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Abstract

The preferred evidence of a large randomized controlled trial is difficult to adopt in scenarios, such as rare conditions or clinical
subgroups with high unmet needs, and evidence from external sources, including real-world data, is being increasingly considered
by decision makers. Real-world data originate from many sources, and identifying suitable real-world data that can be used to
contextualize a single-arm trial, as an external control arm, has several challenges. In this viewpoint article, we provide an overview
of the technical challenges raised by regulatory and health reimbursement agencies when evaluating comparative efficacy, such
as identification, outcome, and time selection challenges. By breaking down these challenges, we provide practical solutions for
researchers to consider through the approaches of detailed planning, collection, and record linkage to analyze external data for
comparative efficacy.
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Introduction

Historically, real-world evidence from observational studies
has had limited use for demonstrating therapeutic effectiveness
for regulatory and reimbursement purposes. However, several
recent developments, including the 21st Century Cure Act,
increased accessibility to large-scale routinely collected health
data, improved standardization of collection, and increased
high-profile regulatory applications, and have resulted in an
increased demand for these data and increased availability of
these data [1,2]. This has changed the data landscape, with
growing recognition of the value of using real-world evidence
that is applicable for regulatory and reimbursement purposes.
Frameworks from regulatory bodies, such as the United States
Food and Drug Administration (FDA) and European Medicines
Agency (EMA), and reimbursement agencies, such as the

National Institute for Health and Care Excellence (NICE),
specifically call out the use of external data sources in
conjunction with single-arm evidence, particularly in rare
diseases or clinical subgroups where there is a high unmet
medical need and traditional randomized controlled trials (RCTs)
may not be feasible [3-7].

Real-world evidence is derived from rigorous analyses of
real-world data. Real-world data are data related to patient health
status or delivery of health care outside of RCTs where sources
commonly originate from electronic health records (EHRs),
medical claims data, and product and disease registries [8]. In
addition to what may be considered common forms, real-world
data from outside of traditional medical charting, including data
from mobile phones, wearables, and patient-reported outcomes,
have provided an abundance of data, allowing comprehensive
capture of the natural course of a disease from both the physician
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and patient perspectives [9-11]. Although outside of the scope
of this viewpoint, data from historical clinical trials have been
found to be influential in comparative efficacy analyses and
have been found to have a role in supplementing an external
control study through hybrid study designs [12,13].

Given the adoption and use of EHRs and other data content
sources in general practice, real-world data and real-world
evidence are being increasingly reported in publications in recent
years (Figure 1) and are being increasingly used in health care
decisions [14,15].

Figure 1. Number of real-world data and real-world evidence publications over time from 1965 to 2021. The following search terms have been considered
in PubMed: “real-world” or “observational” or “nonrandomized” or “standard of care” or “external control” or “single-arm” or “historical-control” or
“retrospective” or “noninterventional” or “case series” or “natural history” or “electronic health record” or “electronic medical record” or “claims”.

As the majority of criticism from regulatory and reimbursement
agencies on applications using real-world data has so far focused
predominantly on data features (type, quality, and frequency)
and confounding and selection bias limitations, appropriate
curation and evaluation of these sources are critical components
of any exercise using external evidence [16]. In this paper, we
provide an overview of the challenges in identifying data
suitable for external control arms, including common
pseudonyms, such as synthetic control arms and historical
controls, when evaluating comparative efficacy, and provide
solutions for researchers to consider.

Technical Challenges

Challenges in Data Source Identification for Rare
Conditions
RCTs have long been considered the gold standard approach
to evaluate the comparative effectiveness of a drug or biological
product due to the standardized methods to reduce bias,
including randomization and blinding, as well as balancing
known and unknown confounders. These gold standard trials,
however, may not reflect the real-world setting where the patient
is treated [17]. This is particularly notable for rare diseases,
where the standard of care may be highly variable and disease
definitions may change rapidly, than for nonrare indications.

