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Abstract

Background: Tuberculosis (TB) was the leading infectious cause of mortality globally prior to COVID-19 and chest radiography
has an important role in the detection, and subsequent diagnosis, of patients with this disease. The conventional experts reading
has substantial within- and between-observer variability, indicating poor reliability of human readers. Substantial efforts have
been made in utilizing various artificial intelligence–based algorithms to address the limitations of human reading of chest
radiographs for diagnosing TB.

Objective: This systematic literature review (SLR) aims to assess the performance of machine learning (ML) and deep learning
(DL) in the detection of TB using chest radiography (chest x-ray [CXR]).

Methods: In conducting and reporting the SLR, we followed the PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) guidelines. A total of 309 records were identified from Scopus, PubMed, and IEEE (Institute of Electrical
and Electronics Engineers) databases. We independently screened, reviewed, and assessed all available records and included 47
studies that met the inclusion criteria in this SLR. We also performed the risk of bias assessment using Quality Assessment of
Diagnostic Accuracy Studies version 2 (QUADAS-2) and meta-analysis of 10 included studies that provided confusion matrix
results.

Results: Various CXR data sets have been used in the included studies, with 2 of the most popular ones being Montgomery
County (n=29) and Shenzhen (n=36) data sets. DL (n=34) was more commonly used than ML (n=7) in the included studies. Most
studies used human radiologist’s report as the reference standard. Support vector machine (n=5), k-nearest neighbors (n=3), and
random forest (n=2) were the most popular ML approaches. Meanwhile, convolutional neural networks were the most commonly
used DL techniques, with the 4 most popular applications being ResNet-50 (n=11), VGG-16 (n=8), VGG-19 (n=7), and AlexNet
(n=6). Four performance metrics were popularly used, namely, accuracy (n=35), area under the curve (AUC; n=34), sensitivity
(n=27), and specificity (n=23). In terms of the performance results, ML showed higher accuracy (mean ~93.71%) and sensitivity
(mean ~92.55%), while on average DL models achieved better AUC (mean ~92.12%) and specificity (mean ~91.54%). Based
on data from 10 studies that provided confusion matrix results, we estimated the pooled sensitivity and specificity of ML and DL
methods to be 0.9857 (95% CI 0.9477-1.00) and 0.9805 (95% CI 0.9255-1.00), respectively. From the risk of bias assessment,
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17 studies were regarded as having unclear risks for the reference standard aspect and 6 studies were regarded as having unclear
risks for the flow and timing aspect. Only 2 included studies had built applications based on the proposed solutions.

Conclusions: Findings from this SLR confirm the high potential of both ML and DL for TB detection using CXR. Future studies
need to pay a close attention on 2 aspects of risk of bias, namely, the reference standard and the flow and timing aspects.

Trial Registration: PROSPERO CRD42021277155; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=277155

(J Med Internet Res 2023;25:e43154) doi: 10.2196/43154
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Introduction

Prior to the COVID-19 pandemic, tuberculosis (TB) was the
leading infectious cause of mortality globally [1-3]. Many people
with TB do not have symptoms and, therefore, chest radiography
has an important role in the detection, and subsequent diagnosis,
of patients with this disease [4,5]. Traditionally, chest
radiographs have required expert clinicians (usually radiologists
or chest physicians) to interpret radiographic images, but this
method is expensive and, furthermore, there is substantial
within- and between-observer variability, indicating poor
reliability of human readers [6]. Therefore, there has been
substantial work in utilizing various artificial intelligence
(AI)–based algorithms to address the limitations of human
reading of chest radiographs for diagnosing TB.

Considered as the most important subdomain in AI, machine
learning (ML) has gained increasing popularity in the last 2
decades, although it has been in use since the introduction of
artificial neural network many years earlier [7]. It can be seen
as a set of methods that can learn from input data, build a model,
and improve its analyses to make informed decisions [8,9].
Various ML algorithms have been developed and applied to
tackle many problems in many different fields, including
TB-related research [10].

