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Abstract

Background: Machine learning offers new solutions for predicting life-threatening, unpredictable amiodarone-induced thyroid
dysfunction. Traditional regression approaches for adverse-effect prediction without time-series consideration of features have
yielded suboptimal predictions. Machine learning algorithms with multiple data sets at different time points may generate better
performance in predicting adverse effects.

Objective: We aimed to develop and validate machine learning models for forecasting individualized amiodarone-induced
thyroid dysfunction risk and to optimize a machine learning–based risk stratification scheme with a resampling method and
readjustment of the clinically derived decision thresholds.

Methods: This study developed machine learning models using multicenter, delinked electronic health records. It included
patients receiving amiodarone from January 2013 to December 2017. The training set was composed of data from Taipei Medical
University Hospital and Wan Fang Hospital, while data from Taipei Medical University Shuang Ho Hospital were used as the
external test set. The study collected stationary features at baseline and dynamic features at the first, second, third, sixth, ninth,
12th, 15th, 18th, and 21st months after amiodarone initiation. We used 16 machine learning models, including extreme gradient
boosting, adaptive boosting, k-nearest neighbor, and logistic regression models, along with an original resampling method and
3 other resampling methods, including oversampling with the borderline-synthesized minority oversampling technique,
undersampling–edited nearest neighbor, and over- and undersampling hybrid methods. The model performance was compared
based on accuracy; Precision, recall, F1-score, geometric mean, area under the curve of the receiver operating characteristic curve
(AUROC), and the area under the precision-recall curve (AUPRC). Feature importance was determined by the best model. The
decision threshold was readjusted to identify the best cutoff value and a Kaplan-Meier survival analysis was performed.

Results: The training set contained 4075 patients from Taipei Medical University Hospital and Wan Fang Hospital, of whom
583 (14.3%) developed amiodarone-induced thyroid dysfunction, while the external test set included 2422 patients from Taipei
Medical University Shuang Ho Hospital, of whom 275 (11.4%) developed amiodarone-induced thyroid dysfunction. The extreme
gradient boosting oversampling machine learning model demonstrated the best predictive outcomes among all 16 models. The
accuracy; Precision, recall, F1-score, G-mean, AUPRC, and AUROC were 0.923, 0.632, 0.756, 0.688, 0.845, 0.751, and 0.934,
respectively. After readjusting the cutoff, the best value was 0.627, and the F1-score reached 0.699. The best threshold was able
to classify 286 of 2422 patients (11.8%) as high-risk subjects, among which 275 were true-positive patients in the testing set. A
shorter treatment duration; higher levels of thyroid-stimulating hormone and high-density lipoprotein cholesterol; and lower
levels of free thyroxin, alkaline phosphatase, and low-density lipoprotein were the most important features.
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Conclusions: Machine learning models combined with resampling methods can predict amiodarone-induced thyroid dysfunction
and serve as a support tool for individualized risk prediction and clinical decision support.

(J Med Internet Res 2023;25:e43734) doi: 10.2196/43734
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Introduction

Amiodarone-induced thyroid dysfunction (AITD) is a common,
irreversible, and unpredictable adverse thyroid effect, leading
to therapy failure and significant mortality. As it is the drug of
choice for arrhythmias and atrial fibrillation, developing
predictive models for the early detection of AITD is warranted
[1-4]. The incidence of AITD varies with iodine intake and
ranges from 17% to 30% [5-7]. Studies indicate that AITD onset
is unpredictable [8], and it is followed by significant morbidity
and mortality [9]. Amiodarone has a long and variable half-life
of approximately 60 to 142 days [10-14], causing difficulty in
treating its side effects. Timely and precise patient stratification
to identify patients at high risk of AITD is the foremost strategy
for preventing life-threatening adverse thyroid effects.

Predicting AITD requires advanced data-mining skills to unveil
its multifactorial mechanisms. Older age, female sex, chronic
obstructive pulmonary disease, chronic kidney disease, and
underlying autoimmune thyroid disorders contribute to AITD
[6,15-22]. Previously, statistical approaches were used to
develop a risk prediction index for AITD for adults with
congenital heart disease [23] and to perform an AITD risk factor
analysis [24-26]. However, these studies failed to capture
dynamic factors, as they collected data at a single time point.
A limited sample size, heterogeneous patient cohort, single
data-collection time point, and lack of consideration of factorial
interactions further contributed to suboptimal predictive
performance. In another report, a machine learning algorithm
was used to study immune checkpoint inhibitor–induced thyroid
dysfunction and was found to have an area under the receiver
operating characteristic curve (AUROC) of 0.77 [27]. This
model outperformed conventional regression models for
predicting multiple diseases, such as hypertension [28], neck
pain [29], and hepatocellular carcinoma [30]. The robust nature
of machine learning techniques could be promising for building
a surveillance system for AITD in comparison to traditional
regression methods.

