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Abstract

Background: In cases of terrorism, disasters, or mass casualty incidents, far-reaching life-and-death decisions about prioritizing
patients are currently made using triage algorithms that focus solely on the patient’s current health status rather than their prognosis,
thus leaving a fatal gap of patients who are under- or overtriaged.

Objective: The aim of this proof-of-concept study is to demonstrate a novel approach for triage that no longer classifies patients
into triage categories but ranks their urgency according to the anticipated survival time without intervention. Using this approach,
we aim to improve the prioritization of casualties by respecting individual injury patterns and vital signs, survival likelihoods,
and the availability of rescue resources.

Methods: We designed a mathematical model that allows dynamic simulation of the time course of a patient’s vital parameters,
depending on individual baseline vital signs and injury severity. The 2 variables were integrated using the well-established Revised
Trauma Score (RTS) and the New Injury Severity Score (NISS). An artificial patient database of unique patients with trauma
(N=82,277) was then generated and used for analysis of the time course modeling and triage classification. Comparative performance
analysis of different triage algorithms was performed. In addition, we applied a sophisticated, state-of-the-art clustering method
using the Gower distance to visualize patient cohorts at risk for mistriage.

Results: The proposed triage algorithm realistically modeled the time course of a patient’s life, depending on injury severity
and current vital parameters. Different casualties were ranked by their anticipated time course, reflecting their priority for treatment.
Regarding the identification of patients at risk for mistriage, the model outperformed the Simple Triage And Rapid Treatment’s
triage algorithm but also exclusive stratification by the RTS or the NISS. Multidimensional analysis separated patients with
similar patterns of injuries and vital parameters into clusters with different triage classifications. In this large-scale analysis, our
algorithm confirmed the previously mentioned conclusions during simulation and descriptive analysis and underlined the
significance of this novel approach to triage.
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Conclusions: The findings of this study suggest the feasibility and relevance of our model, which is unique in terms of its
ranking system, prognosis outline, and time course anticipation. The proposed triage-ranking algorithm could offer an innovative
triage method with a wide range of applications in prehospital, disaster, and emergency medicine, as well as simulation and
research.

(J Med Internet Res 2023;25:e44042) doi: 10.2196/44042
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Introduction

Background
Worldwide, the risk of terrorism, natural disasters, and conflicts
is taking on new shapes and sizes with every passing year [1].
With over 2 million fatalities in the past 2 decades and many
more wounded and traumatized people [1,2], the global burden
of disease has gained another protagonist.

Disasters have never waited their turn, and at the moment of
sudden and overwhelming confrontation with a disaster or mass
casualty incident, health care professionals have to make
far-reaching decisions that make a life-or-death difference for
patients. To ensure the ability to work under this pressure, to
standardize these decisions, and to initiate concrete courses of
action, triage algorithms have been developed. These algorithms
enable the quick, simple, and robust prioritization of casualties
with varying degrees of injury. By their nature, disaster and
mass casualty events require rapid identification and
management of life-threatening injuries following a systematic
and standardized approach [3]. Accurate triage ensures that
limited medical resources are directed toward achieving the
greatest-possible positive impact for the largest number of
people [2,4]. When patients are overtriaged (ie, when
noncritically injured people are supplied with immediate care),
resources are quickly depleted and treatment delay could occur
for others. In contrast, undertriage (ie, when individuals with
life-threatening problems are mistakenly underprioritized) can
lead to adverse consequences or death [5]. It is therefore evident
that the accuracy of triage decisions critically affects casualty
prognosis and the overall success of the medical response to a
disaster [5-7].

Limitations in Current Triage
Currently, the established triage algorithms have 3 critical
limitations:

• The triage category assignment depends solely on the
patient’s current vital signs. In the most common triage
algorithm (ie, Simple Triage And Rapid Treatment
[START]) [8], neither the severity of the injury nor the
expected time course of the individual patient is considered.

• Resource limitations are not considered. When resources
are scarce, the policy of “worst first” (ie, patients with the
worst injuries/vital parameters need to be treated before
less severely injured patients) yields poor results [9]. In
such cases, triage should prioritize patients in less critical
conditions but with greater chances of survival, thus

achieving an improvement in the expected number of lives
saved [9].

