
Original Paper

Predicting Disengagement to Better Support Outcomes in a
Web-Based Weight Loss Program Using Machine Learning
Models: Cross-Sectional Study

Aida Brankovic1, PhD; Gilly A Hendrie2, PhD; Danielle L Baird2, BSc; Sankalp Khanna1, PhD
1The Australian e-Health Research Centre, Health & Biosecurity, Commonwealth Scientific Industrial Research Organisation, Brisbane, Australia
2Human Health Program, Health & Biosecurity, Commonwealth Scientific Industrial Research Organisation, Adelaide, Australia

Corresponding Author:
Aida Brankovic, PhD
The Australian e-Health Research Centre
Health & Biosecurity
Commonwealth Scientific Industrial Research Organisation
STARS building Level 7
Herston
Brisbane, 4029
Australia
Phone: 61 732533629
Email: aida.brankovic@csiro.au

Abstract

Background: Engagement is key to interventions that achieve successful behavior change and improvements in health. There
is limited literature on the application of predictive machine learning (ML) models to data from commercially available weight
loss programs to predict disengagement. Such data could help participants achieve their goals.

Objective: This study aimed to use explainable ML to predict the risk of member disengagement week by week over 12 weeks
on a commercially available web-based weight loss program.

Methods: Data were available from 59,686 adults who participated in the weight loss program between October 2014 and
September 2019. Data included year of birth, sex, height, weight, motivation to join the program, use statistics (eg, weight entries,
entries into the food diary, views of the menu, and program content), program type, and weight loss. Random forest, extreme
gradient boosting, and logistic regression with L1 regularization models were developed and validated using a 10-fold
cross-validation approach. In addition, temporal validation was performed on a test cohort of 16,947 members who participated
in the program between April 2018 and September 2019, and the remaining data were used for model development. Shapley
values were used to identify globally relevant features and explain individual predictions.

Results: The average age of the participants was 49.60 (SD 12.54) years, the average starting BMI was 32.43 (SD 6.19), and
81.46% (39,594/48,604) of the participants were female. The class distributions (active and inactive members) changed from
39,369 and 9235 in week 2 to 31,602 and 17,002 in week 12, respectively. With 10-fold-cross-validation, extreme gradient
boosting models had the best predictive performance, which ranged from 0.85 (95% CI 0.84-0.85) to 0.93 (95% CI 0.93-0.93)
for area under the receiver operating characteristic curve and from 0.57 (95% CI 0.56-0.58) to 0.95 (95% CI 0.95-0.96) for area
under the precision-recall curve (across 12 weeks of the program). They also presented a good calibration. Results obtained with
temporal validation ranged from 0.51 to 0.95 for area under a precision-recall curve and 0.84 to 0.93 for area under the receiver
operating characteristic curve across the 12 weeks. There was a considerable improvement in area under a precision-recall curve
of 20% in week 3 of the program. On the basis of the computed Shapley values, the most important features for predicting
disengagement in the following week were those related to the total activity on the platform and entering a weight in the previous
weeks.

Conclusions: This study showed the potential of applying ML predictive algorithms to help predict and understand participants’
disengagement with a web-based weight loss program. Given the association between engagement and health outcomes, these
findings can prove valuable in providing better support to individuals to enhance their engagement and potentially achieve greater
weight loss.

J Med Internet Res 2023 | vol. 25 | e43633 | p. 1https://www.jmir.org/2023/1/e43633
(page number not for citation purposes)

Brankovic et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:aida.brankovic@csiro.au
http://www.w3.org/Style/XSL
http://www.renderx.com/


(J Med Internet Res 2023;25:e43633) doi: 10.2196/43633

KEYWORDS

web-based weight loss program; predicting engagement; machine learning–driven intervention; machine learning; artificial
intelligence

Introduction

Background
Chronic conditions, such as cardiovascular disease and diabetes,
are the leading cause of poor health and death in Australia [1]
and in other high-income countries such as the United States,
where 6 in 10 adults have a chronic disease [2]. Obesity, poor
diet, and inactivity are some of the leading modifiable risk
factors for chronic conditions [3]. In Australia, two-thirds of
adults are classified as overweight or obese [4], and this number
is expected to increase to more than three-quarters of the adult
population by 2030 [5]. Approximately 8% of the total burden
of disease and injury in Australia is attributable to overweight
and obesity, and 5% is attributable to dietary risk, including
inadequate fruit, vegetable, and wholegrain consumption [3].
Data from the 2011 to 2012 National Nutrition and Physical
Activity Survey found that most Australians do not consume
the recommended amounts of healthy food required for health
and well-being, with <4% of adults consuming adequate
vegetables and less than one-third meeting the recommended
intake for grains [6].