Liu et al [11], for example, developed a neural network (NN)
system to diagnose TB disease using chest radiographs. Using
the proposed system, they could obtain quite high accuracy
scores from 89.0% to 96.1% on 3 different data sets. Similarly,
Khan et al [12] proposed an NN for the classification task of
differentiating between positive TB and negative TB classes on
more than 12,600 patient records. The overall accuracy of the
proposed NN model was more than 94%. Ghanshala et al [13]
compared various ML techniques, including support vector
machine (SVM), k-nearest neighbor (kNN), random forest (RF),
and NN for effective identification of TB. From their
experimental results, they found that the NN classifier performed
better than other classifiers to detect TB with an accuracy of
80.45%. Lastly, Chandra et al [14] recently proposed an
automatic technique to detect abnormal chest x-ray (CXR)
images with 1 or more pathologies, such as pleural effusion,
infiltration, or fibrosis due to TB disease. They used SVM with
hierarchical feature extraction and found promising results with
accuracy ranging from 95.6% to 99.4% on 2 public data sets
used in the study.

As a new form of AI, or more specifically ML, deep learning
(DL) has gained traction recently due to the availability of
increasing computation power and abundant data volume. DL
originated from the NN concept that uses more hierarchical
layers to segregate and manage the final output [8]. It requires
less time-consuming preprocessing and feature engineering than
other traditional methods (including ML ones) and is more
accurate [15,16]. DL methods have been widely used in
TB-related studies.

Lakhani and Sundaram [17] conducted a study to evaluate the
efficacy of deep convolutional neural networks (CNNs) for
detecting TB on chest radiographs. They used an ensemble of
AlexNet and GoogLeNet and achieved 98.7% accuracy.
Similarly, Hooda et al [18] presented an ensemble DL-based
TB detection system based on AlexNet, GoogLeNet, and ResNet
and 4 different data sets. The ensemble method could attain an
accuracy score of 88.24%. In another work, Heo et al [19] used
various DL approaches to detect TB in chest radiographs of
annual workers’ health examination data. Five CNN
architectures, including VGG-19, InceptionV3, ResNet-50,
DenseNet-121, and InceptionResNetV2, have been employed
on CXR, while 1 CNN model (VGG-19) was combined with
demographic variables (age, weight, height, and gender). They
found that a model using a combination of CXR and
demographic data could perform better than the models using
CXR alone. Lastly, Sathitratanacheewin et al [20] developed a
deep CNN model based on InceptionV3 for automated
classification of TB-related CXR. The experimental results on
2 data sets gave area under the curve (AUC) scores ranging
from 0.7054 to 0.8502.

In our previous review of the literature with a focus on AI-based
TB detection, from 33 included studies, most (n=20) used
radiographic biomarkers rather than physiological and molecular
biomarkers. Moreover, most of the included studies used DL
approaches (n=21) rather than ML approaches, with the most
applied DL architectures being AlexNet, ResNet-50, VGG-16,
and GoogLeNet. One interesting finding is that ML approaches
have better overall accuracy and specificity than the DL. By
contrast, the DL approaches have better AUC and sensitivity
than the ML approaches. This might be rooted in the data
volume and quality available when implementing the former.
Furthermore, from the systematic review, we also found that
AI-based algorithms have moderate to high specificity and
sensitivity for TB detection. This confirms the potential value
of AI-based algorithms for TB detection. However, very few
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studies have focused on implementing AI-based algorithms for
early detection of TB, and this warrants further study.

In this review, we aim to evaluate the performance of available
ML and DL algorithms developed to detect TB from CXR data.
This was motivated by findings from previous reviews that
many related studies used radiographic biomarkers, especially
in the form of CXR images. However, in contrast to our previous
review that took a broader focus on AI methods for TB detection
and early TB detection, in this review, we put more focus on
ML and DL efficacies for TB detection using CXR.

There are several other review articles in this domain. Singh et
al [21] performed a narrative review that focused on the
limitations of conventional TB diagnostics and broad
applications of ML and DL in TB diagnosis. They also
summarized several established industrial-grade tools, such as
CAD4TB, Lunit INSIGHT, qXR, and InferRead DR Chest, as
prospective AI-assisted tools in TB diagnosis. This differed
from our current review where we performed a systematic
literature review (SLR) to assess the performance results of ML
and DL in TB detection using a specific form of data set, the
CXR. Harris et al [22] conducted a systematic review focusing
on the diagnostic accuracy of AI-based software for the
identification of pulmonary TB (PTB) on CXR. This is similar
to the focus of our review. However, in their study, the main
comparison was conducted for 2 computer-aided detection
design methods, namely, ‘development’ and ‘clinical’ studies.
In our review, the main comparison is on the efficacies of ML
versus DL methods. We only consider studies that have clearly
defined the ML or DL methods used for TB detection using
CXR. Lastly, Santosh et al [23] also conducted a systematic
review with a very specific focus on DL for TB screening using
CXR. They reviewed 54 records that had been published
between 2016 and 2021. This differed from our review where
we also included ML methods as a key element to be compared.
We also performed the SLR with a wider time frame not limited
to a specific period to obtain a better understanding of the trend
of ML and DL applications in TB detection using CXR.