Combining machine learning and resampling strategies can
counteract imbalanced data resulting from the low incidence of
AITD in the real world. Tree-based ensemble learning methods,
such as extreme gradient boosting (XGBoost) and adaptive
boosting (AdaBoost), are commonly applied for imbalance
classification [31,32]. K-nearest neighbors (KNN) with data
resampling methods perform well in imbalance classification
[33]. Combined with the synthetic minority oversampling
technique (SMOTE), these methods rebalance the minority and
achieve promising performance in disease and survival
prediction [34,35]. Borderline SMOTE further improves internal
data distribution by using samples on the boundary to synthesize

new instances and is able to diagnose lung cancer early [36].
Edited nearest neighbor (ENN) removes ambiguous data from
the majority class, while borderline synthetic minority
oversampling technique–edited nearest neighbor (B-SMT-ENN)
is a hybrid technique that performs oversampling by SMOTE
and undersampling by ENN. These hybrid sampling methods
successfully improve adverse-effect predictions and have other
medical applications [37-39].

An accurate machine learning prediction model with a
resampling strategy can be applied to overcome imbalanced
data for multifactorial adverse effects. The objectives of this
study were to develop and validate machine learning models
for forecasting individualized AITD risk with imbalanced
real-world data. The performance of 12 models with 4 machine
learning classifiers, including XGBoost, AdaBoost, KNN, and
logistic regression (LR), along with 3 resampling methods
(borderline-SMOTE, ENN, and B-SMT-ENN), were compared.
The specific aims of this study were (1) to select a fine-tuned
model for AITD prediction with multiple performance metrics,
including accuracy; Precision, recall, F1-score, G-mean,
AUROC, and AUPRC, and (2) to optimize machine
learning-based risk stratification schemes for AITD by
readjusting the decision thresholds for individualized risk
prediction.

Methods

Ethical Considerations
This retrospective study used a delinked clinical research
database from 3 hospitals in the Taipei Medical University
health care system, including Taipei Medical University
Hospital, Wan Fang Hospital, and Shuang Ho Hospital. The
study was approved by the Taipei Medical University Joint
Institutional Review Board (N202107054). As the data were
deidentified, the requirement for informed consent was waived.
This study adhered to the TRIPOD (Transparent Reporting of
a Multivariate Prediction Model for Individual Prognosis or
Diagnosis) checklist [40].

Study Design
Figure 1 shows the study design, including data collection,
feature selection, model construction, and 5-fold internal
validation using a training set, external validation by a test set,
and model interpretation. The training set of the study comprised
patients from Wan Fang Hospital and Taipei Medical University
Hospital, whereas the external test set comprised patients from
Shuang Ho Hospital. There were 16 machine learning models
built by the training set. Model performance was compared with
the external testing set.
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Figure 1. Study design to construct machine learning models for predicting amiodarone-induced thyroid dysfunction. The test set performance was
evaluated in the same sequence as the training set. The green boxes indicate that the validation process was completed. Ada: adaptive boosting; AUPRC:
area under the precision-recall curve; B-SMT: oversampling with borderline synthetic minority oversampling technique (borderline SMOTE); ENN:
edited nearest neighbor (ENN); G-mean: geometric mean; Hyb: hybrid oversampling with borderline synthetic minority oversampling technique and
undersampling with edited nearest neighbor (B-SMT-ENN); KNN: k-nearest neighbor; LR: logistic regression; SHAP: Shapley additive explanations;
SHH: Shuang Ho Hospital; SMT: synthetic minority oversampling technique; TMUCRD: Taipei Medical University clinical research database; TMUH:
Taipei Medical University Hospital; WFH: Wan Fang Hospital; XGB: extreme gradient boosting.

Patient Cohort
Patients older than 18 years who had first been prescribed oral
amiodarone between January 2005 and December 2017 were
included. Patients were excluded if they were pregnant or had
a history of a thyroid disorder diagnosis, thyroid surgery, or
subclinical thyroid laboratory data (Multimedia Appendix 1)
within 1 year before the index day, which was the day of the
first amiodarone prescription. The predefined inclusion and
exclusion criteria were modified from previous
medication-induced thyroid dysfunction research [6,27]. The
study subjects were followed up for 2 years after the index date.
This study collected features until the end of the study period
and recorded patient loss to follow-up and the occurrence of
AITD events.