There has been an exponential growth in digital behavioral
interventions to prevent chronic diseases and promote health
[7]. As a result, many systematic reviews have evaluated digital
interventions targeting nutrition, physical activity, sedentary
behavior, and obesity. Most reviews focus on the effectiveness
of interventions in changing behavior, and unfortunately, few
interventions have been able to demonstrate substantial and
sustained behavior change. A recent systematic review identified
a lack of evaluation of other outcomes in digital interventions,
such as reach, engagement, and use of technology within
interventions [8]. Given that longer-term behavior change is
difficult to achieve, including through digital interventions, and
low participant use of digital interventions is a recognized barrier
to long-term behavior change success, it is surprising that there
has not been much focus on the engagement and use of digital
interventions.

Engagement With Digital Health Interventions
Engagement is thought to be critical to interventions achieving
successful behavior change and health improvements.
Engagement is defined as “the extent to which, and how,
individuals participate in an intervention” [9]. Engagement can
be considered in a similar way to the exposure or dose of
treatment in medical studies. However, in medical studies,
participants generally receive the same dose, but in digital
health, engagement with the intervention is usually at the
participants’ discretion, and it is more difficult to standardize
this exposure [10]. In digital health interventions, greater
engagement has generally been associated with greater behavior
change and better health outcomes [11-13]. However, some
research has also suggested that more engagement does not

necessarily equate to greater outcomes; rather, effective
engagement should be the goal where engagement is at a level
sufficient to achieve the intended health outcomes [14]. Despite
the growing application and adoption of technology in health
interventions, a persistent challenge remains: engagement
deterioration or nonuse attrition [10]. Large number of
participants initiate action by enrolling in a program, but the
majority stop using the technology beyond the first few weeks,
leading to substantial user drop out before completion [10],
which impacts the behavior change results they are able to
achieve. The lack of sustained engagement also impacts the
longer-term effectiveness of programs in terms of significant
weight loss and improved health outcomes. The reasons for the
lack of extended engagement are not well understood, probably
because engagement is often seen as a secondary outcome of
studies and strategies to enhance engagement are not well
evaluated. The lack of focus on digital intervention use and
engagement may be representative of a lack of published
research in this area but may also be because of methodological
differences between studies [8].

Application of Machine Learning
Applying machine learning (ML) to digital health and weight
loss programs could potentially improve the experience for
participants by providing more tailored content, in turn
increasing their engagement in the intervention and improving
the health outcomes achieved by participants. ML has been
applied in various ways to address a range of health conditions,
such as the detection of diseases such as dementia in individuals
[15], diagnostic decision support for clinicians [16], and
automated risk assessment and improved service use for mental
health [17]. The application of ML in controlled or clinical
health settings has been shown to be useful and effective, but
its application in real-world digital health interventions is less
well understood [18]. A review published in 2019 identified 8
interventions incorporating ML in a real-world research setting;
1 examined self-efficacy for weight loss and 1 personalized
nutrition advice based on glycemic response, but the remaining
examples were in other areas of health research such as
depression, stress management, and smoking cessation [18].
The authors of this review noted that a limitation of the review
was the small sample size of studies that applied ML to
real-world applications (the average sample size of studies was
71 people [18]).

This presented an opportunity for this study to address several
limitations in the current body of literature, including the
application of ML to a real-world weight loss intervention that
has weight and engagement data collected at regular intervals
from a larger sample of participants compared with previously
published research. This study used data from a web-based
commercial weight loss program to predict a user’s risk of
disengagement during a 12-week program. The ability to predict
disengagement results before the end of a program could be
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particularly useful to identify program participants at risk of
premature departure and to inform when additional support
could be directed toward at-risk individuals, possibly increasing
the overall success of the program and outcomes for the
participants. Therefore, this study aimed to (1) investigate the
ability of state-of-the-art ML algorithms to predict member
disengagement week by week, which would allow better support
of participants and possibly better weight loss outcomes, and
(2) explain the output of the developed predictive models.

Methods

Study Design
The participants were adults (aged ≥18 years) who joined the
Commonwealth Scientific and Industrial Research Organisation
(CSIRO) Total Wellbeing Diet Online program between October
2014 and September 2019. CSIRO Total Wellbeing Diet Online
[19] is a web-based 12-week commercial weight loss program
managed by Digital Wellness and is available to individuals at
a cost of A$199 (US $132) for the first 12 weeks. Some
participants opt into additional support from a dietitian in the
form of 3 phone or video call consultations (total cost of the
12-week program is A$249 [US $164]). Data were entered by
participants into the web-based platform during the registration

process (eg, year of birth, sex, postcode, height, and weight at
the start of the program) and throughout the program (eg, weekly
weight entries). Other data collected within the platform were
related to feature use, including entries into the food diary, views
of the menu plans, views of exercise plans, views of program
content information, forum visits, searches of the food database,
and weight entries. These data were provided to the research
team in a deidentified format, with each individual member
assigned a unique identifier. As part of the registration,
participants agreed to their data being used for research
purposes; therefore, no direct participant consent was sought.

