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Abstract

Background: A number of publications have demonstrated that deep learning (DL) algorithms matched or outperformed
clinicians in image-based cancer diagnostics, but these algorithms are frequently considered as opponents rather than partners.
Despite the clinicians-in-the-loop DL approach having great potential, no study has systematically quantified the diagnostic
accuracy of clinicians with and without the assistance of DL in image-based cancer identification.

Objective: We systematically quantified the diagnostic accuracy of clinicians with and without the assistance of DL in image-based
cancer identification.

Methods: PubMed, Embase, IEEEXplore, and the Cochrane Library were searched for studies published between January 1,
2012, and December 7, 2021. Any type of study design was permitted that focused on comparing unassisted clinicians and
DL-assisted clinicians in cancer identification using medical imaging. Studies using medical waveform-data graphics material
and those investigating image segmentation rather than classification were excluded. Studies providing binary diagnostic accuracy
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data and contingency tables were included for further meta-analysis. Two subgroups were defined and analyzed, including cancer
type and imaging modality.

Results: In total, 9796 studies were identified, of which 48 were deemed eligible for systematic review. Twenty-five of these
studies made comparisons between unassisted clinicians and DL-assisted clinicians and provided sufficient data for statistical
synthesis. We found a pooled sensitivity of 83% (95% CI 80%-86%) for unassisted clinicians and 88% (95% CI 86%-90%) for
DL-assisted clinicians. Pooled specificity was 86% (95% CI 83%-88%) for unassisted clinicians and 88% (95% CI 85%-90%)
for DL-assisted clinicians. The pooled sensitivity and specificity values for DL-assisted clinicians were higher than for unassisted
clinicians, at ratios of 1.07 (95% CI 1.05-1.09) and 1.03 (95% CI 1.02-1.05), respectively. Similar diagnostic performance by
DL-assisted clinicians was also observed across the predefined subgroups.

Conclusions: The diagnostic performance of DL-assisted clinicians appears better than unassisted clinicians in image-based
cancer identification. However, caution should be exercised, because the evidence provided in the reviewed studies does not
cover all the minutiae involved in real-world clinical practice. Combining qualitative insights from clinical practice with data-science
approaches may improve DL-assisted practice, although further research is required.

Trial Registration: PROSPERO CRD42021281372; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=281372

(J Med Internet Res 2023;25:e43832) doi: 10.2196/43832
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Introduction

Cancer is a leading cause of death, with an estimated 19.3
million new cases and 10 million deaths in 2020 worldwide [1].
One of the reasons for this high burden is delayed diagnosis
due to inconspicuous symptoms at an early stage [2]. Cancer
identification is often only feasible once serious symptoms
manifest or a lesion (or tumor) is large enough to be identified
using conventional diagnostic imaging techniques [3].
State-of-the-art medical imaging technologies make early
diagnosis possible and instill optimism; however, subjectivity
in cancer imaging diagnosis influences the application of these
technologies for individual patients. Of course, specialists tend
to be more accurate, but such expertise is not widely available
[4]. The emergence of deep learning (DL) algorithms in medical
artificial intelligence (AI) provides a way forward, despite
potentially causing disruptions to standardized, established
practice [5].

As a subfield of AI, DL is formally defined as “computational
models, composed of multiple processing layers, to learn
representations of data with multiple levels of abstraction” [6].
In medical imaging practice, DL algorithms extract
representative imaging features for classification purposes,
irrespective of personal experience and underlying assumptions
[7]. Over the past decade, we have witnessed a growing interest
in DL algorithms, specifically in cancer diagnostics. Numerous
studies have reported the diagnostic performance of DL, and it
is considered comparable to, or in some circumstances better
than, that of clinicians [8-10]. However, medical DL is plagued
with issues, including inherent biases due to limited training
data, an absence of cross-population generalizability, and a lack
of transparency and accountability for clinical practice [11].
Therefore, the evidence required to change policy and implement
DL techniques is insufficient. In fact, many appear preoccupied
with the debate around medical AI replacing human physicians.
However, these technologies are designed to assist clinicians
and improve diagnostics within existing clinical workflows.