Data Collection and Preprocessing
The study collected stationary and dynamic features from the
clinical research database. Stationary features, including sex,
age, and BMI, were collected once at the index date. Dynamic
features, including laboratory tests, comorbidities, and
comedications, were continuously collected to reflect the
patient’s clinical condition. The collection points for dynamic
features were at baseline and the first, second, third, sixth, ninth,
12th, 15th, 18th, and 21st months after amiodarone initiation.
Details of the dynamic data collection are shown as a diagram
in Multimedia Appendix 2. The features reengineered by the
research team included the accumulated or average dose of
amiodarone and annual time-series variations in laboratory tests.

Robust scaler algorithms were used to normalize the data and
reduce the effect of extreme numeric variables and large
differences in range between laboratory values [41]. Variables
with more than 90% missing data were deleted from the machine
learning programs. Missing values were first imputed with the
last observation carried forward, and then the remainders were
imputed with Multivariate Imputation by Chained Equations
(Scikit-learn), an open-source imputation software package
[42-44]. Zero was imputed for laboratory data with changing
rates, such as the trend or slope of lab values. The codebook
and missing rates in the training and test sets are provided in
Multimedia Appendix 3.

Dynamic Prediction of the Study Outcome
The outcome for prediction in this study was the occurrence of
AITD, which was defined by a thyroid function test and with
diagnostic criteria from previous studies [6,22,26,45]. Cases of
AITD were identified if the thyroid-stimulating hormone (TSH)
titer was <0.1 mU/l and the free thyroxin (fT4) level was higher
than the normal range, while cases of amiodarone-induced
hypothyroidism were ascertained by a serum TSH titer of >10
mU/l, regardless of the fT4 level; a TSH titer of 4 to 10 mU/l
with a lower than normal fT4 level; an International
Classification of Diseases (ICD)-9 code 242, 243, or 244 or an
ICD-10 code E02, E03, E05, or E06; having received
pharmacotherapy (eg, levothyroxine; Propylthiouracil,
carbimazole, or methimazole) for thyroid disease; or an ICD-9
procedure code for a thyroidectomy. As TSH and fT4 are
definite diagnostic criteria for AITD, the last data values before
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the prediction point were masked to avoid data leakage in the
test set. Once a patient developed AITD, the data at that time
point were coded 1, and it was designated the earliest AITD
onset date.

Model Construction With the Training Data Set
Hyperparameter tuning of the XGBoost, AdaBoost, KNN, and
LR algorithms was performed with an exhausted-grid search
toward maximizing F1-score metrics. Five-fold cross-validation
was performed inside each grid option, and the optimal
hyperparameter set was chosen based on the model in the grid
search with the highest F1-score. XGBoost was tuned on 7
hyperparameters, including max_depth, min_child_weight,
gamma, subsample, colsample_bytree, n_estimators, and
learning_rate for 94,080 grid options. Three hyperparameters
of AdaBoost that were tuned included n_estimators, learning
rate, and algorithm, with 160 combinations. As the KNN is
based on the KNN of the prediction point, n_neighbors, weights,
and metric, combining 120 sets of parameters, were tested.
Finally, the study used an LR established with the scikit-learn
module for binary outcome classification. P Penalty, solvers,
and C, hyperparameters of LR, were calculated in 140 selections.
Details of the hyperparameters and the final best combination
of the above 16 models are shown in Multimedia Appendix 4.

Recursive feature elimination (RFE) with cross-validation was
used for the training set. Pseudocodes of the grid search and
cross-validation are presented in Multimedia Appendix 5. The
minimal number of feature sets was generated by XGBoost and
AdaBoost. As the incidence of AITD in the training and test
sets was 14.3% and 11.4%, respectively, the imbalance issue
was managed by (1) oversampling with the borderline synthetic
minority oversampling technique (B-SMT) [46]; (2)
undersampling the majority class with ENN [47]; and (3) a
combination of oversampling and undersampling with
B-SMT-ENN. The raw strategy and 3 resampling strategies
were applied to XGBoost, AdaBoost, KNN, and LR, as shown
in Figure 1. This study finally constructed 16 models through
the 5-fold cross-validation process of the training sets.

Model Performance Comparison by Test Set
The performance of the 16 models generated with the training
data set were validated and evaluated on the test data set. Model
performance was compared using accuracy; Precision, recall,
F1-score, geometric mean, AUROC, and AUPRC [48]. The
AUPRC, G-mean, and F1-score were major metrics over
AUROC due to the imbalanced data in this study [49,50]. The
study also prioritized recall over precision as the major
performance index, to minimize the cost of failing to detect
AITD [51], while the accuracy; Precision, and AUROC were
minor indices. The formulas of each evaluation metric are
provided in Multimedia Appendix 6.