Data Description
In total, there were 59,686 unique participant IDs over the 5-year
study period. This analysis included participants who selected
the 12-week weight loss program with or without dietitian
assistance. Some participants were members for longer than the
initial 12-week program; however, this analysis used data from
the first 12 weeks of participation only. After the exclusion of
participants with invalid or missing feature entries and those
selecting a program type shorter than 12 weeks, the resulting
cohort for analysis was 81.43% (48,604/59,686) of all unique
participant IDs. Details of the exclusion process are shown in
Figure 1.

Figure 1. Cohort selection process.

Outcome Variables
The primary outcome of this study was the inactivity
(disengagement) on the platform. Activity related to the use of
7 features, namely, entries into the food diary, views of the
menu plans, views of exercise plans, views of program content
information, forum visits, searches of the food database, and
weight entries. The outcome of interest was inactivity (no
engagement) in the following week, which was defined as the

absence of all 7 activity counts within the following week. This
resulted in 11 outcome metrics, each corresponding to 1 week
of the program, starting from the second week. The absence of
any activity on the platform was of interest as it was possibly
an indication of imminent withdrawal from the program.

Predictors
The predictors used in this study were divided into 2 groups:
static and dynamic features. The static features included

J Med Internet Res 2023 | vol. 25 | e43633 | p. 3https://www.jmir.org/2023/1/e43633
(page number not for citation purposes)

Brankovic et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


demographic predictors, that is, age; sex; starting BMI;
Socioeconomic Indexes for Areas, Index of Relative
Socioeconomic Disadvantage decile, with decile 1 representing
areas with the most disadvantage or least advantage and decile
10 representing areas with the least disadvantage or most
advantage; and predictors anticipated to reflect the motivation
for participation, that is, the number of days between setup and
nominated start date and the reason (health, family, appearance,
or intrinsic or personal) for weight loss. Each reason for weight
loss was represented as a categorical variable, with 1
representing its presence and 0 representing its absence. To
explore the impact of the opt-in dietitian support, a categorical
feature was created and set to 1 for those who chose the program
with support from a dietitian and to 0 for those who did not.
The dynamic group of features included variables that were
subject to change weekly. These included counts of individual
activities (diary, forum, menu, exercise plan, food search,
program, and weight entry), the sum of individual activities
denoted as total activity, and accumulative weight loss. The
incremental weight change between 2 adjacent weeks of the
program was calculated and included as a predictor. For each
predicted outcome metric, starting from week 2, all static and
dynamic features available up to that week were considered as
predictors. For example, for predicting activity in week 4, all
dynamic features available for weeks 1, 2, and 3 were considered
alongside the static feature group. The list of all features
considered in this study is provided in Table S1 in Multimedia
Appendix 1.

Prediction Models
In this study, we considered logistic regression with L1
regularization (L1), random forest (RF), and extreme gradient
boosting (XGB) as candidate models. L1, popularly known as
the least absolute shrinkage and selection operator, was chosen
because of its established efficacy in solving prediction problems
and ability to perform feature selection to increase model
parsimony [20]. The latter ability enhances the predictive
accuracy and interpretability of the resulting models and is
relevant when considering large predictor sets, where many
predictors may not be highly useful for predicting an outcome
metric. An advantage of logistic regression is that predictions
can be calculated using straightforward mathematics, which
makes the implementation of models in a production
environment easier than some other approaches. Two tree-based
ML approaches, RF and XGB, were used because of their
established superiority in pattern recognition from large,
complex data [21-23]. The hyperparameters of each of the
models were optimized with stratified 3-fold cross-validation
on the training partition using an objective function to maximize
the area under the precision-recall curve (AUC-PRC; Figure
2). Once found, the best sets of parameters were used to refit
the models based on the complete training data. Details of the
hyperparameter grids are provided in Table S2 in Multimedia
Appendix 1.

Figure 2. (A) Schematic diagram of tree-based model candidates which takes static and dynamic features and outputs class probability. (B) Schematic
diagram of 10-fold cross-validation (10FCV). (C) Schematic diagram of hyperparameters tuning with 3-fold cross-validation on training data belonging
to the first fold. P1-S10 indicates data subsets 1 to 10. In magenta (B) and blue (C) are test partitions and, in grey, training partitions. Ji denotes an
evaluation metric (in this study area under the precision-recall curve [AUC PRC], area under the receiver operating characteristic curve [AUC-ROC],
precision, recall, and F1-score).

J Med Internet Res 2023 | vol. 25 | e43633 | p. 4https://www.jmir.org/2023/1/e43633
(page number not for citation purposes)

Brankovic et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Model Validation
To capture variability, model validation was conducted with
nested 10-fold cross-validation (10FCV; Figure 2). Nested
cross-validation estimates the generalization error of the
underlying model and its hyperparameter search while at the
same time preventing the model from yielding an overly
optimistic score [24]. Temporal validation was also carried out
to simulate reality and check how the model would extrapolate
to new data when trained on historic data. For this purpose, data
collected between October 2014 and April 2018 were used for
training the model, and data from the most recent 18 months
(between May 2018 and September 2019) were used for testing.