Human-computer collaboration can provide benefits above and
beyond what either clinicians or DL algorithms can do in
isolation [12-14]. This paradigm shift means that while the
advantages of DL algorithms are necessary, so too are those of
clinicians, who will need to fill gaps with personal knowledge
of clinical histories. However, before implementing DL
assistance into clinical practice, we must also assess current
evidence in terms of methods and risk of bias. DL technologies
must be subjected to the same rigorous assessment as any other
technology in modern, evidence-based medicine. Doing anything
else would impact patient acceptance and would impair the
development of best practices for medical AI. There is also the
wider issue of the impact on public trust in medicine, which
cannot be overlooked. Therefore, it is imperative to
systematically review the diagnostic performance of DL-assisted
clinicians versus unassisted clinicians. Critically reviewing the
evidence base is necessary to ensure these methods are both
safe and effective. The synthesized evidence may also provide
insights into the human factors involved in the use of DL
assistance in cancer identification.

Methods

Search Strategy and Selection Criteria
The study protocol was registered with PROSPERO
(CRD42021281372) and was conducted and reported in
accordance with the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-analyses) 2020 guidelines [15].

Keywords, including “cancer,” “AI/DL,” “performance,” and
“image” were used to identify comparative studies that assessed
the performance of unassisted clinicians and DL-assisted
clinicians in image-based cancer diagnosis. Multimedia
Appendix 1 provides an outline of the full search strategy.
Records from PubMed, Embase, IEEEXplore, and the Cochrane
Library from January 1, 2012, to December 7, 2021, were
systematically searched with no language restrictions. The start
date was chosen based on a recognized step change in the
development of DL approaches [16].
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The inclusion and exclusion criteria for related studies were
jointly determined by 2 independent authors who screened titles
and abstracts. All studies were then read in full and discrepancies
were resolved by a third author. Studies were included if they
focused on comparing the performance of unassisted clinicians
and DL-assisted clinicians in image-based cancer diagnosis.
Studies were excluded if they (1) examined medical
waveform-data graphics material, (2) investigated image
segmentation rather than cancer identification, (3) reported
ternary diagnostic outcomes, or (4) did not study DL. Case
reports, reviews, editorials, letters, comments, conference
abstracts or proceedings, and duplicates were also excluded
(Multimedia Appendix 1).

Data Extraction
Two authors independently extracted study characteristics,
model-related details, and performance data. Uncertainties were
resolved by another independent research associate. Binary
diagnostic accuracy data, including true positives, false
positives, true negatives, and false negatives, were extracted by
2 reviewers. Sensitivity and specificity data were then pooled
for analysis. If a study provided a number of contingency tables
for the same or different DL models, we assumed these were
independent, unless otherwise stated.

Quality Assessment
The Quality Assessment of Diagnostic Accuracy Studies 2
(QUADAS-2) tool was used to assess the risk of bias and
applicability concerns of the included studies [17].

Statistical Analysis
Hierarchical summary receiver operating characteristic
(HSROC) curves were used to estimate overall accuracy. In the
HSROC curves, 95% CIs and 95% prediction regions of the

summary operating points, including averaged sensitivity,
specificity, and the area under the curve (AUC), were provided
under a random effects model. Heterogeneity was assessed using

the I2 statistic.

Relative sensitivity and specificity were pooled for
meta-analysis. Cancer type and imaging modality were
established for subgroup analysis. Potential sources of
heterogeneity were assessed across relative sensitivity and
specificity for both DL-assisted clinicians and unassisted
clinicians. Additional efforts were made to identify sources of
heterogeneity in 2 separate subgroup meta-analyses: (1)
according to cancer type, which included breast, lung,
gastrointestinal, and endocrine cancers, and (2) according to
imaging modality, which included ultrasound, X-ray, endoscopy,
and magnetic resonance imaging (MRI).

The random effect model was implemented because of inherent
differences within the evidence base. Publication bias was
visually assessed using funnel plots. Only studies with N≥4
were included for statistical pooling. All analyses were
conducted with Stata (version 15.1; Stata Corp) and SAS
(version 9.4; SAS Institute). Two-sided P values of less than
.05 were considered statistically significant.