In the United States, a rare disease is defined as a condition that
affects fewer than 200,000 individuals, with most diseases
presenting in children or being oncology indications.
Advancements in precision medicine have changed the rare
disease paradigm, with many common diseases now being
considered rare diseases by further splitting into subdiseases or
considering stratification by mutated genes in common cancers
[18]. Research focused on rare diseases is further challenged
due to limited patient recruitment and siloed efforts focused on
a singular therapeutic area [19,20]. Although common diseases
and cancer indications are not safeguarded from similar
complexities, they can often be more acute and rate limiting in
the rare disease space. Regardless, both areas have their own
unique technical challenges for researchers to broach throughout
the life cycle of comparative efficacy analyses.

Computational models from machine learning and artificial
intelligence have experienced success in early disease diagnosis
and trial recruitment across several indications [21,22].
Challenges in trial recruitment have led researchers to generate
computational models for patient identification, but they have
faced difficulties due to lengthy diagnosis procedures, multiple
physicians, and lack of gold standard–confirmed diagnoses to
train models [23]. In scenarios where there is interest in rare
diseases with a long disease course, these challenges can often
be exacerbated due to the need for sufficient long-term follow-up
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data. Efforts to increase the use of data sharing in rare diseases,
such as the use of FAIR (findable, accessible, interoperable,
and reusable) Guiding Principles for implantation networks (eg,
Global Open FAIR Implementation Network), aim to produce
a conjoined effort to create data sources fit for translational
research [24]. In many instances, patient identification within
EHRs begins with the use of existing standard terminologies,
such as the International Classification of Diseases (ICD) and
the Systematized Nomenclature of Medicine – Clinical Terms
(SNOMED CT). For many common comorbidities, these coding
strategies have been adopted into general administrative practice
but have fallen short when classifying rare diseases. A study
evaluating 6519 rare diseases considered the International
Classification of Diseases, 9th Revision, Clinical Modification
(ICD-9-CM), International Classification of Diseases, 10th
Revision, Clinical Modification (ICD-10-CM), and SNOMED
CT, and found varying levels of coverage matching to a unique
rare disease at 62%, 73%, and 85%, respectively [25]. With
diseases being mapped to multiple ICD codes, a single
representation may not constitute an accurate diagnosis.
Increased coverage of rare diseases in coding languages has
been acknowledged and incorporated in the International
Classification of Diseases, 11th Revision (ICD-11) released in
2022, with 10 times more rare disease classifiers than the
previous version [26]. Additional challenges related to executing
machine learning and artificial intelligence initiatives arise due
to several ethical and legal concerns, including consent for data
use, transparency of algorithms, liability, and cyber security
[27,28]. Given the adaptive nature, the FDA has released
guidance and a proposed regulatory framework, mainly in
relation to medical devices and decision support software, to
enable development of these technologies while maintaining
safety and oversight for transparency and performance [29,30].
Equivalent guidance has yet to be established for similar
initiatives involving comparative effectiveness studies using
real-world data. Similarly, advanced procedures for the diagnosis
of rare diseases, such as whole genome sequencing (WGS) and
advanced imaging, may not be sufficiently captured within
EHRs. Initiatives surrounding WGS in particular are being
developed to improve the storage, knowledge, and presentation
of genomic information within EHR systems to increase use
[31]. Despite the increase in coverage, the implementation of
these coding strategies, conversion of previous ICD codes within
EHR systems, and incorporation of advanced technologies will
add an additional level of complexity for EHR-based studies.

Outside of traditional rare diseases, adoption of real-world data
for comparative efficacy remains underutilized in certain
categories, such as the incorporation of medications or surgical
procedures in clinical trial conduct [32]. Similarly, the ability
to replicate clinical trials based on real-world data alone
continues to be an area to improve, as many replication failures
can be attributed to analyzing endpoints not typically found in
real-world data, requiring data that are unlikely to appear in a
structured form, lack of complete medical history, or difficulties
in closely emulating a placebo [33,34]. From herein, we focus
on the following common challenges: outcome and covariate
challenges, follow-up, time selection, and geography.