We did not perform hyperparameter optimization on the training
data but instead used the model structure (model
hyperparameters) as the best parameters in the 10FCV process.

To evaluate the model performance, we used a set of
performance indicators. The area under the receiver operating
characteristic curve (AUC-ROC) was used to measure model
discrimination. Although AUC-ROC is the gold standard for
quantification of the discriminative power of predictive models
developed for clinical applications, it is regarded as a misleading
performance indicator for imbalanced data sets [15,16].
Therefore, we also computed the AUC-PRC, which has been
shown to be more informative than the AUC-ROC [17] in such
instances. In addition, we computed recall, precision, and
F1-score metrics, as they are also suitable for assessing model
performance where the data are imbalanced. To ensure the
reliability of the predictions, calibration curves were considered
during the selection process for the final models. Calibration
curves were generated by grouping the predictions into quantiles
(we used 10), each represented as a point. The x-axis of the
calibration curve shows the proportion of true outcomes, and
the y-axis shows the mean predicted probability. The better the
calibrated model, that is, the more reliable the forecast, the
closer the points are along the main diagonal. The equations for
computing the evaluation metrics are provided in Multimedia
Appendix 1.

Statistical Analysis
Reported performance means and 95% CIs of 10FCV obtained
on test partitions were calculated by averaging and computing
the CIs using the Student 2-tailed t test. To compare the
performance means of the models, one-way ANOVA tests were
applied.

Explainability Module
Unlike regression models, which have an elegant expression
that allows direct insight into the model, tree-based ML models
require an additional element (the so-called explainer) to explain
the relationship between the inputs and predicted outputs. To
analyze the relevance of predictors in predicting the program
participants at risk of disengagement, we created the explainer
based on Shapley values introduced in the study by Lundberg
et al [25]. Shapley values can be interpreted as the marginal
contributions of predictors in predicting class 0 or 1 when
compared with the baseline featureless model. Performance of
this model was computed as the ratio of samples belonging to
a class of interest and total number of samples. Positive values
can be interpreted as contributors in predicting class 1, and
negative values can be interpreted as contributors in predicting
class 0. If computed for only 1 instance, the Shapley values
provide a local explanation.

Software
All models were trained in Python (version 3.6) software. We
used the sklearn package to implement RF and L1 and the
XGBoost package to implement the XGB classifier. For
hyperparameter tuning, we used the GridSearchCV function
from Scikit-learn’s model_selection module and the
StratifiedKFold function, with the shuffle set to true for model
validation. Shapley values used for explanations of the model
were calculated with the SHAP (Shapley additive explanations)
package [26]. The analysis, training, and tests were performed
using custom code in Python (version 3.6). Statistical analysis
was performed using the Python module scipy.stats.

Ethics Approval
Ethics approval to conduct this research was received from the
CSIRO Health and Medical Human Research Ethics Committee
(approval 2021_101_LR). A more detailed outline of the weight
loss program and data collection process has been published
previously [27].

Results

Data Characteristics
A demographic summary of the cohort is provided in Table 1.
The sample was highly skewed in terms of sex distribution,
with 81.5% (39,617/48,604) female, an average age of 49.72
(12.56) years, a starting BMI of 32, and an average
Socioeconomic Index for Advantage score of 6.5, meaning that,
on average, participants were socioeconomically advantaged.

Table 1. Demographic characteristics for the considered cohort as well as the training and test partitions.

Test data (n=16,947)Training data (n=31,630)All members (N=48,604)Variable name

50.23 (12.48)49.44 (12.56)49.72 (12.53)Age (years), mean (SD)

13,644 (80.51)25,950 (82.04)39,594 (81.46)Sex (female), n (%)

32.6 (6.11)32.34 (6.23)32.43 (6.19)Starting BMI (kg/m2), mean (SD)

6.57 (2.73)6.61 (2.73)6.56 (2.73)SEIFAa deciles, mean (SD)

aSEIFA: Socioeconomic Index for Advantage.
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The class distribution for each outcome metric in the training
and test partitions is shown in Figure 3. In week 2, in total, 19%
(9235/48,604) of the participants were inactive. The counts
changed exponentially across the weeks, and by week 7, the
classes were balanced, meaning that equal number of
participants were active and inactive. In week 12, only 35%
(17,002/48,604) of the participants were active in the program.

The total number of features used for modeling included 10
static features and 10 dynamic features (feature distributions
across the weeks are provided in Figures S1, S2, S3, and S4 in
Multimedia Appendix 1) for each outcome metric. Hence, it
ranged from 20 for predicting the activity in week 2 to 120 in
week 12 of the program.

Figure 3. Class distribution over the 12-week program.

Predictive Performance

XGB Model Superior
The average area under the curve (AUC), AUC-PRC, precision,
recall, F1-score, and the corresponding 95% CI obtained by the
XGB, RF, and L1 models with the 10FCV procedure across the
weeks are reported in Table 2. Although XGB has better recall
in the later stages of the program compared with the other 2
models, its precision was somewhat deteriorated compared with
L1 and RF.