• Triage resulting in 4-5 categories does not represent a final
solution for prioritizing patients, as there could be a wide
range of survival probabilities within the same triage
category.

Study Aims
Since START was developed, consensus emerged that triage
should be more sophisticated (eg, by incorporating resource
limitations and patient priority determination) [5,9]. In this
proof-of-concept study, we demonstrate an entirely novel
approach for triage to address the enumerated issues. We aimed
at developing an approach that no longer classifies patients into
triage categories but instead ranks them according to a
mathematical model comprising current vital parameters and
injury severity. Both variables were integrated using the
well-established Revised Trauma Score (RTS) [10] and the New
Injury Severity Score (NISS) [11], offering a priori high levels
of feasibility, comparability, and validity. We specifically sought
to establish a model that fulfills both the requirement of simple
and rapid data acquisition during prehospital assessment and
the high sensitivity of triage classification using a sophisticated
mathematical model.

Methods

Study Design
This work is a proof-of-concept study that aims to underline
the need for a novel triage algorithm and demonstrate the
feasibility of applying a unique triage classification model by
using a realistic large-scale patient database. The study does
not claim external validity, as a real patient cohort was not used.
Instead, this study illustrates a valid form of hypothesis and
model testing using an artificial patient database. Due to the
unpredictable nature of disasters, victims cannot consent to
treatment or study enrollment, and ethical inadequacy limits
data generation. For this reason, we decided to generate this
artificial patient database, as described later.

The overall design of this study is illustrated in Figure 1A: we
aimed to generate a mathematical model that simulates a
patient’s “life percentage” (hereafter LIFE percentage) based
on the current vital signs (using the RTS) and injury severity
(using the NISS). This model enabled us to predict how long a
patient would survive if they did not receive any treatment.
Depending on this “survivalTimeWithoutTreatment,” we could
rank the urgency of treatment for a patient. To test this model
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on as many patients as possible, we consecutively generated a
large-scale patient database, where each patient has a unique
injury pattern and realistic corresponding vital parameters. We

then ran our model with patients from the database to verify the
temporal trend of parameters and the triage-ranking capacities,
and we compared our model with established triage algorithms.

Figure 1. Conception of the study and the model. (A) Workflow overview. We started with a combination of vital signs and injury severity to fit a
mathematical model, generated an artificial patient database, and then performed tests and simulations for time course modeling, triage prioritization,
and multidimensional analysis of these patients. (B) Mathematical backbone of the LIFE triage model, described by the Boltzmann sigmoidal function
and its adaptation to integrate vital signs by the RTS and injury severity by NISS. (C, D) Parameters considered in NISS (C) and the RTS (D) and their
calculation. AIS: Abbreviated Injury Scale; GCS: Glasgow Coma Scale; NISS: New Injury Severity Score; RR: Respiratory Rate; RTS: Revised Trauma
Score; SBP: Systolic Blood Pressure; t-SNE: t-distributed stochastic neighbor embedding.

Establishment of the LIFE Triage Model
The sigmoid semilogarithmic Boltzmann equation was used as
the mathematical backbone of the LIFE triage model (Figure
1B). This function has been widely used in biomedical research
to describe diverse biological situations of increase or decrease
[12,13]. Due to ethical inadequacy, there is no evidence on the
time course of the LIFE percentage or vital parameters of
patients with trauma who do not receive any treatment. Hence,
modeling the time course of patients is based on empirical
assumptions. In trauma research, several experimental studies
illustrate the shape of the Boltzmann function in situations of
biological decline (eg, the influence of blood loss on
continuously monitored vital signs) [14,15]. The course of the
basic Boltzmann function replicates the expected physiological
behavior of the life of a patient with trauma; that is, after the
traumatic event, there is a compensation period, where the
central nervous system counterbalances blood loss and pain
perception by vegetative adaptations [15-18], followed by a
decompensation period of a linear decline in the LIFE
percentage and a prolonged fatal ending. We modified the
Boltzmann function by implementing the RTS and NISS as
variables (Multimedia Appendix 1).