In the following section, we describe the methods applied in
conducting this SLR. It consists of the following subsections:
Information Sources, Search Strategy, Inclusion and Exclusion
Criteria, Data Extracted, Outcomes Assessed, Strategy for Data

Analysis and Synthesis, Potential for Publication Bias. Next,
in the “Results” section, we describe the General Characteristics
of the Included Studies, Risk of Bias Assessment Result, and
the review Study Results. In the “Discussion” section, first we
explain the Principal Findings, followed by Limitations and
Conclusions from this SLR.

Methods

Design
In conducting this SLR, we followed the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines [24]. We started by preparing the review protocol
based on the PRISMA-Protocol 2015 Statement [25,26] and
registered the protocol on PROSPERO (Prospective Register
of Systematic Reviews), the world’s first international database
of prospectively registered systematic reviews launched in
February 2011 to increase the transparency of SLRs [27]. The
protocol is available at PROSPERO with Record ID
CRD42021277155 [28]. As this SLR focuses on retrospective
studies, no ethical approval was required.

Information Sources
In this SLR, we collected the records from 3 major databases,
namely, Scopus, PubMed, and IEEE (Institute of Electrical and
Electronics Engineers). Those are recommended academic
search systems for systematic reviews and meta-analyses [29].
We checked for all available literature in each database up to
May 9, 2021, when this SLR was started.

Search Strategy
There are several main keywords used for the search strategy,
including “Artificial Intelligence,” “Tuberculosis,” “Detection,”
and “Chest Radiograph*.” Moreover, several alternative
synonyms for each keyword are included for the searching
process in those databases. Textbox 1 shows the main keywords
together with their alternative synonyms that were proposed by
SH and refined by AA.

Using the keywords and alternative terms, we obtained results
as shown in Table 1. There were a total of 328 records, but only
309 records were available for download. The list of not
downloaded records is presented in Multimedia Appendix 1.

Textbox 1. Main keywords (italics) and alternative terms for the search strategy.

• Artificial intelligence (AI, deep learning, DL, machine learning, ML, predictive analysis)

• Tuberculosis (TB, pulmonary tuberculosis [PTB])

• Detection (detect*, diagnosis)

• Chest radiograph* (chest x-ray*, CXR, radiograph image*)

The * represents the wild-type character that can be used to represent any available characters in the search engine.
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Table 1. Searched keywords and results.

IEEEaPubMedScopusKeywords

4587196(TITLE-ABS-KEY ("Deep Learning" OR "DL" OR "Machine Learning" OR "ML" OR "Artificial Intelligence"
OR "AI" OR "Predictive Analytics") AND TITLE-ABS-KEY (tuberculosis OR "TB" OR "Pulmonary Tubercu-
losis" OR "PTB") AND TITLE-ABS-KEY (detection OR detect* OR diagnosis) AND TITLE-ABS-KEY ("Chest
Radiograph*" OR "Chest X-ray*" OR "CXR" OR "Radiograph Image*") ) AND (LIMIT-TO (DOCTYPE , "ar")
OR LIMIT-TO (DOCTYPE , "cp")) AND (LIMIT-TO ( LANGUAGE, "English"))

4579185Available for download (N=309)

aInstitute of Electrical and Electronics Engineers.

Inclusion and Exclusion Criteria
Textbox 2 shows the inclusion and exclusion criteria adopted
in this SLR. From 309 downloaded records, we screened all
records based on the inclusion and exclusion criteria determined.

Textbox 2. Inclusion and exclusion criteria.

Inclusion criteria

• Full-text articles in peer-reviewed journals or proceedings

• Written in English

• Focused on tuberculosis (TB) or pulmonary TB, chest radiograph, or chest x-ray

• Applied machine learning or deep learning algorithms

Exclusion criteria

• Literature review, case reports, letters, corrigendum, editorial commentary

• Not published in English

• Focused on extrapulmonary TB, latent TB, and other types of data

• Applied statistical methods, nonartificial intelligence methods, and general artificial intelligence methods not considered as machine learning or
deep learning

Data Extracted
Information extracted from each included study included the
following: (1) title, (2) authors, (3) published year, (4) journal
or proceeding’s title, (5) study objectives, (6) study findings,
(7) data set characteristics and size, (8) parameters (metrics)
used, (9) ML and DL methods applied, (10) best performance
results, (11) comparison with other studies, (12) outcome types,
(13) funding or sponsor sources, and (14) Google citation counts.