Outcome and Covariate Challenges
In a traditional clinical trial, there are frameworks present for
outcome ascertainment and frequency through defined protocols
for the monitoring and timing of key observations to evaluate
clinical effectiveness. Given the structured nature of data from
RCTs, analyses using these are seldom hampered by high levels
of missingness or stochastic outcome measurements. In the
context of real-world data and external control arms, a common
challenge encountered is addressing the mindset of researchers
to be open to the value of real-world data and the ability to
develop suitable outcome proxies due to insufficient data
availability.

EHR systems were not designed for use in the same structured
trial environment for clinical effectiveness studies; therefore,
additional steps are required to refine data sets for use. EHR
data include routinely collected measurements from general
practice, which may not exactly match defined clinical endpoints
of interest or disease definitions as encountered in clinical trials.
Accordingly, where analyses attempt to align these data for
comparative efficacy, issues may arise. In these cases, plausible
proxies need to be made. For example, a trial of interest in a
hepatology setting might include an outcome for “ascites
requiring treatment;” however, in EHR data sets, “ascites” might
be captured, but the condition with the additional criteria of
requiring treatment would not be preassembled and indexed.
Indeed, it would be possible to generate the treatments for ascites
and tie these back to an individual patient, but this may be a
manual process. As such, estimating the total number of eligible
patients with the outcome of interest may be subject to
substantial manual data curation. Specifically, in the context of
using EHRs for comparisons to data obtained from a prospective
clinical trial, there may be an absence of overlapping outcomes.
Clinical trials (randomized or single-arm) have been found to
often capture data on outcomes not recorded routinely in clinical
practice [34].

Similarly, the translation of many gold standard trial endpoints
to real-world data initiatives may not always be a straightforward
endeavor. These efforts require a series of methodological
considerations during the planning, abstraction, and analysis
phases to ensure regulatory-grade fit-for-purpose data [35].
Even where data may be recorded and decisions made consistent
with clinical trials, there may be differences with respect to the
timing and process of testing, which may influence the
availability of testing. In clinical trials of solid tumors, the
Response Evaluation Criteria in Solid Tumors (RECIST) are
often used to define endpoints of progression-free survival (PFS)
or objective response. However, the ability to operationalize
the RECIST for retrospective analysis can be hindered due to
lack of consistency in imaging reports in community practices
[36]. The RECIST are partially qualitative measurements, and
physicians or patients in clinical practice are not blinded to the
treatment, providing another difference from a clinical trial
environment. Where clinical trials may make assessments for
progression on a scheduled basis, real-world settings often only
do so when there is an indication of progression, generally
resulting in a misalignment of timing when attempts are made
to draw comparisons. The real-world equivalents of many
clinical trial endpoints, such as PFS and objective response rate,
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may not be generated using the same level of standardization
or may result in variations in assessment criteria between
diagnosing physicians in comparison to when performed within
a clinical trial setting. For indications with good survival, such
as early stage breast cancer, surrogate endpoints have been
influential in allowing for reduced development time, smaller
patient populations, and shorter follow-up time [37]. Surrogate
endpoints, such as pathologic complete response, would require
the same level of attention as long-term outcomes to adequately
define a real-world equivalent. As many surrogate endpoints
for topics, such as oncology, remain controversial due to
questions over their direct correlation to assess patient survival,
their applications from real-world data are subject to similar
criticism [38]. Real-world data–based surrogate endpoints
require thorough validation and can often involve timely
procedures to abstract adequate data for ascertainment [39].