Semisupervised Generation of Patients With Trauma
The workflow to generate the artificial patient database is shown
in Figure 2A and is elaborated in detail in Multimedia Appendix
1. Briefly, we predefined 14 different types of traumas and 13
body locations and created all combinations between these 2
variables (Multimedia Appendix 1, Figure S3). Only realistic
combinations were selected, and injury severity was set
according to the Abbreviated Injury Scale (AIS) (Figure 1C).
Next, all combinations of 1-3 traumas were iterated through the
previously defined combinations. Patients with anatomically
impossible combinations of 3 similar injuries in 2 extremities
or 2 injuries in the azygos body regions were removed. Next,
the NISS was calculated based on the AIS provided before.
Depending on the NISS, we assigned vital parameter sets
specified in Multimedia Appendix 1, Figure S4. Single vital
parameters were randomly chosen from the specified range
defined there. The basic vital parameters specified in the sets
were consequently supplemented by depending vital parameters,
as shown in Multimedia Appendix 1, Figure S3. As concrete
examples, the parameter of low blood pressure increases the
capillary refill time of that specific patient, and radial pulse
palpability is not possible in the patient if the systolic blood
pressure is less than 80 mmHg [19]. Intentionally, the assigned
vital parameters were kept within realistic ranges (Multimedia
Appendix 1, Figure S4) rather than providing concrete values,
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as we would also expect high heterogeneity among patients in
a realistic mass casualty incident, due to preexisting conditions,
age, general health, injury pattern, etc. Moreover, not all patients
are treated at the same time, due to limited resources or
complicated access to the patients. As the histograms in Figures
2B and 2C highlight, most of the patients (N=82,277) from the

database suffer from injuries, with NISS=14-20 (range 1-75),
and have, respectively, high RTS values of mostly 6-7.8408
(range 0.7326-7.8408).

Next, the RTS was calculated using the aforementioned vital
parameters. Conclusively, various triage algorithms could be
applied to the data set (Multimedia Appendix 1).

Figure 2. Semisupervised generation of a large-scale artificial patient database. (A) Scheme of the generation of the patient database. (B) Frequency
distribution of the NISS over all 82,277 patients in the artificial database. Most patients show minor injury severity. (C) Frequency distribution of the
RTS among all patients. At the lowest injury severity, most patients have good vital signs. NISS: New Injury Severity Score; RTS: Revised Trauma
Score.

High-Dimensional Analysis of the Patient Database
During the assessment of patients with trauma, numerous
parameters are measured to evaluate the urgency of care for a
patient. We aimed to objectify this evaluation by considering
all the data collected during the primary assessment. We used
our previously generated patient database, which includes
information about the vital signs of patients and the pattern and
severity of the injuries. As patients with similar features should
have similar triage categories, a multidimensional analysis of
the features of these patients would lead to a cluster. Clustering
allows for a better understanding of the whole patient data set
generated before and the performance of the different triage
algorithms on all patients. We used the Gower distance [20] to
measure the similarity and dissimilarity in the mixed data on
patient features. Depending on the variable scale type, a
particular Gower metric was used and scaled to fall between 0
and 1. Subsequently, Gower scaled data were clustered using
the partitioning around medoids algorithm provided by the R
package cluster. This algorithm is more robust to noise than the
widely known k-means algorithm and has the benefit of
calculating a characteristic, average patient for each cluster,
which is a real patient from the data set [21,22]. To visualize
the multidimensional data set in 2D space, we applied
t-distributed stochastic neighbor embedding (t-SNE) [23] as the
dimension reduction technique and used the Gower distance as
a custom distance metric.

Clustering analysis of the patient data set was performed with
the aim of separating patients with similar injury patterns and

vital signs into distinct clusters. The variables used for the
multidimensional analysis are shown in Figure S7 (Multimedia
Appendix 1). To find the optimal cluster count, the silhouette
plot was evaluated, and the number of clusters was chosen as
k=6 (Multimedia Appendix 1, Figure S7).