Outcomes Assessed
The main outcome of this SLR is the list of various ML and DL
methods for TB detection based on chest radiograph images.
The secondary outcome is the summary statistics of diagnostic
performance of various ML and DL methods for TB detection
on chest radiograph, including accuracy, AUC, sensitivity, and
specificity.

Strategy for Data Analysis and Synthesis
A narrative synthesis was presented in the text based on
extracted information from included studies. Descriptive
statistics was performed mainly using box and whisker plots
and other tables or figures to summarize and describe the
characteristics and key findings of the included studies. The
narrative synthesis was used to explore the relationship and
findings both within and between the included studies.

For the quantitative analysis, we performed the meta-analysis
for diagnostic test accuracy. This particular meta-analysis differs
from the meta-analysis of therapeutic or interventional studies
as it is necessitated analyzing simultaneously a pair of outcome
measures (sensitivity and specificity) instead of a single outcome
[30]. In this SLR, a simple meta-analysis for diagnostic test
accuracy was conducted on included studies that provide
confusion matrix results.

Potential for Publication Bias
To assess the risk of bias within the included studies, we used
a modified Quality Assessment of Diagnostic Accuracy Studies
version 2 (QUADAS-2) tool, which is recommended for
evaluating the risk of bias and applicability of primary diagnostic
accuracy studies in SLRs [31]. There are 4 key domains in
QUADAS-2: (1) patient selection, (2) index test, (3) reference
standard, and (4) flow and timing. SH and AA performed the
assessment independently. In case of disagreements, it was
resolved first by asking a third opinion from GBM, and then by
discussion and majority voting with all authors if needed.
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Results

Overview
Figure 1 illustrates all the phases conducted throughout the SLR,
starting from identification, screening, eligibility, to inclusion
of selected studies.

First, 309 records were identified from 3 databases used in this
SLR in the identification phase. After removing duplicates
(n=112), 197 records remained and these were passed to the
screening phase. The records’ titles, abstract, and keywords
were examined in this phase using 3 main rejection reasons,
namely, (1) not written in English (n=13); (2) being in the form
of literature review, case reports, letters, corrigendum, or

editorial commentary (n=12); and (3) not focused on ML or DL
for detection of TB or PTB based on CXR (n=99). After these
exclusions 73 records remained.

Next, in the eligibility phase, the 73 remaining records were
assessed by reading their full-text content. A total of 26 records
were excluded for the following reasons: (1) has unclear data
sets (n=6), (2) has unclear methodologies or method and
evaluation (n=6), (3) has finding inconsistency (n=2), and (4)
did not focus on ML or DL for TB or PTB detection based on
CXR (n=12). After this phase, 47 records were passed to the
included phase, which were checked for quality and data
extraction. Of the 47 records, 10 were included in the
quantitative analysis using data extracted from the confusion
matrix results provided in the sources.

Figure 1. PRISMA compliant SLR. CXR: chest x-ray; DL: deep learning; ML: machine learning; PRISMA: Preferred Reporting Items for Systematic
Reviews and Meta-Analyses; PTB: pulmonary tuberculosis; SLR: systematic literature review.

General Characteristics of the Included Studies
Table 2 shows the general characteristics of 47 studies finally
selected for this SLR. A total of 41 different CXR sources were
used in these studies, including 374,129 images. The 3 most
used CXR sources were Shenzhen (SZ; 36/47 studies),

Montgomery County (MC; n=29), and ChestX-ray14 or NIH-14
(n=4). SZ and MC are publicly available CXR data sets for
computer-aided screening of PTB disease [32], while
ChestX-ray14, an extension of ChestX-ray8, is another publicly
available data set of 14 common thorax diseases [33].
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Table 2. General characteristics of included studies.