The results showed that predicting activity in week 2 was
challenging, and all metrics improved remarkably in week 3.

The AUC-ROC performance of all 3 models improved in week
3 from 81% to 88% for L1, 84% to 88% for RF, and 84% to
89% for XGB; for all candidate models, the AUC-PRC
performance in week 3 improved by at least 20%. The same
performance improvement was observed for the precision, recall,
and F1-score metrics. Overall, all performance metrics improved
faster in the first half of the program, after which they continued
to improve, albeit at a slower rate.

The computed P values are provided in Multimedia Appendix
1. Overall, the results imply that XGB offered the best
discrimination. This model was also validated on test data
obtained with temporal splitting (Table 3). All the computed
metrics were similar to those from 10FCV.
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Table 2. Performance of XGBa, RFb, and L1c obtained with 10-fold cross-validation.

F1-score, mean (95%
CI)

Recall, mean (95% CI)Precision, mean (95%
CI)

AUC-PRCe, mean
(95% CI)

AUC-ROCd, mean
(95% CI)

XGB model

0.50(0.48-0.51)0.41 (0.40-0.42)0.63 (0.62-0.64)0.57 (0.56-0.58)0.85 (0.84-0.85)Wf2

0.71(0.70 0.72)0.66 (0.65-0.67)0.77 (0.76-0.78)0.78 (0.78-0.79)0.8 (0.89-0.90)W3

0.77 (0.77-0.78)0.74 (0.74-0.75)0.80 (0.80-0.80)0.85 (0.85-0.85)0.9 (0.90-0.91)W4

0.81 (0.81-0.82)0.79 (0.79-0.80)0.83 (0.83-0.84)0.89 (0.89-0.89)0.92 (0.92-0.92)W5

0.84 (0.83-0.84)0.83 (0.82-0.83)0.85 (0.84-0.85)0.91 (0.91-0.91)0.92 (0.92-0.93)W6

0.86 (0.86-0.86)0.86 (0.85-0.86)0.86 (0.86-0.86)0.93 (0.92-0.93)0.93 (0.93-0.93)W7

0.88 (0.88-0.88)0.88 (0.88-0.88)0.87 (0.87-0.88)0.94 (0.94-0.94)0.93(0.93-0.94)W8

0.89 (0.89-0.89)0.89 (0.89-0.90)0.89 (0.88-0.89)0.95 (0.95-0.95)0.94 (0.94-0.94)W9

0.89 (0.89-0.90)0.90 (0.90-0.91)0.89 (0.88-0.89)0.95 (0.95-0.95)0.94 (0.93-0.94)W10

0.90 (0.90-0.90)0.91 (0.91-0.91)0.89 (0.88-0.89)0.95 (0.95-0.95)0.93 (0.93- 0.93)W11

0.91(0.90-0.91)0.92 (0.91-0.92)0.89 (0.89-0.90)0.95 (0.95-0.96)0.93 (0.93-0.93)W12

RF model

0.55 (0.54-0.57)0.72 (0.71-0.73)0.45 (0.43-0.47)0.55 (0.54-0.57)0.84 (0.83-0.84)W2

0.71 (0.70-0.71)0.73 (0.72-0.74)0.69 (0.68-0.69)0.77 (0.76-0.78)0.88 (0.88-0.89)W3

0.77 (0.77-0.77)0.78 (0.77-0.79)0.76 (0.76-0.77)0.84 (0.84-0.85)0.90 (0.90-0.90)W4

0.81 (0.80-0.81)0.80 (0.78-0.82)0.81 (0.80-0.83)0.88 (0.88-0.89)0.91 (0.91-0.91)W5

0.83 (0.82-0.83)0.81 (0.79-0.82)0.85 (0.84-0.85)0.91 (0.90-0.91)0.92 (0.92-0.92)W6

0.85 (0.84-0.85)0.83 (0.82-0.84)0.87 (0.86-0.88)0.92 (0.92-0.93)0.92 (0.92-0.93)W7

0.87 (0.86-0.87)0.85 (0.84-0.86)0.88 (0.88-0.89)0.94 (0.93-0.94)0.93 (0.93-0.93)W8

0.88 (0.88 -0.88)0.86 (0.85-0.86)0.90 (0.90-0.91)0.95 (0.95-0.95)0.94 (0.93-0.94)W9

0.88 (0.88-0.89)0.86 (0.85-0.86)0.91 (0.90-0.91)0.95 (0.95-0.95)0.93 (0.93-0.93)W10

0.89 (0.88-0.89)0.86 (0.86-0.87)0.91 (0.91-0.91)0.95 (0.95-0.95)0.93 (0.93-0.93)W11

0.89 (0.88-0.89)0.86 (0.85- 0.87)0.92 (0.91-0.92)0.95 (0.95-0.96)0.93 (0.92-0.93)W12

L1 model

0.49 (0.49-0.49)0.85 (0.84-0.86)0.34 (0.34-0.35)0.44 (0.43-0.44)0.81 (0.80-0.81)W2

0.71 (0.70-0.72)0.67 (0.66-0.68)0.75 (0.74-0.75)0.75 (0.74-0.76)0.88 (0.88-0.88)W3

0.77(0.76-0.77)0.75 (0.74-0.76)0.79 (0.78-0.79)0.83 (0.82-0.83)0.90 (0.89-0.90)W4

0.81 (0.80-0.81)0.80 (0.79-0.81)0.82 (0.81-0.82)0.87 (0.87-0.88)0.91 (0.90-0.91)W5

0.83 (0.83-0.84)0.84 (0.83-0.84)0.83 (0.82-0.84)0.89 (0.89-0.90)0.91 (0.91-0.92)W6

0.86 (0.85-0.86)0.87 (0.87-0.87)0.84 (0.84-0.85)0.91 (0.91-0.92)0.92 (0.92-0.92)W7

0.87 (0.87-0.88)0.88 (0.87-0.88)0.87 (0.87-0.88)0.93 (0.93-0.93)0.93 (0.92-0.93)W8

0.89 (0.88-0.89)0.88 (0.88-0.89)0.89 (0.89-0.89)0.94 (0.94 -0.94)0.93 (0.93-0.93)W9

0.89 (0.89-0.89)0.88 (0.88-0.89)0.89 (0.89-0.90)0.94 (0.94-0.94)0.93 (0.92-0.93)W10

0.89 (0.89-0.90)0.89 (0.88-0.89)0.90 (0.90-0.90)0.94 (0.94-0.94)0.92 (0.92-0.93)W11