Results

Study Selection
Online searching was last updated on December 7, 2021, and
9796 studies were retrieved (Figure 1). After removing
duplicates, 8333 publications were screened. After screening
and selection, 71 full texts were considered eligible, although
a further 23 were excluded due to insufficient information. This
left 48 studies for systematic review.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart of study selection. DL: deep learning.

Characteristics of the Included Studies
Of the 48 enrolled studies [18-65], 52% (n=25) provided
comprehensive inclusion and exclusion criteria while 12% (n=6)
provided no information about participants (Multimedia
Appendix 1). Breast and gastrointestinal cancer accounted for
half the studies. The top 4 conditions were breast cancer (n=13,
27%), gastrointestinal cancer (n=11, 23%), lung cancer (n=8,
17%), and endocrine cancer (n=7, 15%). The top 4 imaging
modalities were ultrasound (n=8, 17%), X-ray (n=8, 17%), and
computerized tomography (n=7, 15%), with MRI and
whole-slide imaging both used in 12% (n=6) of studies.
Dermoscopy and endoscopy had 5 studies each, with each
representing 10% of the sample. Multimedia Appendix 1
provides summaries of study characteristics. In total, 98%
(n=47) of the studies were based on retrospectively collected
data. Only 1 study could be considered prospective. Only 4
studies reported a prespecified sample size calculation.
Meanwhile, 29% (n=14) of studies used data from open-access
repositories. In addition, 54% (n=26) of studies performed
external validation, whereas the remaining studies relied upon
internal validation. Moreover, 33% (n=16) reported exclusion
of low-quality images, and 35% (n=17) used heat maps. Transfer
learning was applied in 21% of the studies (n=10) during the
training phase.

Reference standards were wide ranging but in line with cancer
types and imaging modalities, although some adopted multiple
methods. Most of the studies (n=35, 73%) used histopathology

with (or without) a follow-up period as the ground truth or gold
standard control for image-based cancer diagnostics. The
remainder implemented an expert consensus or medical
record–based approach.

Diagnostic Performance of Unassisted Clinicians
Versus DL-Assisted Clinicians
In total, 52% (n=25) of the included studies provided sufficient
data to construct contingency tables, calculate diagnostic
performance, and perform meta-analysis. HSROC curves
generated using 25 studies (with a total of 94 contingency tables)
are shown in Figure 2. When averaging across studies, the
pooled sensitivity and specificity values for unassisted clinicians
were 83% (95% CI 80%-86%) and 86% (95% CI 83%-88%),
respectively, with an AUC of 0.91 (95% CI 0.88-0.93). By
contrast, the pooled sensitivity and specificity values for
DL-assisted clinicians were 88% (95% CI 86%-90%), and 88%
(95% CI 85%-90%), respectively, with an AUC of 0.94 (95%
CI 0.92-0.96). The pooled sensitivity and specificity values for
DL-assisted clinicians were higher than those for unassisted
clinicians at ratios of 1.07 (95% CI 1.05-1.09) and 1.03 (95%
CI 1.02-1.05), respectively.

Most studies reported more than one DL algorithm for assessing
diagnostic performance, and only the highest performance in
each study was chosen for 25 contingency tables. The pooled
sensitivity was 86% (95% CI 77%-91%) for unassisted clinicians
and 89% (95% CI 84%-92%) for DL-assisted clinicians. The
pooled specificity was 88% (95% CI 82%-92%) for unassisted
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clinicians and 91% (95% CI 87%-94%) for DL-assisted
clinicians. The clustered AUCs for unassisted and DL-assisted
clinicians were 0.93 (95% CI 0.91-0.95) and 0.96 (95% CI
0.94-0.97), respectively (Figure 2). The pooled sensitivity and

specificity values for DL-assisted clinicians were higher than
those for unassisted clinicians at ratios of 1.07 (95% CI
1.03-1.10) and 1.03 (95% CI 1.01-1.06), respectively.