Best resultMachine learning-deep learningReference standardData setStudy

DenseNet-169 (precision 92%, recall 92%,
F1-score 92%, validation accuracy

91.67%, and AUCb 0.915)

CNNsa: DenseNet-169, MobileNet,
Xception, and Inception-V3

Radiologist’s readingShenzhen, Mont-
gomery County

Mizan et al
[34]

Customized CNN (AUC 96.7% [Shen-
zhen] and accuracy 90.5% [Montgomery
County])

Customized CNN based on AlexNet +
transfer learning

Unclear (Korean Insti-
tute of Tuberculosis);
radiologist’s reading

Korean Institute of
Tuberculosis, Mont-
gomery County,
Shenzhen

Hwang et al
[35]

Ensemble (accuracy 90.0%, AUC 0.96,
sensitivity 88.42%, and specificity 92.0%)

Proposed (blocks), AlexNet, ResNet,
Ensemble (proposed + AlexNet +
ResNet)

Unclear (Belarus); ra-
diologist’s reading

Montgomery County,
Shenzhen, Belarus,
Japanese Society of
Radiological Technol-
ogy

Hooda et al
[36]

Single iteration-maximum pattern margin
support vector machine + probability esti-

kNNc, multiple-instance learning–based

system: miSVMd, miSVM + probability

Radiologist’s readingZambia, Tanzania,
Gambia

Melendez et al
[37]

mation and data discarding (0.86 [Zam-
bia], 0.86 [Tanzania], and 0.91 [Gambia])estimation and data discarding, single

iteration-maximum pattern margin sup-
port vector machine + probability estima-
tion and data discarding

Ensemble (Shenzhen [accuracy 93.4%,
AUC 0.991], Montgomery County [accu-

SVM with GIST, histogram of oriented
gradients, speeded up robust features

Radiologist’s readingShenzhen, Mont-
gomery County,
Kenya, India

Rajaraman et
al [38]

racy 87.5%, AUC 0.962], Kenya [accuracy
77.6%, AUC 0.826], and India [accuracy
96.0%, AUC 0.965])

(feature engineering); SVM with
AlexNet, VGG-16, GoogLeNet, ResNet-
50; and ensemble approach

Proposed network (recall/sensitivity
89.7%, specificity 85.9%, accuracy 87.7%,
and AUC 0.943)

Proposed: Feed-forward CNN model
with integrated convolutional block atten-
tion module and 4 other CNNs (AlexNet,
GoogLeNet, DenseNet, and ResNet-50)

UnclearJilin, Guangzhou,
Shanghai

Zhang et al
[39]

Multiple learner fusion: RF and extremely
randomized trees (AUC 0.84, sensitivity

Feature engineering: minimum redundan-
cy maximum relevance—multiple

CultureCape TownMelendez et al
[40]

95%, specificity 49%, and negative predic-
tive value 98%)

learner fusion: RFe and extremely ran-
domized trees

Neural network (AUC 0.894, accuracy
81.1%, F1-score 81.1%, precision 81.1%,

SVM, RF, kNN, neural networkRadiologist’s readingMontgomery County,
Shenzhen, Japanese
Society of Radiologi-
cal Technology

Ghanshala et
al [13]

recall 81.1%, and average accuracy
80.45%)

VGG-16 + data augmentation (AUC 0.94
and accuracy 81.25%)

CNN: VGG-16Radiologist’s readingMontgomery County,
Shenzhen

Ahsan et al
[41]

Custom deep artificial intelligence model
(100% normal, 100% COVID-19, 66.67%

A total of 29 different custom artificial
intelligence models

UnclearCustom data setSharma et al
[42]

new COVID-19, 100% non–COVID-19,
93.75% pneumonia, 80% tuberculosis)

Ensemble (accuracy 88.24%, AUC 0.93,
sensitivity 88.42%, and specificity 88%)

Ensemble of AlexNet, GoogLeNet, and
ResNet

Unclear (Belarus);

radiologist’s reading

Montgomery County,
Shenzhen, Belarus,
Japanese Society of

Hooda et al
[18]

Radiological Technol-
ogy

Proposed scheme with kNN (sensitivity
86%, specificity 50%, and AUC 0.82)

Active shape model segmentation, kNN
classifier, weighted multiplier

Radiologist’s readingNetherlands, Intersti-
tial Disease database

van Ginneken
et al [43]

SVM with hierarchical feature extraction
(Montgomery County [accuracy 95.6%,

SVM with hierarchical feature extractionRadiologist’s readingMontgomery County,
Shenzhen

Chandra et al
[14]

AUC 0.95] and Shenzhen [accuracy 99.4%
and AUC 0.99])