Results

Modeling the Time Course of Patients With Trauma
Current triage models categorize patients into immediate (“red”),
delayed (“yellow”), minimal/minor (“green”), and
deceased/expectant (“black”) groups. This categorization is
based on the evaluation of vital parameters or injury severity
[2,8,24-26]. However, variability within a triage group is not
considered. Patients with initially stable vital signs can rapidly
deteriorate due to high injury severity. Additionally, patients
with poorer vital signs at the initial assessment but low injury
severity could survive longer than expected. In fact, current
triage algorithms do not consider the dynamic component of
trauma over time. To overcome these limitations, we established
the LIFE triage model, which continuously ranks patients for
treatment priority, predicting the individual course in the absence
of treatment. The mathematical backbone of this model is a
modified Boltzmann function with the RTS and NISS
implemented. Both variables influence the course of the LIFE
percentage curve, as outlined in Multimedia Appendix 1.

To demonstrate the benefits and feasibility of our novel approach
to triage, we ran a simple simulation of a mass casualty incident.
In this fictive scenario, there were 10 people injured in a
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multiple-vehicle collision, all with different traumatic injury
patterns (Figure 3A). The patients were selected from our
database and are listed in Multimedia Appendix 1, Figure S6.
According to the calculated “survivalTimeWithoutTreatment,”
patients were ranked for their priority (LIFE priority). The
calculated time course of the LIFE percentage is plotted in the
corresponding color in Figure 3B (right). START identified
n=2 (20%) immediate patients in the “red” triage category, n=3
(30%) in the “yellow” triage category, and n=5 (50%) in the
“green” triage category. Unexpectedly, patient #2 was ranked
as second priority, while START assigned a “green” triage
category to this patient. The high injury severity (NISS=35) but
currently stable vital parameters (RTS=6.8174) indicated that
START mistriaged the patient as “green” because they were
still able to walk. In contrast, patient #6 was triaged as “red”
but had lower priority. This is due to the minor injury severity

and stable vital parameters. Interestingly, triage by our algorithm
could also discriminate between the priority of patient #6 versus
patient #7, as both patients had the same NISS, but patient #7
had better vital signs. Additionally, at least in this scenario, it
should be noted that the LIFE priority ranking was not only
driven by the NISS, which shows the expected order of injury
severity among the patients, but also driven by RTS. As Figure
3B visualizes, patients can also have good vital signs at the
initial assessment but can rapidly deteriorate due to high injury
severity. Hence, our LIFE model set a higher priority for this
patient in comparison to patients with better vital signs.

As a result, our anticipatory triage-ranking algorithm
successfully identified patients at risk and outperformed START
in terms of accuracy in this scenario. We also concluded that
stratification by the RTS or the NISS alone would not have been
sufficient to replicate the prioritization calculated by our model.

Figure 3. Modeling of the time course of vital signs. Simple simulation of a mass casualty incident involving 10 people injured in a multiple-vehicle
collision. (A) LIFE triage correctly ranked patients according to their vital signs and injury severity and outperformed START in accuracy and prognosis
prediction. (B) Time course model of patients from the simulation. Dotted vertical lines represent the transition into the decompensation stage. NISS:
New Injury Severity Score; RTS: Revised Trauma Score; START: Simple Triage And Rapid Treatment.

Different Triage Algorithms Classify Similar Patients
Differently
To study a larger cohort of patients, all individuals from the
artificial patient database were analyzed for their assignment
to triage categories according to START’s triage algorithm, the
RTS triage algorithm [24], and our LIFE triage algorithm
(Figure 4A). Minor computational modifications to the
algorithms are outlined in Multimedia Appendix 1. Since triage
is based on the ranking of expected survival times in our
proposed LIFE triage model, we set triage categories using
ranges of the maximal “survivalTimeWithoutTreatment”
(specified in Figure 4A, top right). For the visualization, we
used a multilevel donut chart, where the inner ring outlines the
size of the triage category and the outer ring outlines the
corresponding NISS (top) or RTS (bottom) of the specific triage
category.