Other endpoints of interest, such as overall survival, may be
clearly definable within a given data set, but are subject to
limitations such as use restriction, delayed data availability, and
missingness [40]. For example, in acute lymphoblastic leukemia,
the concept of “fit-for-use” EHR data was evaluated by assessing
the data suitability prior to examination of any survival-based
outcomes [41]. Using a defined data quality assessment
framework, data variables, such as diagnoses and demographics,
were extracted and defined from EHRs over 70% of the time,
but the approach fell short when categorizing laboratory values
and death data, resulting in a high degree of missingness for
these variables [41]. As such, when considering data
missingness, it is important not to simply restrict the evaluation
to availability versus nonavailability of data, but also consider
the frequency of assessments and overall data suitability. While
much of the current literature has focused on oncological
examples and survival-based outcomes, similar considerations
can be granted to other outcomes, such as adverse events, and
assessment of the balance between efficacy and clinical benefit.

Follow-up
Real-world studies provide an opportunity to offer additional
insights into the patient journey by providing a reflection of
traditional care. In an RCT setting, long-term follow-up can be
constrained by financial hurdles and trial logistics. To mitigate
this, randomized trials have been extended by incorporating
long-term follow-ups augmented using routinely collected health
care data to investigate long-term outcomes [42]. In these
contexts, there may be somewhat broader observation windows
than in traditional RCTs, and there are still predefined study
visits, follow-up criteria, and study investigators ensuring
consistency of follow-up. In contrast, patients in general practice
demonstrate higher variability with respect to their follow-up
times and their frequency of follow-up visits. Patients’ frequency
of visits may be heavily correlated with the severity of their
condition or diagnosis, resulting in potential biases for follow-up
times. Specifically considering this in the context of
time-to-event outcomes, imbalances in follow-up frequency can
result in biased estimations of relative treatment effects [43].
Empirically, this has been demonstrated with observational data,
and showing the level of follow-up completeness has been
influential in the accuracy of survival estimates [44]. In this
example, simple reporting standardization of study follow-up,

including in general practice, was found to be influential in
outcome assessments, with a lack of systematic follow-up
resulting in an underestimation of mortality [44]. Similarly, the
frequency of assessment scans has been shown to be associated
with higher median PFS for both treated and untreated
populations [45]. As such, where assessments of PFS are made
using real-world data with low or high frequency of assessments
relative to the comparator data, the potential for bias may be
high. In addition to visit frequency, the United States has
additional hurdles contributing to the lack of sufficient follow-up
data due to clinicians experiencing a higher administrative
burden when using EHR systems in comparison to other
countries, discontinuity resulting from out-of-system care, and
a direct relationship with enrollment in health care insurance
[46-48]. The value of incorporating real-world data into a
framework to be considered as evidence for future extension
studies has been recognized and endorsed by agencies such as
the International Society for Pharmacoepidemiology [49].

Time Selection Challenges
Unlike in randomized controlled comparative efficacy studies,
the definition of start date for measuring patient outcomes can
be challenging in routinely collected health data. The concept
of immortal time bias originated in the 1970s and is termed to
account for the period of time within an observational or
follow-up period of a cohort where the study outcome of interest
cannot occur [50]. When unaccounted for, EHR studies can be
prone to immortal time bias, and this phenomenon has been
demonstrated in observational studies of long-term conditions
[51]. For example, clinical trials may often be established to
evaluate a therapy within a population having an existing
therapeutic history, which is often referred to as a line of
therapy. There may be limits with respect to the total lines of
therapy, but they are otherwise permissive with respect to
treatment lines or may even use treatment lines as a stratification
factor. In routinely collected health data, this presents a
challenge for patients with multiple lines of therapy, who are
“multiply eligible” for the trial of interest. For a patient who
has received 4 lines of therapy, which line of therapy should be
considered their index date? Patients could be selected according
to their most recent line of therapy or oldest line of therapy, or
there could be a random selection of the therapy line. Each of
these may have an influence on the associated outcomes,
particularly those that may have a time-varying frequency.
Hernan and Robins proposed several approaches within the
context of target trial emulation. It has been proposed to use a
single time zero, a randomly selected time zero, or all available
time zeros for a given patient [52]. Within the context of a
comparative efficacy analysis using external trial data, these
approaches may not be as interchangeable. Indeed,
simulation-based research in an oncology context identified that
the use of either random line selection or the last line of therapy
was subject to substantial inflation in type I error when
compared to the use of all available lines of therapy [53]. As
such, careful selection of the index date should be applied as
decisions may substantially alter the associated inferences
available.