Figure 2. Hierarchical receiver operator characteristic curves of all studies included in the meta-analysis. A and B: ROC curves of all studies included
in the meta-analysis (25 studies with 94 tables); C and D: ROC curves of studies reporting the highest accuracy (25 studies with 25 tables). AUC: area
under the curve; DL: deep learning; ROC: receiver operator characteristic curve.

Subgroup Meta-analyses Comparing Diagnostic
Performance

Cancer Type
Five studies were used to create 27 contingency tables for breast
cancer. The pooled sensitivity was 85% (95% CI 82%-87%)
and specificity was 80% (95% CI 76%-84%), with an AUC of
0.87 (95% CI 0.84-0.90) for unassisted clinicians. For
DL-assisted clinicians, we found a pooled sensitivity of 88%
(95% CI 86%-91%) and specificity of 85% (95% CI 83%-88%),
with an AUC of 0.93 (95% CI 0.90-0.95) (Figure 3A).

Six studies were used to develop 19 contingency tables for lung
cancer. The pooled sensitivity was 70% (95% CI 64%-76%)
for unassisted clinicians and 80% (95% CI 75%-85%) for
DL-assisted clinicians. Pooled specificity was 89% (95% CI
83%-93%) for unassisted clinicians and 87% (95% CI
81%-92%) for DL-assisted clinicians, with an AUC of 0.85

(95% CI 0.81-0.88) for unassisted clinicians and 0.90 (95% CI
0.87-0.92) for DL-assisted clinicians (Figure 3B).

Six studies were used to generate 25 contingency tables for
gastrointestinal cancer. The pooled sensitivity was 84% (95%
CI 79%-88%), with a specificity of 94% (95% CI 90%-97%)
and an AUC of 0.95 (95% CI 0.92-0.96) for unassisted
clinicians. Pooled sensitivity was 91% (95% CI 88%-94%) and
specificity was 93% (95% CI 90%-95%) with an AUC of 0.97
(95% CI 0.95-0.98) for DL-assisted clinicians (Figure 3C).

Another six studies were used to generate 19 tables for endocrine
cancer. The pooled sensitivity was 88% (95% CI 78%-94%)
for unassisted clinicians and 90% (95% CI 83%-94%) for
DL-assisted clinicians. The pooled specificity was 77% (95%
CI 67%-84%) for unassisted clinicians and 82% (95% CI
74%-88%) for DL-assisted clinicians, with an AUC of 0.88
(95% CI 0.85-0.91) for unassisted clinicians and 0.93 (95% CI
0.90-0.95) for DL-assisted clinicians (Figure 3D).
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Figure 3. Hierarchical ROC curves of studies using different cancer types for comparing the performance of unassisted clinicians and DL-assisted
clinicians. A: ROC curves of studies for detecting breast cancer (5 studies with 27 tables); B: ROC curves of studies for detecting lung cancer (6 studies
with 19 tables); C: ROC curves of studies for detecting gastrointestinal cancer (6 studies with 25 tables); D: ROC curves of studies for detecting endocrine
cancer (6 studies with 19 tables). AUC: area under the curve; DL: deep learning; ROC: receiver operator characteristic curve.

Imaging Modalities
Six studies were used to generate 27 tables for ultrasound, which
displayed a pooled sensitivity of 83% (95% CI 79%-86%) and
specificity of 79% (95% CI 74%-82%), with an AUC of 0.88
(95% CI 0.85-0.91), for unassisted clinicians; the pooled
sensitivity was 87% (95% CI 83%-90%) and specificity was
86% (95% CI 83%-88%), with an AUC of 0.92 (95% CI
0.90-0.94), for DL-assisted clinicians (Figure 4A).

For 4 X-ray studies, 14 tables were generated, which revealed
a pooled sensitivity of 70% (95% CI 63%-76%) and specificity
of 90% (95% CI 84%-94%), with an AUC of 0.86 (95% CI
0.83-0.89), for unassisted clinicians. Pooled sensitivity was 78%
(95% CI 71%-83%) and specificity was 90% (95% CI
86%-93%), with an AUC of 0.91 (95% CI 0.89-0.94), for
DL-assisted clinicians (Figure 4B).