The overall triage category assignment indicates that the number
of patients in the “black” triage category was equal (n=6007,
7.3%), whereas patients in the “yellow” triage category
displayed the highest variance (START triage: n=8393, 10.2%;

RTS triage: n=18,430, 22.4%; LIFE triage: n=17,772, 21.6%).
When looking at patients in the “green” triage category classified
by START, 2493 (8%) patients with NISS=25-40 were most
likely undertriaged and mistakenly assigned to the minor
category. RTS triage misclassified 1315 (4.5%) patients in the
green category, whereas LIFE triage did not assign any patient
with NISS>25 to the “green” triage category. Interestingly, all
patients who were assigned to the “yellow” triage category by
LIFE triage had NISS=10-25, underlining a strong influence of
injury severity on the triage algorithm.

When analyzing the distribution of the RTS among the triage
algorithms, it is striking that although START substantially
relies on vital parameters for triage classification, patients with
an RTS of 5-7.5 (n=7354, 23.9%, in the “green” triage category)
were also assigned to this group. In contrast, all patients assigned
to the “green” triage category by LIFE triage had RTS>7.5. It
should also be noted that there was a discrepancy between the
RTS and RTS triage, which is because the RTS weights its
factors differently, whereas RTS triage is performed by summing
up the RTS values (see Figure 1D and Multimedia Appendix
1).

J Med Internet Res 2023 | vol. 25 | e44042 | p. 5https://www.jmir.org/2023/1/e44042
(page number not for citation purposes)

Sigle et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Different triage classifications by different triage algorithms. Comparative performance analysis of different triage algorithms (START, RTS,
and LIFE triage) on all patients from the artificial patient database. The multilevel pie charts show the size of the triage category (inner ring) and the
underlying NISS (top row) or RTS (bottom row). Interestingly, START assigned several patients to the “green” triage category despite having an NISS
of 25-40 or an RTS of 5-7.5. In contrast, the LIFE and RTS triage models classified more patients as “yellow.” NISS: New Injury Severity Score; RTS:
Revised Trauma Score; START: Simple Triage And Rapid Treatment.

Unsupervised Clustering Algorithm Replicates Clusters
of Specific Triage Groups and Patient Features
Triage is based on the categorization of patients with similar
clinical characteristics. These characteristics can be vital signs;
the type, location, and severity of injuries; the ability to walk;
the presence of critical bleeding, etc. Especially when numerous
variables need to be assessed, it becomes difficult for humans
to consider all factors in the same way. Therefore, machine
learning methods have been developed that can compute
hundreds of variables, group individuals with similar
characteristics into clusters, and visualize these clusters in a 2D
space without loss of information about any variable.

In this work, we used our artificial patient database and analyzed
27 clinical and algorithm-calculated patient features, as specified
in Multimedia Appendix 1, Figure S7. The similarity and
dissimilarity between patient features were calculated, as
described in the Methods section, and the results are visualized
as t-SNE plots in Figure 5A. Each point represents an individual
patient, while the accumulation of points indicates patients with
similar variables.

Feature plots were used to describe the distribution of the NISS,
RTS, and “survivalTimeWithoutTreatment” over all analyzed
patients (Figure 5B). We observed cluster 6 to have the highest
NISS ,  the  wors t  RTS,  and  the  lowes t
“survivalTimeWithoutTreatment.” In conclusion, this cluster
was represented by extremely critical patients, which would be
set to the “black” triage category. We reviewed our hypothesis
and plotted the triage results of the 3 different triage algorithms
described previously (Figure 5C). Our hypothesis was confirmed

by all triage algorithms. Strikingly, we found (sub)clusters of
patients who were triaged heterogeneously (Figure 5D) or
differently by the 3 triage algorithms (Figures 5E and 5F).

We first looked at the subcluster of heterogeneously triaged
patients (Figure 5D). Although START identified all the patients
as minor, the LIFE triage model classified them as delayed
patients and the RTS classified them in the “green,” “yellow,”
or “red” triage category. To evaluate which triage category is
most likely to be the correct one, we compared the NISS, RTS,
and “survivalTimeWithoutTreatment” of the patients from the
selected subcluster with all other patients, where all 3 triaged
algorithms consistently assigned patients to the “green,”
“yellow,” or “red” triage category (ie, “consensus”).
Surprisingly, when comparing the averages and distribution of
individuals in the bar plots, the LIFE triage model seemed to
outperform the other triage algorithms, as the patients from this
subcluster were mostly relatable to patients in the “yellow”
triage category, as identified only by our model.