Related to these issues are those representing general temporal
biases associated with discordant timeframes of interest. While
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statistical methodologies may be used to minimize observable
between-group differences, other aspects of care may vary over
time in ways that cannot be accounted for in such a direct
manner. For example, even where diagnostic criteria for a
condition do not vary over the time period of interest, access to
the requisite diagnostic technology may increase over time,
leading to increased disease incidence outside of any other
changes to practice. These patients may differ from patients
identified at different times with respect to both measurable and
unmeasurable characteristics, which may contribute to temporal
bias [54]. This is separate from more clear-cut temporal bias,
which may occur when diagnostic criteria change for patients,
standards of care vary over time, or important prognostic factors
of significance are identified, and it would need to be adequately
accounted for. Finally, these changes in practice over time may
result in essential covariates or populations of interest being
simply unavailable owing to evolution of the standard of care.

Indeed, concerns regarding temporal bias have formed the basis
of negative reception in regulatory submissions using external
data for the FDA, the EMA, and Health Canada [55,56].
Statistical approaches exist to identify time-varying confounding
[54], though these are predominantly for exploring the existence
of such confounding, rather than to minimize their impact. As
such, where possible, it is important to achieve close alignment
with respect to the timeline of interest, and where this is not
possible, it is important to identify covariates that may influence
the differences in dates.

Geographical Context
Conditional on the circumstances associated with the application
of an external control, geographic representation may be an
important characteristic to consider. Regulatory and
reimbursement bodies have often identified geographic
discordance as part of the rationale behind negative endorsement
of candidate products, particularly where these geographic
differences are likely to translate to differences in prognostic
factors, confounding, effect modifiers, and standards of care
[57]. Management of these issues can be minimized through
ensuring specificity of the geographic source of the data of
interest to ensure consistency with the target trial of interest.
This may not be possible in all instances. Real-world data may
be abundant in high-income countries (eg, countries in North
America and Europe) but can be significantly lacking in many
low- and middle-income countries due to lack of EHRs,
agreement between stakeholders, and regulation to support the
generation and use of secondary data [58]. The
commercialization of data from many high-income countries
has made identification more attainable, but given that there is
no organization dedicated to the tracking of sources in low- and
middle-income countries, barriers remain for researchers to
identify these sources with ease [59]. Further compounding
these issues is the substantial variations with respect to the
availability of data in certain geographies owing to the varying
legal frameworks associated with the use of patient data and
differences in language. Efforts to address the ability to
generalize study inferences outside of the intended study
population of a geography to another is an emerging topic of
interest known as transportability, and it has shown success
under special circumstances [60,61]. Despite advancement,

geography remains a concern for researchers to contend with
when wanting to have sufficient population coverage across
high- and low-income countries.

Solutions: How Can Challenges Be
Minimized?

Solution 1: Transparent Prespecified Description of
Data Element Definitions and a Detailed Data Analysis
Plan
The abundance of real-world data certainly presents a vast set
of challenges, including “data dredging” where the hoped-for
result may stem from ad hoc data mining or from selection of
one of the many data sources with limited characteristics for
adjustment [62-65]. With the large quantities of available
real-world data across the United States and Europe, data sets
can conceivably be stratified and matched in ways that could
provide favorable results in an opaque manner. To mitigate this,
solutions have been presented by regulatory bodies and
academic groups for improving transparency for comparative
efficacy exercises using real-world data. FDA guidance
specifically calls out that study design elements, including data
source definitions of all data elements and analyses, should be
prespecified prior to analysis, and encourages groups submitting
to partake in preanalysis discussions early in the drug
development program about whether conducting an externally
controlled trial instead of an RCT is reasonable [7]. Academic
groups, such as the International Society for
Pharmacoeconomics and Outcomes Research (ISPOR) task
force, also have guidance on good practices for real-world data
studies of treatment effectiveness [66]. The provided advice is
to have a transparent and systematic review process of combing
through the data source availability and matching to trial
characteristics.