Four endoscopy studies were used to create 10 tables that
highlighted a pooled sensitivity of 80% (95% CI 72%-86%) for

unassisted clinicians and 94% (95% CI 89%-96%) for
DL-assisted clinicians. Pooled specificity was 93% (95% CI
86%-97%) for unassisted clinicians and 91% (95% CI
88%-94%) for DL-assisted clinicians, with AUCs of 0.92 (95%
CI 0.89-0.94) for unassisted clinicians and 0.97 (95% CI
0.95-0.98) for DL-assisted clinicians (Figure 4C).

Additionally, there were 4 studies with 14 tables using MRI.
The pooled sensitivity was 81% (95% CI 74%-86%) for
unassisted clinicians and 86% (95% CI 80%-90%) for
DL-assisted clinicians. Pooled specificity was 77% (95% CI
66%-85%) for unassisted clinicians and 82% (95% CI
72%-88%) for DL-assisted clinicians, with an AUC of 0.86
(95% CI 0.83-0.89) for unassisted clinicians and 0.91 (95% CI
0.88-0.93) for DL-assisted clinicians (Figure 4D). Detailed
comparisons of subgroup meta-analyses (for cancer type and
image modality) of the relative sensitivity and specificity of
DL-assisted clinicians versus unassisted clinicians are shown
in Table 1.
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Figure 4. Hierarchical ROC curves of studies using different imaging modalities for comparing performance between unassisted clinicians and
DL-assisted clinicians. A: ROC curves of studies using ultrasound (6 studies with 27 tables); B: ROC curves of studies using X-rays (4 studies with 14
tables); C: ROC curves of studies using endoscopy (4 studies with 10 tables); D: ROC curves of studies using MRI (4 studies with 14 tables). AUC:
area under the curve; DL: deep learning; MRI: magnetic resonance imaging; ROC: receiver operator characteristic curve.

Table 1. Meta-analyses of the relative sensitivity and specificity of deep learning–assisted clinicians versus unassisted clinicians. P values represent a
statistically significantly difference from unity (1 excluded from 95% CI, P<.05).

P valueRelative specificity (95%
CI)

P valueRelative sensitivity (95%
CI)

Tables, nStudies, nDeep learning–assisted clinicians
versus unassisted clinicians

<.0011.03 (1.02-1.05)<.0011.07 (1.05-1.09)9425Overall

.021.03 (1.01-1.06)<.0011.07 (1.03-1.10)2525Studies reporting the highest perfor-

mancea

Cancer type

.0031.08 (1.03-1.13)<.0011.05 (1.02-1.08)275Breast cancer

.361.01 (0.99-1.03)<.0011.13 (1.08-1.18)196Lung cancer

.261.02 (0.99-1.04)<.0011.09 (1.04-1.14)256Gastrointestinal cancer

.021.05 (1.01-1.09).351.01 (0.99-1.03)196Endocrine cancer

Imaging modality

<.0011.10 (1.05-1.16)<.0011.04 (1.02-1.07)276Ultrasound

.201.01 (0.99-1.04)<.0011.11 (1.06-1.17)144X-ray

.271.02 (0.99-1.06)<.0011.17 (1.09-1.25)104Endoscopy

.071.06 (1.00-1.12).081.04 (1.00-1.09)144Magnetic resonance imaging

aMost studies reported more than one deep learning algorithm to assess diagnostic performance; only the highest-performing algorithm in each study
was chosen for the 25 contingency tables.

Heterogeneity Analysis
All included studies found that DL-assisted clinicians’diagnostic
performance appeared to be better than unassisted clinicians at
image-based cancer identification; however, extreme

heterogeneity was observed (I2 for sensitivity was 90.3%, I2 for

specificity was 86.8%, P<.001) (Figures 5 and 6). This is
discussed in more detail in the Limitations section.