CapsNet (accuracy 80.06%, sensitivity
92.72%, and specificity 69.44%)

AlexNet, VGG-16, and CapsNetRadiologist’s readingMontgomery County,
Shenzhen, Thailand

Karnkawin-
pong and
Limpiyakorn
[44]
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Best resultMachine learning-deep learningReference standardData setStudy

Customized CNN (64% [lossy data aug-
mentation] and 70% [lossless data augmen-
tation])

Customized CNNRadiologist’s readingShenzhenStirenko et al
[45]

CheXaid (accuracy 79%, sensitivity 67%,
and specificity 87%)

Customized CNN based on DenseNet-
121

CultureAfricaRajpurkar et al
[46]

Proposed pretrained CNNs (accuracy
85.5% [Shenzhen], 75.8% [Montgomery
County], 69.5% [Kenya], and 87.6% [In-
dia]; AUC 0.926 [Shenzhen], 0.833
[Montgomery County], 0.775 [Kenya],
and 0.956 [India])

Customized CNN, AlexNet, VGG-16,
VGG-19, Xception, and ResNet-50

Radiologist’s readingShenzhen, Mont-
gomery County,
Kenya, India

Sivaramakrish-
nan et al [47]

Ensemble on Montgomery County
(F1-score 0.929, average precision 0.937,
average recall 0.921, accuracy 92.8%, and
AUC 0.965)

Ensemble-shallow–deep CNN + multi-
level similarity measure algorithm

Radiologist’s readingShenzhen, Mont-
gomery County

Owais et al
[48]

Faster region-based convolutional network
+ feature pyramid network (Shenzhen
[AUC 0.941, accuracy 90.2%, sensitivity
85.4%, and specificity 95.1%], Mont-
gomery County [AUC 0.977, accuracy
92.6%, sensitivity 93.1%, and specificity
92.3%], Local First Affiliated Hospital of
Xi’an Jiao Tong University [AUC 0.993,
accuracy 97.4%, sensitivity 98.3%, and
specificity 96.2%])

Segmentation: U-Net; classification:
proposed method based on Faster region-
based convolutional network + feature
pyramid network

Radiologist’s readingJapanese Society of
Radiological Technol-
ogy, Shenzhen, Mont-
gomery County, local
from the First Affiliat-
ed Hospital of Xi’an
Jiao Tong University

Xie et al [49]

Customized CNN: normal (precision 83%
and recall 83%); pulmonary tuberculosis
(precision 84% and recall 84%); overall
accuracy 84%

Customized CNNRadiologist’s readingShenzhenAndika et al
[50]

Modified InceptionNet V3: Shenzhen train
Montgomery County test (accuracy
76.05%, AUC 0.84, sensitivity 63%,
specificity 81%, and precision 89%);
Montgomery County train Shenzhen test
(accuracy 71.47%, AUC 0.79, sensitivity
59%, specificity 73%, and precision 84%);
and combined (accuracy 89.96%, AUC
0.95, sensitivity 87%, specificity 93%, and
precision 92%)

InceptionNet V3 and modified (truncat-
ed) InceptionNet V3

Radiologist’s readingShenzhen, Mont-
gomery County

Das et al [51]

MetaChexNet: Shenzhen AUC 0.965,
Montgomery County AUC 0.928, and
combined AUC 0.937

MetaChexNet based on DenseNet-121Radiologist’s readingChestX-ray14, Mont-
gomery County,
Shenzhen

Gozes and
Greenspan
[52]

Proposed CNN: accuracy 82.09% and loss
0.4013

Proposed CNNRadiologist’s readingShenzhen, Mont-
gomery County

Hooda et al
[53]

CNN with demographic variables (VGG19
AUC 0.9213) and CNN with image-only
information (VGG19 0.9075)

VGG19, InceptionV3, ResNet50,
DenseNet121, InceptionResNetV2, and
CNN with demographic variables
(VGG19 + demographic variables)

Radiologist’s readingYonseiHeo et al [19]

Ensemble (AUC 0.99); Ensemble + radiol-
ogist augmented (sensitivity 97.3%,
specificity 100%, and accuracy 98.7%)

Ensemble of AlexNet and GoogLeNetCulture (Belarus and
Thomas Jefferson);
radiologist’s reading
(all data sets)

Shenzhen, Mont-
gomery County, Be-
larus, Thomas Jeffer-
son University Hospi-
tal

Lakhani and
Sundaram
[17]