Feature Importance, Threshold Adjustment, and
Kaplan-Meier Analysis
This study further analyzed individualized feature importance
and survival curves of different thresholds to assess risk factors
and differentiate high-risk patients. The Shapley additive
explanations (SHAP) python package was used to understand
the importance and influence of each risk factor that caused
AITD [52]. The contribution of each feature was computed and
plotted to interpret the model. The precision-recall (PR) curve
of the best model was plotted to determine the optimal cutoff
based on the maximum F1-score. A threshold-moving system
was further used by placing different cutoff points on the PR
curve for binary classification. Five cutoff points were selected
for analysis, including the points to forecast the top 1%, 5%,
15%, and 25% of patients with AITD risk, as well as the one
determined by the threshold with the maximized F1-score [53].
The recall and sensitivity for the above 5 cutoff points were
then calculated and compared. A Kaplan-Meier (KM) survival
curve was plotted using different cutoff thresholds to compare
the actual survival of high- and low-risk groups for statistical
comparison.

Statistical Analysis
Baseline characteristics were evaluated with the chi-square test
or Fisher exact test for categorical variables, and independent
2-tailed t tests were used for continuous variables. The Wilcoxon
rank-sum test was used when the data were not normally
distributed. The cumulative thyroid dysfunction incidence was
compared with the log-rank test. Data were analyzed using SAS
(version 9.4; SAS Institute); Python (version 3.9.5; Python
Software Foundation), and R studio (version 1.3.1093; R
Studio). The statistical significance of the AUPRC was
calculated using MedCalc (MedCalc Software).

Results

Baseline Characteristics
The study included 6497 amiodarone users. The results of a
univariate analysis of their demographics and other features are
shown in Table 1. The Strengthening The Reporting of
Observational Studies in Epidemiology (STROBE) flowchart
for patient selection is presented in Multimedia Appendix 7.
The training set contained 4075 subjects, among whom 583
(14.3%) developed AITD, while the test set had 2422 patients,
among whom 275 (11.35%) had AITD. The distribution of
gender and mean age did not significantly differ between the
training and test sets. The AITD group had a higher proportion
of female patients, and its median age was older than that of
the non-AITD group.
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Table 1. Patient demographics and univariate analysis.

Test set (N=2422)Training set (N=4075)Characteristics

P valueNon-AITD (n=2147)AITD (n=275,
11.4%)

P valueNon-AITD
(n=3492)

AITDa (n=583,
14.3%)

Patient demographics

<.0011214 (56.54)121 (44)<.0011969 (56.38)282 (48.37)Male, n (%)

.00672.00 (61.00-81.00)75.00 (64.00-
83.00)

.00173.00 (62.00-
83.00)

76.00 (66.00-
83.00)

Age (years), median (IQR)

.0224.49 (22.22-26.51)24.94 (22.83-
27.04)

.7524.27 (22.04-
26.50)

24.14 (21.83-
26.67)

BMI (kg/m2), median (IQR)

.0031.00 (1.00-2.00)1.00 (0.00-1.00).791.00 (1.00-2.00)1.00 (1.00-2.00)Charlson comorbidity index, median
(IQR)

.2717 (0.79)0 (0).7556 (1.6)11 (1.89)Smoking habit, n (%)

.5738 (1.77)3 (1.09)>.9963 (1.8)11 (1.89)Alcohol habit, n (%)

Indication for amiodarone, n (%)

.0041192 (55.52)178 (64.73)<.001223 (38.25)360 (61.75)Atrial fibrillation

.04321 (14.95)28 (10.18).29509 (14.58)95 (16.3)Supraventricular tachycardia

Use of amiodarone, median (IQR)

.0811.60 (3.00-35.00)15.60 (5.60-35.20)0.4916.80 (5.00-
48.60)

18.20 (5.60-
39.00)

Cumulative dose (g)

.6475.00 (15.00-
442.00)

125.00 (28.00-
290.00)

.02115.00 (25.00-
554.00)

126.00 (28.00-
332.00)

Duration (days)

.16200.00 (141.61-
238.89)

200.00 (127.88-
216.13)

.04200.00 (136.36-
261.91)

200.00 (134.09-
217.02)

Prescription daily dose (mg/day)

.080.18 (0.05-0.55)0.24 (0.08-0.55).640.27 (0.08-0.75)0.30 (0.09-0.62)Average dose per kg body weight
(g/kg)

Laboratory data, median (IQR)