The intended steps of using real-world data to evaluate clinical
efficacy should be discussed or described in a protocol and
statistical analysis plan (SAP) with the associated regulatory or
reimbursement body ahead of initiating the externally controlled
trial, in an effort to not “cherry pick” the results. Here, sponsors
should include a justification for selecting or excluding relevant
data sources and should demonstrate that the choice of the final
data source for the control arm best answers the research
question of interest [7]. Further, it would be imperative to
describe how the relevant EHR data were extracted and imported
into the sponsor’s electronic system, and how the data obtained
from EHRs are consistent with the data collection specified in
the clinical trial protocol.

FDA guidance specifies that the protocol and SAP that will be
submitted following initial discussions should describe the data
provenance curation and transformation procedures in the final
study-specific analytic data set and describe how processes
could affect data integrity (consistency of data and
completeness) and overall study validity [3]. Given the origin
of real-world data, SAPs should also specify all proposed
sensitivity analyses or quantitative bias analyses as suggested
by FDA guidance documentation to address the influence of
outcome misclassification and unmeasured confounders in order
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to ensure appropriate conclusions are drawn [3,7]. Taken
together, prespecifying data source collection methods, data
element availability, and data integrity to regulatory authorities
before conducting any analyses can provide transparency
regarding the upcoming efficacy analyses and provide a solution
to data mining.

One approach to doing this is to define the patient population
for the external control arm, specify the outcome of interest,
identify prognostic factors associated with the outcome of
interest, and specify the control therapy. During the data source
identification phase of the study, it may be common to undertake
a scoping exercise to understand the breadth of data available
and decipher top-level patient counts. From these selection
criteria, data sets that do not have available data for elements
of interest can be excluded. The derived top-level counts will
reduce as further matching with trial selection criteria is applied.
It is an iterative process to assess the best data source that will
have sufficient patient counts and covariates to confirm a match,
by assessing the strengths and limitations of each of these data
sources simultaneously. Since the identification of a suitable
real-world data database is an iterative process when proposing
the external control arm to regulators at the time of filing for
regulatory discussions, a prespecified description of the database
is suggested to inform regulators, but a major limitation is that
some data element criteria might be unknown until further
exploration [7]. Among included data sets, assessments may be
made for sample size estimates of the closest resemblance to
the effective population and data missingness. The data sets
with the highest effective sample size and better coverage of
data elements are considered for a feasibility assessment with
a deeper look at the data. Through tokenization or other
methodologies, multiple data sources could also be used to get
more complete patient health care data, follow-up information,
and geographic coverage.

Solution 2: Data Collection Leveraging Real-World
Data
Situations where existing data are not available or suitable for
an indication, a necessary exposure, an outcome, or a key
covariate to measure confounding from sources, can pose a
major limitation to conducting comparative efficacy studies to
support regulatory decisions. As other researchers have stated,
a common external control arm critique is about the mitigation
of confounding [16]. Unfortunately, there are limits to ascertain
real-world data proxies for variables in historically collected
databases. This could also be problematic when a group may
wish to minimize temporal bias due to changes in the standard
of care when using older data, by restricting the dates of eligible
patients. This in turn could result in low sample sizes of
well-matched control patients.

A possible solution for these issues is to conduct de novo
retrospective data collection where there would be manual
review of patient charts, in conjunction with pre-existing data.
Here, clinicians and key experts for the indication create a
customized data collection form (also known as an electronic
case record form) that can be standardized across multiple sites
and gather useful details. In these scenarios, assessments can
be obtained and linked directly to events of interest, such as a

new medication or an annual physical examination. As EHR
databases can provide access to longitudinal data, further
evaluation of measures both before and after the event window
can be performed. Drawing upon these aspects further
emphasizes the value of real-world data to contribute to both
predictive analytics and assessment of long-term outcomes in
comparative effectiveness analyses.