0.90 (0.89-0.90)0.89 (0.88-0.89)0.91 (0.90-0.91)0.95 (0.94-0.95)0.92 (0.92-0.93)W12

aXGB: extreme gradient boosting.
bRF: random forest.
cL1: logistic regression with L1 regularization.
dAUC-ROC: area under the receiver operating characteristic curve.
eAUC-PRC: area under the precision-recall curve.
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fW: week; the number beside stands for the week of the program and ranges 2 to 12.

Table 3. XGB performance evaluation on test data obtained by temporal splitting.

W12W11W10W9W8W7W6W5W4W3Wa2

0.930.930.930.940.930.930.920.910.900.860.84AUC-ROCb

0.950.940.940.940.930.920.890.870.830.760.51AUC-PRCc

0.900.890.880.880.860.840.820.790.760.690.48F1-score

0.890.880.880.870.860.850.820.800.780.750.59Precision

0.910.900.890.890.870.840.820.780.730.630.41Recall

aW: week; the number beside stands for the week of the program and ranges 2 to 12.
bAUC-ROC: area under the receiver operating characteristic curve.
cAUC-PRC: area under the precision-recall curve.

XGB Calibrates Well at All Probabilities
As a part of the model development process, the calibrations of
the final models for L1, RF, and XGB were evaluated. The XGB
models had the best calibration across all outcome metrics.
Except for the high probabilities in week 2, which were
overforecasted, the models calibrated well across the whole
probability range for each class and, as such, were considered
reliable. Figure 4 shows the calibration plot of the XGB model

on the test data obtained with temporal splitting. Better
discrimination and good calibration performance led to the
recommendation of XGB as the preferred model for future trials
in the existing program settings. Receiver operating
characteristic curve, precision-recall curve, and calibration
curves for all final models obtained on test data acquired through
temporal splitting are provided in Figure S5 in Multimedia
Appendix 1.

Figure 4. Calibration of the final models on test data from temporal validation.

Explanation of the Model and Relevant Features
To analyze the Shapley value–based feature contribution, we
constructed explainers using the training data obtained with the
temporal splitting and the XGB models. Summary plots of
Shapley values obtained from test data for models predicting
activity in weeks 2, 6, and 12 are shown in Figure 5. Features
are sorted top-down based on their global contribution. The
distance of a dot from the vertical line indicates the feature
relevance measured as a contribution to a prediction. Hence,
the longer the distance, the more important the feature. A higher
concentration of points indicates a larger number of participants
with the same or similar Shapley values for that feature.

Summary plots obtained for all 11 final models are provided in
Figure S6 in Multimedia Appendix 1.

In week 2, the features that contributed the most to predicting
the disengagement were entering the week-1 weight, total
activity on the platform during the previous week, having the
short time between setting up and starting the program, viewing
the menu plans, and using the food diary in week 1. As the week
progressed, continued activity on the platform and weighing in
remained the most important features. Interestingly, in the
middle parts of the program (eg, week 6), weight loss (difference
between weeks 1 and 2 and weeks 2 and 3) as well as total
activity in the previous weeks were important features for
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predicting disengagement. Further examination of the summary
plots showed that higher weight loss pushed the prediction
toward engagement (class 0), whereas lower weight loss pushed
the prediction toward disengagement (class 1). Participants with

fewer days between the application setup and when they were
nominated to start the program also pushed the prediction toward
engagement.