<.0012.13 (1.45-2.50)3.22 (2.97-3.40)<.0012.08 (1.40-2.50)3.20 (2.79-3.51)Thyroid-stimulating hormone (mU/l)

<.0011.22 (1.10-1.31)1.16 (1.10-1.21)<.0011.27 (1.17-1.39)1.18 (1.11-1.25)Free thyroxine (ng/dl)

.1650.64 (40.00-57.32)53.00 (44.00-
58.33)

.00153.00 (45.49-
59.99)

55.03 (47.93-
60.39)

High-density lipoprotein cholesterol
(mg/dL)

.1292.22 (81.00-
110.00)

90.00 (81.00-
101.00)

.00191.72 (80.45-
106.31)

89.29 (79.00-
101.49)

Low-density lipoprotein cholesterol
(mg/dL)

.674.24 (3.66-4.51)4.25 (3.66-4.47).064.23 (3.60-4.48)4.21 (3.57-4.42)Red blood cells (106 cells/µL)

.3112.90 (11.10-13.70)12.80 (11.20-
13.50)

.0512.87 (10.90-
13.60)

12.80 (11.00-
13.40)

Hemoglobin (g/L)

.3538.35 (33.2-40.6)38.18 (33.2-40).00738.3 (32.7-40.21)37.9 (32.7-39.6)Hematocrit (%)

<.00175.42 (58.92-95.38)58.70 (47.26-
78.10)

<.00175.85 (60.29-
96.00)

64.68 (53.66-
83.07)

Alkaline phosphatase (U/L)

.0292.00 (76.00-
132.00)

84.60 (73.86-
118.00)

.0291 (74.00-
124.00)

86.00 (72.60-
119.00)

Triglycerides (mg/dl)

Concurrent medication, n (%)

.6288 (4.1)9 (3.27).02110 (3.15)30 (5.14)Allopurinol

>.999 (0.41)1 (0.36).0438 (1.08)1 (0.17)Tyrosine kinase inhibitors

.11814 (37.91)90 (32.73).021135 (32.5)218 (37.39)Nonsteroidal anti-inflammatory drugs

.68393 (18.3)47 (17.09).01638 (18.27)133 (22.81)Diabetes mellitus medications

.22287 (13.37)29 (10.54).04450 (12.89)94 (16.12)Metformin

Concurrent diseases, n (%)
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Test set (N=2422)Training set (N=4075)Characteristics

P valueNon-AITD (n=2147)AITD (n=275,
11.4%)

P valueNon-AITD
(n=3492)

AITDa (n=583,
14.3%)

.441278 (59.52)171 (62.18).0052275 (65.14)415 (71.18)Hypertension

.1923 (1.07)6 (2.18).00968 (1.94)22 (3.77)Bradycardia

.15698 (32.51)77 (28).011068 (30.58)210 (36.02)Diabetes

.29254 (11.83)26 (9.45).02435 (12.46)94 (16.12)Anemia

>.99157 (7.31)20 (7.27).005338 (9.67)79 (13.55)Gout

.42292 (13.6)32 (11.63).03548 (15.69)113 (19.3)Chronic renal failure

.56459 (21.38)54 (19.64)<.001786 (22.51)174 (29.83)Renal dysfunction

aAITD: amiodarone-induced thyroid dysfunction.

Model Construction and Evaluation
Feature selection by RFE with 5-fold cross-validation generated
19 features with an accuracy of 0.895 with AdaBoost, while 46
features with an accuracy of 0.914 were generated by XGBoost.
Considering the simplicity and accuracy of the model, the 19
features selected by AdaBoost were used for further model
development. A figure showing RFE and the features selected
is provided in Multimedia Appendix 8.

Figure 2 compares the major model performance indices for the
test set: AUPRC, F1-score, G-mean, and recall. The internal

validation performance of the training set is provided in
Multimedia Appendix 9. The 4 major performance metrics for
the XGBoost and AdaBoost models were consistently higher
than for the KNN and LR models, with higher AUPRC and
F1-scores for the XGBoost-based model. Among different
resampling methods, the best AUPRC was for XGBoost-B-SMT
(0.751, 95% CI 0.697-0.799), which was significantly higher
than for XGBoost-Raw (0.742, 95% CI 0.687-0.790; P<.05),
XGBoost-ENN (0.741, 95% CI 0.686-0.790; P<.05), and
XGBoost-B-SMT-ENN (0.730, 95% CI 0.675-0.779; P<.05).
Multimedia Appendix 10 summarizes the results of the statistical
comparisons for AUPRCs.
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Figure 2. Performance metrics for evaluating a model on imbalanced data. AdaBoost: adaptive boosting; AUPRC: area under the precision-recall
curve; B-SMT: borderline synthesized minority oversampling technique; B-SMT ENN: hybrid oversampling with borderline synthetic minority
oversampling technique and undersampling with edited nearest neighbor; ENN: edited nearest neighbor.

