9], and the others aimed
to use segmentation as a prestep for further oncological analysis
[8,10]. These researchers directly used a state-of-the-art network
(eg, 3D-UNet or nnU-Net) for modeling or made several
modifications to the network structure (eg, replacing the basic
convolutional blocks of U-Net with the ResNeSt blocks). The
results suggested a great potential for deep learning methods,
which achieved a highest Dice ratio of 0.93 (SD 0.05) in the
internal test group and 0.91 (SD 0.06) in the independent test
group [8]. The clinical application of these high-performing
models could be further extended to simplify the clinicians’
work, like follow-up assessment, radiotherapy planning, and
presurgical simulation [26,27].

However, contrary to the optimistic results of previous studies,
our research suggests that the performance of artificial
intelligence models may worsen when applied to patients who
are distinct from those used for the model development given

the “data set shift” related to the complexity of the medical
domain. More specifically, for meningioma cases, both
MPR-AGEs and FSEs/TSEs are preferred in patient diagnoses
and follow-ups, but their image characteristics are substantially
different. Specifically, MPR-AGEs are the first recommended
protocol for surgical assessment, radiotherapy planning, and
surgical simulation, as they show higher spatial resolution but
cost more time and expenditure. In contrast, fat-suppressed
FSEs/TSEs are preferred in tumor screening and follow-up,
especially in low-income areas, as they present advantages in
time, cost efficiency, and sensitivity for a low degree of
enhancement, but their disadvantage is in low spatial resolution
[28].

The clinical interpretation of MRIs largely relies on visually
comparing the signal intensity of lesions and tissues. Their
difference may be perceived and accepted by the naked human
eye but challenges the well-trained supervised models when
deploying in a new institution. The results of our research
verified that CNNs showed high performance in similar images
with a Dice ratio of 0.887 and 0.874 in MPR-AGEs (centers A
and B, respectively) but significantly dropped to 0.631 and
0.649 in FSEs/TSEs (centers C and D, respectively). This must
be considered given the realistic clinical application of the
models. Typically, when deploying these CNN models in a new
institution located in a low-income area, where the clinicians
might need most assistance from CAD systems, ground truth
segmentation is probably available for limited data. Meanwhile,
retraining a new supervised CNN model not only is unacceptable
in most cases as it requires a large manually labeled data set
but also undermines the translational value of the existing
models. Therefore, the importance of unsupervised transfer
learning has been highlighted, as it can be an efficient way to
overcome this shortcoming.

Related Work and Results Interpretation of Model
Enhancement
Transfer learning can show improvement in CNN learning in
a new task by transferring knowledge from a related task that
has been learned [29]. Adversarial-based domain adaption tasks
have recently attracted substantial attention in computer vision,
as they can improve the transferability of the well-trained deep
network models from a source domain to a target domain with
different characteristics. Previous research has shown significant
improvement in semantic segmentation [30-32].
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Methodologically, in the realm of domain adaptation, various
methods have been proposed to address the challenge of domain
shift. One classic approach is the maximum mean discrepancy
loss, which computes the norm difference between two domains
[33]. Building upon this, the DDC combines maximum mean
discrepancy loss to obtain domain-invariant features [34].
Another technique introduced by researchers involves aligning
domain features in a reproducing kernel Hilbert space using
deep adaptation networks [35]. Similarly, another study updated
feature learning by considering the mean and covariance of the
two distributions [36]. Although these methods can align
features from different domains, they may not accurately capture
the discrepancy between the domains, and several methods have
emerged that use adversarial loss to minimize domain shift with
the exploration of adversarial learning to assist the networks in
feature learning. One approach proposed by researchers is the
use of domain confusion loss, which aims to differentiate
between domains and facilitate feature learning in the presence
of domain confusion [37]. Recognizing the instability associated
with alternate learning methods, another technique introduced
by researchers is the gradient reversal algorithm (ReverseGrad)
[38]. This algorithm enables an end-to-end direct training
approach to replace prior alternate training methods.
Subsequently, numerous methods have been developed based
on this concept. Adversarial learning has gained widespread
adoption, with the generative adversarial network (GAN) being
a notable example [39]. GANs directly achieve domain
alignment at the image level by generating synthetic source
samples that closely resemble the target samples. Notably,
CoGAN has also been proposed, a method that involves training
two GANs dedicated to each domain to facilitate the domain
transfer. This approach enables the alignment of features from
both domains by generating corresponding pairs of images.
However, it is important to highlight that the training process
of CoGAN is inherently constrained by the requirement for
corresponding paired samples, owing to its bidirectional nature.

Compared to previous methodological studies focusing on
network structures, our research focused on the application and

validation of this method to determine when it should be
considered in realistic clinical scenarios. Our research showed
two conclusions that must be considered but have never been
thoroughly quantitatively analyzed in previous studies. First,
unsupervised domain adaptation was indeed a feasible approach
that could extend an annotated data set to a new one lacking
annotation (Dice ratio: 0.631 vs 0.842 in center C; 0.649 vs
0.855 in center D, respectively). Second, the supervised CNN
outperformed this method (Dice ratio: 0.842 vs 0.899 in center
C; 0.855 vs 0.886 in center D, respectively) but required large,
labeled data sets for training. Therefore, the choice of computer
vision tasks in model deployment should consider the clinical
questions, model performance, data size, and clinicians’
requirements.

Limitations
This study had several limitations. First, only contrast-enhanced
images were used. Other types of images, including T1-weighted
images, T2-weighted images, and fluid-attenuated inversion
recovery, are also commonly used in clinical practice. These
imaging sequences should be investigated in future studies.
Second, all involved patients underwent surgical resection,
which meant that the number of early-stage tumors was limited.
Third, given the inherited selection bias of retrospective
research, prospective research conducted in multiple centers
should be required to verify our results. Fourth, our research
focused on model tests and method verification. All methods
used in this paper have been reported on before, and there was
no methodological innovation regarding network architecture.

Conclusions
The supervise-training CNN model for meningioma
segmentation can only maintain its feasibility on MRIs
presenting similar domain features with training data. When
the model shows significantly decreased performance, the
unsupervised domain adaptation method can be used, yet it
cannot transcend the supervised retraining method, which
requires a ground truth mask.
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