A funnel plot was generated to assess publication bias. The
studies appeared symmetrically distributed around the regression
line, and a P value of .14 suggests no publication bias
(Multimedia Appendix 1). To identify the source or sources of
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heterogeneity, we conducted a subgroup analysis. Although the
heterogeneity for both sensitivity and specificity within several
subgroups decreased to an acceptable range after grouping, the

I2 values targeting overall diagnostic performance were still

unsatisfactory. Therefore, cancer types and imaging modalities
are likely to have confounded the image-based cancer diagnostic
performance of unassisted clinicians versus DL-assisted
clinicians.

Figure 5. Pooled relative sensitivity (A) and specificity (B) of DL-assisted clinicians versus unassisted clinicians for different imaging modalities in
image-based cancer detection. The data are presented as forest plots for all studies with different imaging modalities included in the meta-analysis (n=25
studies). If a study provided multiple contingency tables for DL-assisted clinicians versus unassisted clinicians, it is listed more than once and labelled
alphabetically. The data are presented as forest plots for all studies with imaging modalities included in the meta-analysis (n=25 studies). CT: computed
tomography; DL: deep learning; MRI: magnetic resonance imaging; ROC: receiver operator characteristic curve; WSI: whole-slide imaging.
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Figure 6. Pooled relative sensitivity (A) and specificity (B) of DL-assisted clinicians versus unassisted clinicians for different cancer types in image-based
cancer detection. The data are presented as forest plots for all studies with different cancer types included in the meta-analysis (n=25 studies). If a study
provided multiple contingency tables for DL-assisted clinicians versus unassisted clinicians, it is listed more than once and labelled alphabetically. DL:
deep learning.

Quality Assessment
Quality was assessed using the QUADAS-2 tool; findings are
summarized in Multimedia Appendix 1. The risk of bias and
concerns of applicability for each study are also outlined in
Multimedia Appendix 1. Nine and 25 studies were considered
to have high and unclear risk in the patient-selection domain,
respectively. Selection criteria in these studies were unreported,

unclear, or considered inappropriate. The overall methodological
quality was fair, and the applicability concerns were deemed
acceptable.
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Discussion

Principal Findings
We performed the first reported systematic review with a
meta-analysis to assess the diagnostic accuracy of unassisted
clinicians versus DL-assisted clinicians across distinct cancer
types and imaging modalities. Evidence suggests that
DL-assisted clinicians perform better at cancer identification
than unassisted clinicians. DL-assisted clinicians also appeared
to be superior across all cancer types and imaging modalities
analyzed here. This suggests that DL assistance can be applied
across different fields of image-based cancer identification.

Overall, the pooled sensitivity and pooled specificity values for
DL-assisted clinicians were higher than for unassisted clinicians,
at ratios of 1.07 (95% CI 1.05-1.09) and 1.03 (95% CI
1.02-1.05), respectively. Meta-analytical findings also support
Budd et al [66] and Maadi et al [67], who acknowledged that a
practical collaboration between humans and AI would improve
clinical practice. Evidence is continually emerging that
DL-assisted clinicians outperform unassisted clinicians in the
diagnosis of breast and endocrine cancer, in terms of both
sensitivity and specificity. Similar superiority occurs when using
ultrasound. These results are consistent with previous research
[68,69] that reported improvements in diagnostic performance.
As for endocrine cancer, increments in specificity have been
observed from 77% to 82%, despite there being no significant
increases in sensitivity. Conversely, in lung and gastrointestinal
cancer, increments in sensitivity have been observed from 70%
to 80%, and from 84% to 91%, respectively, despite there being
no significant increases in specificity. Similarly, when analyzing
X-rays and endoscopic findings, increments in sensitivity have
also been observed from 70% to 78% and from 80% to 94%,
respectively, but there was no significant increase in specificity.
The absence of a significant increase in specificity with DL
assistance might be the result of a threshold effect. In other
words, the lack of an improvement in specificity may have been
a trade-off against an improvement in sensitivity. Among cancer
types and imaging modalities, we observed that the sensitivity
of DL-assisted clinicians ranged from 80% for lung cancer to
91% for gastrointestinal cancer, and from 78% with X-rays to
94% with endoscopy. The specificity of DL-assisted clinicians
ranged from 82% for endocrine cancer to 93% for
gastrointestinal cancer, and from 82% using MRI to 91% using
endoscopy. Diagnostic performance disparities may be
attributable to the participant composition of studies, designs,
disease prevalence, clinical end points, cancer stage or histology
type, and device type. This helps us to understand diagnostic
gaps and to promote more accurate image-based cancer
diagnoses.