XGBoost-based models also produced higher G-means, with
values of 0.688, 0.661, and 0.641 for XGBoost-B-SMT,
XGBoost-ENN, and XGBoost-B-SMT-ENN, respectively. The
3 resampling methods all increased G-mean performance for
XGBoost and AdaBoost but did not consistently increase the
G-mean for KNN or LR. Finally, the recall levels of
XGBoost-B-SMT and AdaBoost-B-SMT reached 0.756 and
0.858, respectively, while KNN-ENN only rounded to 0.255.

Table 2 further lists the performance on all metrics, including
the minor indices of accuracy; Precision, and AUROC, for the
test sets. All models had an AUROC >0.8, except the LR model
without resampling. Like the major metrics, the AdaBoost- and
XGBoost-based models had higher accuracy and AUROC values
compared to the KNN- and LR-based models. The AUROC
values for the XGBoost- and AdaBoost-based models were
>0.9, while only the accuracy of the XGBoost-based models
exceeded 0.9.
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Table 2. Model performance to predict amiodarone-induced thyroid dysfunction.

Minor indicesMajor indicesModels

AUROCcPrecisionAccuracyG-meanbF1-scoreRecallAUPRCa

XGBoostd

0.9360.7480.9320.7690.6700.6070.742Raw

0.9340.6320.9230.8450.6880.7560.751B-SMTe

0.9390.6240.9180.8150.6610.7020.741ENNf

0.9240.6110.9140.7970.6410.6730.730B-SMT ENNg

AdaBoosth

0.9230.6960.9190.7080.5930.5160.643Raw

0.9210.4480.8640.8610.5890.8580.654B-SMT

0.9220.5620.9050.8290.6400.7420.635ENN

0.9140.4520.8670.8470.5830.8220.624B-SMT ENN

K-nearest neighbor

0.8350.7590.8980.3850.2490.1490.500Raw

0.8160.2060.6170.6990.3300.8290.470B-SMT

0.8250.4960.8860.4960.3370.2550.393ENN

0.8130.2130.6350.7090.3380.8220.467B-SMT ENN

Logistic regression

0.7980.3130.8770.260.1180.0730.294Raw

0.8060.2460.6980.7420.3770.8040.303B-SMT

0.8110.3000.8520.4620.2600.2290.300ENN

0.8030.2590.7220.7460.3890.7780.305B-SMT ENN

aAUPRC: area under the precision-recall curve.
bG-mean: geometric mean.
cAUROC: area under the receiver operating characteristic curve.
dXGBoost: extreme gradient boosting.
eB-SMT: borderline synthesized minority oversampling technique.
fENN: edited nearest neighbors.
gB-SMT ENN: hybrid oversampling with borderline synthetic minority oversampling technique and undersampling with edited nearest neighbor.
hAdaBoost: adaptive boosting.

Feature Importance, Threshold Adjustment, and KM
Survival Analysis
Figure 3 shows the SHAP summary plot. As shown in this graph,
the TSH level had the highest contribution to AITD risk, with
a SHAP value of 1.68. The fT4 level, amiodarone treatment
duration, alkaline phosphatase level, high-density lipoprotein
(HDL) level, and low-density lipoprotein (LDL) level were
associated with a higher predicted probability of AITD, with
respective SHAP values of 0.95, 0.76, 0.73, 0.52 and 0.37.
Furthermore, therapeutic days, cumulative dose, age, and BMI,

with SHAP values of 0.45, 0.41, 0.33, and 0.25, respectively,
were important global predictors. The local explanation
summary plot demonstrated the direction of relationships
between clinical variables and AITD, with positive SHAP values
indicating higher AITD risk. A higher TSH level was the most
informative feature in determining AITD, with a lower fT4
level, shorter treatment duration, lower alkaline phosphatase
level, higher HDL level, and lower LDL level increasing the
AITD risk. In addition, longer therapeutic days, higher
cumulative dose, older age, and lower BMI also raised the AITD
risk.
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Figure 3. Shapley additive explanations importance plot of the extreme gradient boosting–borderline synthetic minority oversampling technique model.
SHAP: Shapley additive explanations.