Figure 5. Summary plot of Shapley values computed individually for each program member on test partition for weeks 2, 6, and 12. SEIFA: Socioeconomic
Index for Advantage.

Discussion

Principal Findings
The purpose of this study was to determine how well
state-of-the-art ML models predict week-by-week
disengagement with a web-based, commercial weight loss
program and explain the output of the developed predictive
models. To the best of our knowledge, this is the first study to
use ML algorithms to predict weekly disengagement in a
web-based, real-world weight loss program. Three modeling
approaches were tested: the regression-based model L1 and 2
tree-based ML approaches—the RF and XGB models. The
models were run to predict disengagement each week during
the 12-week weight loss program using all available data from
previous weeks. Data about individuals when they signed up at
the start of the program were available, as well as individuals’
weekly weight loss and weekly use of 7 features that form part
of the web-based platform. Across all predictive models, the
results indicated that having a weight recorded in the system

and the total activity on the platform from the previous week
or weeks were the most important explanatory variables. The
performance of the XGB and RF models were similar for the
first 3 weeks, although the XGB models performed best overall,
with the AUC and AUC-PRC values for the XGB models
ranging from 0.85 (95% CI 0.84-0.85) to 0.93 (95% CI
0.93-0.93) and from 0.57 (95% CI 0.56-0.58) to 0.95 (95% CI
0.95-0.96), respectively, across the program. The L1 model
systematically had the worst discrimination. The better
performance of tree-based methods could be explained by the
fact that they inherently include nonlinear effects and
interactions, whereas L1 only considers those explicitly
included. Good calibration of the final XGB models across all
probabilities provides an opportunity to use calibration curves
to translate probabilistic output values into susceptibility groups,
which can be additionally investigated and used in the future
to create additional support for subgroups in greatest need.
Depending on the program’s capabilities, this additional support
could be delivered via digital media, such as email, SMS text
messaging, and app notifications, or with a mix of more
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traditional media, such as telephone consultation with a health
professional. Although the output of the predictive models
suggested that having access to additional support from a
dietitian via 3 phone or video call consultations was not highly
relevant to predicting disengagement, others have suggested
that combining human and digital support could help improve
engagement [14] or reengage members who have been identified
as at risk of further disengagement or dropping out.

Strengths and Limitations
This study has shown the potential of applying ML algorithms
to help predict disengagement with a weight loss program;
however, the relationships between the predictors and
disengagement should not be considered casual. One key
strength of this study was the large sample size. A review of
the applications of ML in health reported an average sample
size of <100 people [18]; however, this study used data from
>48,000 participants of a commercially available weight loss
program. We also compared 3 different models that presented
good calibration with considerable improvements in predictions
over time. One limitation of the models was the challenge of
predicting disengagement before week 3 using the activity
information collected within the first week of the program along
with the considered static features available before starting the
program. Furthermore, there were correlations between some
of the features, and this study did not investigate the influence
of collinearity between some features on the explanations;
however, this could be the focus of future research. Finally, the
developed models and explainability modules fit well into the
existing weight loss program workflow, although they are
subject to some adjustment before implementation because of
coding changes that may occur in the underlying data.

Comparison With Prior Work
Many studies have shown a positive association between
engagement in digital health programs and better health
outcomes for participants [11,12,28,29]. Therefore, the ability
to predict when participants will start to disengage is useful for
timely intervention to reduce the likelihood of further
deterioration in engagement, assuming that participants want
to stay engaged and obtain benefits from continuing to engage
until program completion. It is recognized that high or early
drop out might limit the effectiveness of digital health
interventions [30,31], and there have been calls for more
research focused on nonuse attrition in digital health programs
and to gain a deeper understanding of the deterioration in
engagement that occurs before a program is completed and
eventual drop out [8,10]. Some reduction in the use of a digital
program over time could be expected, as web-based
interventions tend to be low intensity and engagement is usually
self-directed, so participants might just lose interest if content
is not salient and updated regularly [30]. In this study, 50%
(24,406/48,604) of the participants did not engage with the
platform in week 7 and 65% (31,602/48,604) did not engage in
week 12. Similar rates have been reported elsewhere for
commercial subscription-based programs [30,32], but nonuse
rates as high as 90% after 1 week have been reported on open
access websites [33]. Unfortunately, we do not know much
about why this is the case and what predicts disengagement or,

conversely, longer-term, sustained digital engagement. One
study used data mining methods to predict drop out from a
commercial digital lifestyle intervention for chronic disease and
reported that 2 weeks of platform inactivity (disengagement for
2 weeks) was one of the strongest predictors of drop out [34].
A few other studies have examined disengagement with digital
weight loss programs, although not using ML capabilities. Neve
et al [13] also used a large sample of data from an Australian
commercial weight loss program, albeit a different program,
and reported that the behavioral factors that predicted website
nonuse were skipping meals and greater levels of emotional
eating. Exercising more than once per week and eating breakfast
each day protected against website nonuse [13]. Behaviors such
as eating breakfast each day and having a regular exercise habit
may be indicative of a person who favors structure and routine.
Routine behaviors such as regular weighing have also been
associated with successful weight loss and weight loss
maintenance [35]. Regular self-monitoring through daily or
weekly weighing is central to behavioral weight loss programs
[35,36], and indeed, having a weight entered into the system in
the previous week(s) was also an important variable across all
models in the prediction of pending disengagement in this study.