Analysis of the Main Aspects
These observations suggest more balanced cutoff points may
be necessary to train DL models to augment diagnostic
sensitivity. This may also mean that DL assistance should be
matched with an accepted level of diagnostic specificity that
has yet to be determined. Future work may look to focus on
reducing the number of false-positive results, but there does
appear to be a reduction in the number of false negatives that

can be attributed to DL assistance. Another possibility for
improving specificity while retaining high sensitivity might be
to combine DL assistance models with advanced screening or
diagnostic technologies. However, this will require a more
detailed health-economics analysis, and regulatory bodies will
need to consider the affordability of these new workflows. From
a system perspective, DL assistance will have to be adapted to
new, more advanced technologies while being trained to adapt
to changing workflows, similar to human physicians.

Our findings support the notion that human-computer
collaboration represents an improvement over (or is at least
equivalent to) clinicians working without assistance to identify
cancer cases. However, the knowledge base suffers from broad
methodological deficiencies and poor reporting, although this
could be overcome during training. This review shows that
research in this area is still in the early stages of development.
Less than half of the included studies were eligible for
meta-analysis. Many studies were excluded at the initial
screening stage because they only assessed the diagnostic
performance of human intelligence versus machine intelligence,
rather than human intelligence with DL assistance, which does
not reflect a logical progression. Nevertheless, we acknowledge
that assessing the accuracy of DL algorithms in isolation
compared to human clinicians is often the first step for new
technologies, although this does not represent a real-world
situation, and conducting such polarized research may be the
cause of anxieties within the profession. We hold the opinion
that technologies are created to assist medical professionals,
rather than being developed as replacements. Misunderstandings
should be avoided and research should aim for
human-in-the-loop DL for optimal integration. Therefore, we
should work to integrate data science training into clinical
training (and vice versa) to ensure research, at a fundamental
level, is truly interdisciplinary and practicable.

While it is encouraging to see that DL assistance improves
cancer case identification, caution should be exercised when
applying our findings to clinical practice, because the studies
under review were generally based upon in silico research.
Reporting standards, which are essential to assess study quality,
may not be considered as important by data scientists. There
are certainly divergences in how research is conducted and
reported that have impacted this emerging evidence base. In
clinical research, comparative studies should be considered for
the primary technical assessment of DL-assisted clinicians. This
is not just about the quantification of diagnostic effects, as if it
were, we would overestimate the benefit by overfitting. Of
course, in silico research will continue to play an important role
in simulating DL-assisted clinical practice and is useful for
ensuring safety, effectiveness, and patient acceptability.
However, these studies must be used to pave the way for
large-scale clinical trials and then on to real-world studies. There
are many gaps in this knowledge base, and as we anticipate a
great deal of future research, the architecture of the knowledge
base should be considered in more detail. Implementing DL
assistance in clinical settings will require a blend of research
methods, overlapping disciplines, and more sophisticated
collaboration. This has implications for project and program
leadership, although these topics are beyond the scope of this
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study. Suffice to say, if we are going to advance clinical practice,
we ought to design DL assistance with reflective clinical advice
and through mixed methods analysis, which demands improved
reporting.