There was also a cluster of patients that START assigned to the
“yellow” triage category, while the RTS and LIFE triage models
classified them in the “green” triage category. When comparing
the NISS and RTS values of patients from these subclusters, it
became clear that these patients were overtriaged by START
and correctly triaged by the other algorithms. We investigated
this issue and found the analyzed cluster to exclusively contain
patients with good vital signs but unable to walk due to a minor
injury of the lower extremity, marginally reduced vigilance, or
low blood pressure with otherwise inconspicuous vital
parameters. We concluded that categorization based on the
ability to walk is a critical risk factor for mistriage in START.
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We further identified a subcluster of presumable
underestimations by START (Figure 5F). In all depicted
variables, patients from this cluster most likely resembled those
in the “red” triage category, but START classified them in the
“green” triage category. This patient subset included those with

good overall vital parameters but poor prognosis due to high
injury severity. Our proposed LIFE triage algorithm again
successfully identified these patients as high priority and
correctly assigned them to the category of immediate need for
care.

Figure 5. Multidimensional analysis of the patient database replicates triage clusters and identifies patients at risk for mistriage. (A) A total of 20,000
(24.3%) patients from the database were randomly selected. Next, 27 clinical and algorithm-calculated patient features were analyzed following a
multidimensional mixed-data approach using the Gower distance and t-SNE (as specified in the Methods and Results sections). After dimensionality
reduction, unsupervised clustering resulted in 6 specific patient clusters, which were subsequently analyzed. (B) Feature plots in t-SNE projection
displaying the continuous distribution of LIFE triage–relevant parameters (NISS, RTS, and “survivalTimeWithoutTreatment”) over all patients analyzed.
Cluster 6 can easily be identified as the “black” triage category. (C) Color-coded results of different triage algorithms for patients analyzed in the t-SNE
projection. It can be clearly observed that some clusters or subclusters displayed different triage results. These clusters were analyzed in the next step.
(D-F) Analysis of the highlighted clusters showing heterogeneous triage results (D), overestimation (E), and underestimation (F) using START. The
variables NISS, RTS, and “survivalTimeWithoutTreatment” of the highlighted cluster were to all other patients, which all 3 triage algorithms consistently
diagnosed as “green”/“yellow”/“red” (referred to as “consensus”). The LIFE triage model outperformed all other triage systems in terms of accordance
with consensus triage. NISS: New Injury Severity Score; RTS: Revised Trauma Score; START: Simple Triage And Rapid Treatment; t-SNE: t-distributed
stochastic neighbor embedding.

Discussion

Principal Findings
In this study, we presented a novel approach for triage that no
longer classifies patients into triage categories but ranks their
urgency according to the anticipated survival time without
intervention. This estimation was performed with a mathematical

model evaluating current vital signs and injury severity. Our
model successfully prognosticates the decline of the LIFE
percentage and corresponding vital parameters and can thus
evaluate the current and future urgency for treatment of a patient.
To the best of our knowledge, this is one of the first studies to
use a mathematical approach to examine mass casualty incident
triage [9,27,28]. It is unique in terms of using triage ranking
rather than triage categorization and in terms of implementing
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both vital parameters and injury severity using well-established
scoring systems.

Triage is considered the cornerstone of effective disaster
management and has significant implications for the overall
medical response to critical incidents. However, for decades,
triage algorithms have only marginally changed and have not
kept pace with the technological advances of the current time.
Established triage algorithms have been extensively examined,
adapted, and validated in clinical use, yet their critical limitations
have never been solved. Our proposed LIFE model tackles these
limitations and sheds a novel light on the idea behind triage.

Currently, triage results in 4-5 categories of patients, who should
be treated with different priorities. This is simple, fast, and
effective but does not consider the variability of patients within
a category and is consequently highly susceptible to mistriage.
In contrast, our LIFE model ranks patients and maintains their
individual variability. Triage categories can still be applied, but
urgency ranking has the decisive advantage of precisely defining
the specific patient who must be treated first.