De novo data capture will not fix challenges in relation to the
frequency of visits or collection of variables known to exist
exclusively within trial settings, which is a limitation of this
solution. However, qualitative assessments and clinical
narratives can contain valuable insights absent from the
structured data fields of EHRs. Improvements in advanced
analytics and natural language processing have provided
increased automation to abstract valuable clinical information
from unstructured fields, which is traditionally time consuming.
A direct comparison between machine learning review and
chart-based review in the diagnosis of rheumatoid arthritis
demonstrated the ability of the algorithm to identify patients
with a strong overlap in disease classification criteria and
baseline disease characteristics [67]. On the contrary, missing
data and poor data quality can introduce bias in automated
methods, and variability in models can limit comparisons
[68,69]. Commercial data providers have realized the potential
of custom abstraction projects incorporating both manual and
automated abstraction to increase the availability of data outside
of structured fields, as well as algorithms to calculate real-world
endpoints in product offerings.

Solution 3: Record Linkage/Tokenization
The ability to characterize the entire patient journey is critical
to perform clinical effectiveness analyses using real-world data,
though a complete picture of a patient’s medical health is often
not available within a single data source. Patients who move in
and out of health care networks could have their data omitted
from analyses of single data sets. If this movement is related to
the patient’s standard of care or access to treatment, the process
can result in unintended biases in an analysis that is unable to
account for these patient movements and missing data. A
solution to the fragmentation of the patient journey and
perspective could be to engage with data providers who tokenize
their data set. In tokenized data sets, patient “tokens” or unique
identifiers are assigned to link a patient within a given data
source to assist identification in other separate real-world data
sources, avoiding duplication while protecting patient privacy
at the same time [70]. Tokenization and record linkage can aid
in this endeavor and have been recognized by regulators through
inclusion in draft guidelines to provide considerations when
performing data linkage to ensure a comprehensive data set,
quantification of errors, and resolution of discrepancies [3].
Similarly, initiatives have been developed to combine machine
learning methodologies and tokenization to expand upon use
for EHR analysis, while drawing attention to areas needing
improvement in patient phenotyping or patient identification
for research purposes [71].

Examples of the role of tokenization have been identified for
broadening data sets to improve associations of testing with
outcomes in diseases such as COVID-19 [72,73]. While these
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approaches may be applicable in select cases, it is important to
note that not all data sources are capable of linking data due to
privacy concerns regarding indirect personal data and data
ownership, and additional challenges due to differences in
language. These themes highlight the potential limitations that
can arise when considering linkage and tokenization to aid in
downstream analyses. In turn, this necessitates a flexible
approach to data identification and consideration of which
approaches of further data acquisition are available for a given
project.

Summary of Real-World Data
Identification Challenges and Case
Studies

Every scenario in identifying a suitable real-world data source
as an external control arm for comparative efficacy is unique.
The solution of tokenization, for example, could work in some
instances, but might not be appropriate in cases where complete
coverage of data is available, though the definitions in the data
set are poorly defined in the external data source. Table 1 lists
the challenges that frequently arise in these data landscaping
exercises and summarizes some examples of solutions or case
studies for further reading.
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Table 1. Summary of real-world data identification for comparative efficacy using externally controlled trial challenges, examples, and application of
solutions.

Application of solutionsExamplesChallenges

Data source identification of rare conditions

Machine learning applications can improve accu-
racy and quality (type and frequency) in data
source selection and patient selection [23,67,71]

It is difficult to parse out important data sources, rare
disease candidates, and data linkage options.

Indecision gaps due to abundance of
real-world data

Outcome and covariate

The conceptual definition of a data element does not
align with the operational definition.