Psychological literature suggests that past behavior is one of
the best predictors of future behavior and that the strength of
this relationship relates to the period [37]. The results of this
study support this notion, whereby total activity on the platform
in the previous week(s) was a key variable for the model’s
prediction of future disengagement, with the most recent week(s)
having greater importance than earlier weeks. A pattern of lower
total activity on the platform in the preceding weeks was a strong
differentiator of whether someone was disengaged from the
platform at a future time point. As few studies focus on
engagement in digital health interventions [8], little is known
about what predicts engagement or disengagement overall, and
even less is known about what predicts engagement throughout
the duration of a weight loss program. A study of young adults
(aged between 18 and 25 years) combined digital and in-person
support within a weight loss program and found that engagement
in the first 4 weeks of the program positively predicted overall
engagement and weight loss in the program [38]. The authors
concluded that monitoring engagement in real time, particularly
early on in weight loss programs, may be necessary to
effectively intervene [38]. The benefit of the week-by-week
ML model presented in this paper is the deeper, temporal
understanding of disengagement, which, if applied to a
real-world setting, would provide the ability to intervene before
the end of the intervention—when in fact, it might be too late.
The use of more sophisticated approaches, such as ML
techniques, in digital weight loss interventions is an important
next step in the evolution of programs to provide greater support
to participants when they need it most [39]. The application of
these findings means that ML-powered interventions could
become more adaptive and facilitate greater weight loss by
predicting disengagement earlier and focusing on extending
engagement so that participants can realize the intended health
benefits.

The use of ML models in real-world health interventions is not
common, and very few studies have applied ML in real-world
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weight loss programs. A review by Triantafyllidis and Tsanas
[18] found 8 interventions that incorporated ML in real-life
digital health interventions. One of these interventions examined
self-efficacy for weight loss, but the others were not weight loss
related [18]. The study by Manuvinakurike et al [40] evaluated
an automated indexing algorithm to select the most relevant
story to provide to participants to have the greatest possible
impact on their attitude toward weight loss. Self-efficacy for
weight loss increased significantly more in the participants who
received content that was tailored using an indexing algorithm
compared with random delivery of content [40]. ML approaches
have the potential to provide highly tailored content and
messages that could maximize engagement and retention without
the additional time or effort associated with more traditional,
human-driven tailoring approaches. Although not shown in this
study, others have suggested that combining digital and human
support can facilitate more effective engagement with digital
interventions [14]. It might be a case of timing, and further
research is required to better understand when, within an
intervention, higher engagement is critical; when lower
engagement could be equally effective; or when the addition of
human support might further facilitate effective engagement
[14]. Digital weight loss programs have created new data sources
that are well suited to, and could benefit from, the innovation
and sophisticated techniques provided by ML approaches [41].
Considering the increasing capacity for more precise tailoring
at scale, further research in this area is warranted.

Future research is also required to explore the inclusion of other
data such as other lifestyle behaviors and personality
characteristics, reported when signing up or during the first few
weeks of the program. This could improve the identification of
the behavioral patterns of those members prone to

disengagement in the early weeks of the program. However,
the results imply that the information acquired during week 2
remarkably improved the identification of disengagement. The
algorithm used in this study could be improved and generalized
to other cohorts with a similar case mix and diet program using
similar data. Eventually, the integration of the proposed
algorithm into the existing algorithm of the platform would
require programing that would activate an appropriate model
depending on the week of the program. To overcome this, a
dynamic model might be worthy of consideration in future
research.

Conclusions
Given the importance of engagement in achieving behavior
change and realizing health improvements, there have been calls
for greater emphasis on engagement in digital health research.
This study showed the potential of applying ML predictive
algorithms to help predict and understand predicted participants’
disengagement with a web-based weight loss program. The
most important features for predicting week-by-week
disengagement were related to individuals’ total activity on the
platform and entering their weight into the platform in the weeks
prior. The models developed for this study have evolved in an
attempt to fill the gap in understanding the informative
relationships between the predictors and disengagement within
a web-based weight loss program. This knowledge may help
improve retention and better support individuals in engaging in
a timely and more effective way. Future research will focus on
the evaluation of developed algorithms in a trial, the influence
of collinearity between some features on the explanations, and
exploiting the potential benefit of including other information
available before the program starts, which could possibly
improve the prediction of disengagement.
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L1: logistic regression with L1 regularization
ML: machine learning
RF: random forest
XGB: extreme gradient boosting
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