Figure 4 shows KM curves based on using different cutoff points
on the PR curve for the XGBoost–borderline SMOTE model.
The thresholds of the 5 cutoff points were 0.995 for the top 1%
(point A), 0.953 for the top 5% high-risk patients (point B),
0.627 for the optimal point determined by the maximized
F1-score (point C), 0.5 for the top 15% as the default value
(point D), and 0.142 for the top 25% (point E) of patients
predicted to be at risk of AITD. Moving from default point D,
with a threshold of 0.5, to point A, with a threshold of 0.995,
the recall significantly decreased from 0.756 to 0.116. When
changing the threshold from 0.5 (default; Point D) to 0.142

(point E), recall increased from 0.756 to 0.88. The optimal cutoff
(point C), with a threshold of 0.627, yielded better performance,
with an accuracy of 0.93 and a precision of 0.685, and the best
F1-score was achieved at 0.699. The corresponding KM curves
for the 5 cutoff points were able to differentiate high- and
low-risk patients in the log-rank test (P<.001). Point A had only
33 within 2422 patients (1.4%) in the high-risk group, and point
E predicted 617 within 2422 patients (25.4%) at high risk of
AITD. Point C, with 286 high-risk patients within 2422 patients
(11.8%), demonstrated an optimal prediction of 275 true
positives for patients with AITD.
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Figure 4. Dynamic and interactive threshold-moving system. The figure represents the contribution of the corresponding features to amiodarone-induced
thyroid dysfunction risk. Global feature importance refers to a single ranking of all features for the model, while the local explanation calculated Shapley
additive explanation values for each prediction to understand features that contributed to that single prediction. The Kaplan-Meier plot of each threshold
is shown in the figure. The yellow star represents the optimal cutoffs for threshold, F1-score, recall, and precision: 0.627, 0.699, 0.713, and 0.685,
respectively. AP: average precision; NPV: negative predictive value; PPV: positive predictive value; PR: precision-recall.

Prediction Distribution
Figure 5 visualizes the prediction distribution of AITD for the
2422 subjects in the external test set. A color change from blue
to red indicates increased predicted risk, with a dramatic change
occurring around the cutoff point of 0.627. Among 275 patients

who developed AITD, 196 (71.3%) had a predicted risk above
0.627 and were determined to be at high risk of AITD according
to the XGBoost-borderline SMOTE model. Among the
remaining 2147 non-AITD patients, 2057 (95.8%) had a
predicted risk lower than the optimal threshold and were thus
true negatives estimated by the model.
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Figure 5. Prediction distribution of adverse thyroid effects in amiodarone users. Patients were sorted in order of risk; red dots represent the AITD
group, while blue dots represent the non-AITD group. AITD: amiodarone-induced thyroid dysfunction.

Discussion

Main Findings
This study constructed an explainable and threshold-modifiable
machine learning model with the resampling method for AITD
risk stratification using dynamic clinical features from the Taipei
Medical University clinical research database. The model with
the best prediction performance, XGBoost-borderline SMOTE,
was validated using external data from another hospital to ensure
the credibility and generalizability of the results. It remained
robust under conditions of different physicians; Prescription
patterns, and hospitals. Resampling methods effectively tackled
the imbalanced data and enhanced the model performance. There
were 19 clinical features selected by the RFE. Time-series input
for dynamic clinical features allowed for real-time assessment
and prediction according to a patient’s changing disease state.
The SHAP plot provided a better visualization tool to understand
the contributions of features to AITD. Modifying the threshold
on the PR curve by comparison to the KM curve could improve
the help provided for clinical decision-making by determining
the percentage of the AITD risk population in different practice
settings.

Best-Performing Model
The outstanding performance of XGBoost-borderline SMOTE
in this study resulted from ensemble learning boosting
algorithms and a resampling-oversampling technique. As a
tree-based ensemble learning algorithm, XGBoost has been
shown to be able to detect the complex and potentially nonlinear

relationships in imbalance classification, such as in predicting
adverse outcomes of chronic heart failure or the adverse effects
of analgesics for osteoarthritis [37,54]. In contrast, KNN was
sensitive to the majority of instances and thus performed poorly
for imbalance classification [55], while the traditional LR model
led to biased parameter estimates and classification performance
and was less suitable for handling imbalanced data [55-57].
Interestingly, the study also found that oversampling B-SMT
consistently outperformed undersampling ENN and hybrid
sampling B-SMT-ENN on AUPRC, recall, and G-mean. The
undersampling ENN and hybrid sampling methods used a
process that deletes samples from the majority class; therefore,
valuable information determining the decision boundary between
the classes might have been lost. Borderline SMOTE created
synthetic data only along the decision boundary, which was the
best-performing strategy in this study; it has previously been
used to successfully predict chronic kidney disease and hepatitis
B virus infection with class imbalance [58,59].