Recently, the DECIDE-AI (Developmental and Exploratory
Clinical Investigations of Decision Support Systems Driven by
Artificial Intelligence) reporting guidelines for the early-stage
clinical evaluation of decision support systems were published
[70]. The guidelines address issues in AI and DL development
through exploratory research before large-scale efficacy testing
is conducted. The majority of the studies included in this paper
were probably conceived (and performed) before the
DECIDE-AI guidelines were published. Therefore, it is
reasonable to assume that the design features and reporting used
to assess the diagnostic performance of DL-assisted clinicians
will improve, as will transparency. However, with the future in
mind, we should also assume that the DECIDE-AI guidelines
are a prototype and will continue to be developed. Researchers
will be at fault if they adopt these parameters without
considering clinicians’ perspectives. Some have already
commented that the use of human-in-the-loop AI or DL to
support image-based cancer diagnostics might represent the
optimal strategy for real-world clinical practice [66,67,71].
Nevertheless, we need to acknowledge that this is a rapidly
evolving research area that will require subsequent updates. We
are seeing the emergence of decentralized and hybridized trials
that will, like interdisciplinary medical-AI research, need to
accept increasingly sophisticated reporting standards.

Another major problem we encountered when considering
discussions within each study was that of “cooperation.” Several
researchers and theorists have already commented on the
problems with possible cooperation modes between clinicians
and DL algorithms [72]. For example, junior clinicians, who
lack practical experience, may overly rely on AI while more
experienced clinicians may find it difficult to make judgments
and may find DL assistance forces them into a prolonged state
of cognitive dissonance. This may also lead experienced experts
and senior clinicians to distrust DL assistance, which may (in
the long run) mean they are more likely to reject DL assistance.
One possible approach to improving human-computer
collaboration would be to leverage the advantages of DL
algorithms (eg, rapid, automated detection) while having
clinicians situated at various “checkpoints” to fill gaps where
algorithms are not assured, or where they may fall short due to
underlying biases. Cases are likely to vary, some with high
confidence or, more concisely, with a high probability of the
presence (or absence) of cancer relative to the probabilistic
threshold for cancer detection, while others will be associated
with less confidence. In cases with less confidence, outputs
could be considered more closely by clinicians to generate
combined decisions. This means we may need to weight
DL-based decisions around algorithmic confidence, which may
encourage symbiosis between human clinicians and DL
algorithms.

We also note that approximately one-third of the included
studies used data from open-access repositories, while the
remainder made use of nonpublic data sets. These sources do
not provide a valid within-source benchmark for comparison.
Researchers have referred to the limited availability of
open-access data and codes and the risk of bias and overfitting
in existing DL research [9,73-75]. Our review supports these
assertions and echoes these concerns. Lacking public data sets
is a fundamental cause of the growing digital health divide [76].
Therefore, we encourage the DL and health care communities
to collaborate and increase the number of studies that compare
DL-assisted clinicians and unassisted clinicians. This will ensure
clarity when designing interdisciplinary research and interpreting
data, and it will also encourage acceptance by both clinicians
and patients.

Limitations and Recommendations
Before providing recommendations, we should discuss the
limitations of this study. Our search strategy might have
unintentionally excluded some pertinent DL-assisted studies
and potentially useful non-English references. There were also
substantial differences in patient characteristics, cancer types,
imaging modalities, diagnostic thresholds, DL algorithms, and
clinician experiences. These likely impacted measures of
heterogeneity, although the fundamental purpose of this study
was to systematically review evidence. We focused specifically
on studies of DL-assisted clinicians and image-based cancer
diagnostics. Therefore, the goal was not really to obtain
generalizable findings but to identify gaps in our current
knowledge. While we provide a quality assessment for
transparency, the QUADAS-2 tool is suboptimal for assessing
AI diagnostic research. Given the importance of AI and DL
technologies, we would encourage global stakeholders to
develop a new QUADAS-AI/DL tool that assesses the risk of
bias and applicability.

Finally, we must emphasize that reliable estimates for
performance can only be achieved through well-designed and
well-executed studies that minimize bias in conduct and
reporting. There remains uncertainty around the estimates of
diagnostic performance provided in this exploratory
meta-analysis, which should be considered before
implementation.

Conclusions
Human-machine cooperation in cancer diagnosis using medical
imaging holds enormous potential. We found that the diagnostic
accuracy of DL-assisted clinicians appeared better than
unassisted clinicians. This area warrants further investigation,
and we acknowledge that more rigorously designed,
transparently reported, higher-quality studies are needed. This
may help facilitate the transition of DL assistance into clinical
practice, although further interdisciplinary mixed methods
research is required.
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