Another critical factor is resource limitations. In such a case,
triage should give higher priority to patients in less critical
conditions but with higher chances of survival, thereby achieving
an improvement in the expected number of lives saved [9]. Only
a few algorithms consider triage in situations in which available
health care resources are insufficient for the number and severity
of casualties. However, those resource-sensitive triage
algorithms leave the subjective decision of the “likelihood to
survive with the given current resources” to health care
professionals [29]. Our model indicates that the patient with the
highest priority is automatically the patient with the lowest
survival likelihood and can therefore clearly be identified.
Furthermore, specific specialties or equipment can be
proactively transferred to these patients.

Finally, current triage is a snapshot of momentary conditions
and does not consider the future course. Patients with current
good vital signs but severe injuries could mistakenly receive
delayed treatment, while patients with worse but stable vital
parameters could be prioritized. For that reason, the novel LIFE
algorithm implements signs of both the current conditions (RTS)
and the further progression of the patient (NISS). There is
abundant evidence that the NISS can successfully predict the
survival likelihood and outcome for patients with trauma
[30-35], thereby underlining the validity of the use of this
parameter in our model.

The proposed LIFE model offers numerous application
possibilities. For prehospital usage, it could be used in mass
casualty incidents for secondary or even primary surveys. Since
our model is based on common parameters that are collected
anyway during medical assessment, no delay is expected
compared to current triage algorithms. We even expect our
model to accelerate the overall medical response, as priority
ranking could decisively help in treatment prioritization and
reduce the time for decision-making.

Another field of application is simulations. The integration in
either real-life simulations or computer-based simulations may
allow supervisors of fictive scenarios to keep track of a large

number of victims and check whether participants correctly
prioritize the patients.

Furthermore, since our method introduces time as a critical
variable for triage, all kinds of time-sensitive components of
medical response can be investigated. As an example, the model
could be used to determine which technical or medical resource
is needed at which time point or which patients must be
prioritized for transfer to hospital structures in the case of
resource limitations.

Limitations
However, there are a few limitations to this study. First, the
mathematical model described here represents a
proof-of-concept on a novel form of triage. Although
implementing well-established, extensively validated, and tested
trauma scores, the model itself has currently only been internally
validated with a large-scale patient database.

Second, at its current stage, the model does not refer to concrete
survival times, as these will need to be interpolated from real
patient data in future studies. Concrete time frames are
particularly important to anticipate the amount of resources
needed in mass casualty incidents.

Third, the model implements the parameters from widely used
trauma scores. However, some parameters might be more
important than others, or relevant parameters could be missing.
Two recent studies by Khorram-Manesh et al [36,37] have
evaluated the most commonly used preexisting prehospital triage
systems to create 1 universal translational triage tool.
Interestingly, the Delphi-controlled meta-study identified
algorithm parameters that are quite like those used in START
triage and as also implemented by our proposed LIFE triage
model. However, future application in real-life scenarios will
be needed to evaluate the meaningfulness and significance of
the model and its parameters. As new data become available
and the nature of mass casualty events continues to evolve, it
will be important to continually evaluate and improve the model.
This could involve the use of machine learning and other
advanced techniques to analyze large data sets and identify
patterns and trends that could inform further refinements to the
algorithm.

Future Perspectives
Although the triage model has shown promising initial testing,
the road ahead is still long, and further validation and
optimization need to be done. One promising avenue for future
application is the development of a smartphone-based app that
incorporates the triage algorithm. The app could enable first
responders to triage patients quickly and accurately in real time
and communicate the triage results along with specific
geolocations to incident commanders. Here, the algorithm could
significantly help keep track of all casualties. As patients are
continuously ranked by the algorithm, rescue resources can be
transparently allocated according to patient priority and resource
availability. Especially in large-scale mass casualty incidents,
this approach could provide a more comprehensive picture of
the situation on the ground and ultimately save more lives in
disasters.
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Conclusion
In summary, we suggested an innovative approach to triage
patients involved in disaster or mass casualty incidents, which
no longer classifies patients into classic triage categories but
prioritizes them according to a mathematical model, considering

their dynamic vital parameters and injury severity. This triage
strategy successfully tackles the limitations of current triage,
implementing resource, time, and survival sensitivity. Hence,
the model could substantially improve the medical response to
disasters and ease the pressure on health care professionals who
risk their lives to save others.
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