Poorly defined variables or inconsistent
definitions from clinical trial to real-
world data for limited comparability of
real-world data

• De novo data collection [74]
• Automated electronic health record (EHR)

abstraction [69]
• Characterization of real-world variables or

surrogate endpoints [75]
• Prespecify sensitivity analyses, including

quantitative bias analyses [76], in the statis-
tical analysis plan

Combine with EHRs to expand the applicability,
coverage, and depth of data [77]

Claims data have limited clinical outcome data.Medical claims data might have limited
use to support regulatory-grade deci-
sion-making

Follow-up

Diagnosis is spread across multiple physicians; if the
patient moves and seeks care outside of the care
network, follow-up data will be lost.

Difficult to capture continuity of care
in a single data source

• Tokenization/data linkage and advanced an-
alytics with EHR data for capturing a more
complete patient journey (particularly helpful
for rare conditions where the sample size
would be low) [23,44,71]

• Analytical approaches (ie, imputation) for
missing data [23,44,71,78]

Time selection

Define a proper index date or “time zero” follow-
ing the target trial emulation framework [52]

Patient has multiple lines of treatment; what should
be considered the index date?

Timing of therapy

Data may be present, but are not current enough to
provide a reasonable comparison to the current stan-
dard of care.

Timing of data collection – inconsistent
standard of care over time

• De novo data collection [55]
• Tokenization/data linkage [78]

Geography

Geographic representation where the main external
control arm data source is from outside of the country
of interest. Select two unlinked data sources with
available data to obtain a sufficient sample size.
However, it is unclear if patients overlap in care
networks.

External control arm nongeneralizable
to clinical practice

• Tokenization/data linkage, which improves
patient counts with geographic representation
while accounting for duplicates [79]

• Transportability [60]

Analysis phase

In the analysis phase, during matching, the power to
detect an effect is reduced.

Data loss or insufficient sample size to
detect power

• De novo data collection [55]
• Tokenization/data linkage [23,44]
• Analytical approaches (ie, imputation) for

missing data [78]

Transparent prespecified description of data selec-
tion, data provenance, and the statistical analysis
plan [3]

Data dredging/post-hoc analysis (eg, regulators can
assume the most appealing analysis was conducted).

Avoid the appearance of the analysis
as post-hoc or cherry picked

Conclusion

Given the considerable costs of novel drug development
pipelines and the increasing stratification of diseases and
subtypes, real-world data will become increasingly relevant for
regulatory and reimbursement discussions in the decades to
come. Exclusive reliance on an RCT framework as the entire
evidence generation plan does not adequately acknowledge the

shortcomings of a singular research strategy, despite the
advantages for comparative efficacy research. Simultaneously,
the field of biostatistics has expanded to focus on data
missingness to allow effectiveness analyses when a subject
presents with incomplete data, while taking the necessary
precautions and accounting for bias.
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The versatility of the use of real-world data extends beyond its
use in comparative efficacy analyses. There are additional
concerns with safety, which have postmarket authorization
requirement differences. Similarly, important topics outside the
scope of this paper include the many challenges associated with
patient privacy and reidentification risk, and the necessary
consideration needed when performing these analyses.
EHR-based real-world data were the focus of this paper, but
additional sources have been successful in comparative efficacy
analyses. Claims, like other sources of real-world data, have
their own unique challenges for consideration [80], but have
demonstrated success in clinical effectiveness studies and in
rare disease studies [77,81,82]. Conjoined efforts, such as those

between the ISPOR and the International Society for
Pharmaceutical Engineering, have provided recommendations
to highlight the need for transparency in planning and reporting
of observational real-world evidence studies and comparative
effectiveness studies [66]. Although real-world evidence based
on real-world data studies is critical to the operation of providing
timely insights into what works for patients and when, the
identification and evaluation of real-world data sources for
comparative effectiveness studies have many challenges. The
solutions suggested in this paper could minimize these
challenges; however, the selection and evaluation of a good
real-world data source is not as straightforward as it may appear.
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