Feature Identification and Interpretation
This study used SHAP for model interpretation, which allowed
precise ranking of variables with clinical reasoning and
justification. Top features, such as a high TSH level, short
treatment duration, low FT4 level, advanced age, and a higher
cumulative amiodarone dose, have been well explained by
previous epidemiological studies [6,7,16]. Low alkaline
phosphatase and high alanine aminotransferase levels were also
found to be associated with hypothyroidism [60]. However,
HDL and LDL, which were selected by RFE in this research,
were not statistically significantly correlated with thyroid
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function in previous pharmacoepidemiological reports [61].
Their contributions might be masked by factorial interactions
in statistical approaches. Similar phenomena were reported for
thyroid disease, chronic kidney disease, and analgesic
adverse-effect prediction [54,62,63]. The machine learning
models identified relevant features with nonlinear relationships
and complex interactions between factors and outcomes, such
as HDL and LDL, in the present study; Promising to help
doctors and pharmacists to pay special attention when checking
amiodarone users’ lipid panels to prevent adverse thyroid events.

Threshold-Moving System on the PR Curve
This study used a moving threshold system on the PR curve to
select optimal cutoff points for assessments with the KM curve.
This innovative approach not only allowed comparisons of
model performance at different decision thresholds, but also
further ensured the capability of the model to differentiate
clinically significant high- and low-risk groups. As decision
threshold adjustment is a known strategy to deal with
imbalanced classification, the best cutoff was based on the
maximum F1-score, as in a previous study of diabetes risk
prediction [64]. Selecting an extremely low threshold allows
capture of all potential AITD events, but a high false alarm rate
can overwhelm clinicians. Conversely, an extremely high
decision threshold can greatly reduce the false alarm rate with
the cost of failing to detect AITD cases. With an unequal class
distribution and high misclassification costs in adverse effect
predictions, this study will increase attention paid to future
studies to determine the optimal threshold based on the
maximum F1-score with a threshold-moving approach and a
KM curve to ensure differentiation ability and clinical
justification, rather than using the default cutoff (0.5) directly
provided by the machine learning software.

Clinical Implications
This machine learning model could be used as a clinical
decision-making aid for the early and real-time prediction of
AITD by incorporating it into computerized physician order
entry systems to optimize amiodarone use. This study collected
patients’ time-series data to build the model, giving it the
capability to provide assessment not only of new amiodarone
users but also patients who have used amiodarone for a long
time. Patients’ disease status changes over time, so only
dynamically analyzing the cumulative dose, duration of therapy,

and changes in multiple recent laboratory data will enable
simultaneous surveillance. The present model does not provide
a one-time glimpse of patient status, but a long-term, real-time
prediction. Previous studies that used time-series concepts for
intradialytic adverse-event risk prediction also provide evidence
for this methodology, as their models had better prediction
performance than models lacking features extracted from
time-series data [65-67]. Using a threshold-moving system on
the PR curve allowed us to further visualize threshold
adjustments, balancing high noise and the cost of missing cases
for clinical consideration. The model in this study should
increase the safety of amiodarone use by enabling individualized
risk prediction of AITD.

Limitations
The study used the Taipei Medical University clinical research
database, incorporating data from 3 hospitals in Taiwan. This
database provided detailed clinical information, such as
laboratory results, cause of death, and time-points for each
medical treatment; it has previously been used to successfully
predict mortality or classify patients with end-stage liver disease
[68]. However, the study was potentially affected by the loss
to follow-up of patients, unrecorded disease status, or
unrecorded medications due to its nature as a retrospective data
analysis. Family history, genetic data, and dietary intake were
not documented in the database, but these factors might be
integral to the occurrence of AITD. Extrapolation of the study
model is thus restricted. Future multicenter, multicountry data
are needed to further train and test the model before applying
it in a broader clinical setting.

Conclusions
This study found that XGBoost with the borderline SMOTE
resampling technique achieved the best model performance to
predict AITD among amiodarone users. Feature selection by
RFE and interpretation by SHAP demonstrated good predictive
abilities and an explainable model. The optimal point of the
threshold was determined to be the one with the maximal
F1-score, found by moving the threshold on the PR curve and
differentiating risk groups assessed by the Kaplan-Meier curve.
This time-series predictive model can serve as a preliminary
tool to support clinicians with individualized AITD risk
stratification among amiodarone users.
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RFE: Recursive feature elimination
RFECV: recursive feature elimination cross-validation
SHAP: Shapley additive explanation
SMOTE: synthetic minority oversampling technique
TSH: thyroid-stimulating hormone
XGBoost: extreme gradient boosting
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