Proposed CNN (Shenzhen AUC 0.8502)
and ChestX-ray8 (AUC 0.7054)

Proposed CNN based on Inception V3Radiologist’s readingShenzhen, ChestX-
ray8

Sathi-
tratanacheewin
et al [20]
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Best resultMachine learning-deep learningReference standardData setStudy

Ensemble (Youden’s index 0.941, sensitiv-
ity 97.9%, specificity 96.2%, and accuracy
97.1%)

Proposed CNN based on generative ad-
versarial network, UNET, and ensemble
of VGG16 + InceptionV3

Unclear (Medical In-
formation Mart for In-
tensive Care and Syn-
thesis); radiologist’s
reading

Shenzhen, Mont-
gomery County, Med-
ical Information Mart
for Intensive Care,
and Synthesis

Dasanayaka
and Dis-
sanayake [54]

DenseNet (Shenzhen AUC 0.99 and
Montgomery County AUC 0.80)

ResNet-50, VGG16, VGG19, DenseNet-
121, and Inception ResNet

Radiologist’s readingShenzhen, Mont-
gomery County, Na-
tional Institutes of
Health-14

Nguyen et al
[55]

VGG-16: Shenzhen (accuracy 86.74% and
AUC 0.92), Montgomery County (accura-
cy 77.14% and AUC 0.75), and VGG-19
(AUC 0.90)

VGG-16, VGG-19, ResNet50, and
GoogLeNet

Radiologist’s readingShenzhen, Mont-
gomery County

Meraj et al
[56]

ViDi software (overall AUC 0.98)ViDi—industrial-grade deep learning
image analysis software (suite version
2.0, ViDi Systems)

UnclearUgandaBecker et al
[57]

Proposed CNN (AUC 0.977-1.000, area
under the alternative free-response receiv-
er operating characteristics curves 0.973-
1.000, sensitivity 94.3%-100%, specificity
91.1%-100%, and true detection rate
94.5%-100%)

Proposed CNNCulture (Seoul Nation-
al University Hospital,
Boramae, Kyunghee,
Daejeon); radiolo-
gist’s reading

Seoul National Univer-
sity Hospital, Bora-
mae, Kyunghee, Dae-
jeon Eulji, Mont-
gomery County,
Shenzhen

Hwang et al
[58]

Proposed CNN: Montgomery County
(accuracy 79.0% and AUC 0.811), Shen-
zhen (accuracy 84.4% and AUC 0.900),
and combined 3 data sets (accuracy 86.2%
and AUC 0.925)

Proposed CNNUnclear (Belarus); ra-
diologist’s reading

Montgomery County,
Shenzhen, Belarus

Pasa et al [59]

Ensemble (accuracy 91.0%, sensitivity
89.6%, and specificity 90.7%)

Ensemble of InceptionV3, VGG-16, and
a custom-built architecture

Radiologist’s readingShenzhen, Mont-
gomery County

Ahmad Hijazi
et al [60]

Ensemble + canny edge (accuracy 89.77%,
sensitivity 90.91%, and specificity
88.64%)

Ensemble of InceptionV3 and VGG-16Radiologist’s readingShenzhen, Mont-
gomery County

Hwa et al [61]

Ensemble with Gabor filter: Montgomery
County (accuracy 93.47% and AUC 0.97)
and Shenzhen (accuracy 97.59% and AUC
0.99)

Ensemble (pretrained CNNs: Incep-
tionV3, InceptionResnetv2, VGG16,
VGG19, MobileNet, ResNet50, and
Xception) with Gabor filter

Radiologist’s readingShenzhen, Mont-
gomery County

Ayaz et al
[62]

ELM (accuracy 99.2%, sensitivity 99.3%,
specificity 99.3%, precision 99.0%,
F1-score 99.2%, and Matthews correlation
coefficient 98.6%) and online sequential
ELM (accuracy 98.6%, sensitivity 98.7%,
specificity 98.7%, precision 97.9%,
F1-score 98.6%, and Matthews correlation
coefficient 97.0%)

ELMf and online sequential ELMRadiologist’s readingMontgomery CountyGovindarajan
and Swami-
nathan [63]

Ensemble with SVM (accuracy 90.5%,
sensitivity 89.4%, specificity 91.9%, and
AUC 0.95)

Ensemble of ResNet-152, Inception-
ResNet-v2, and DenseNet-161 + SVM

Radiologist’s readingShenzhenRashid et al
[64]

Proposed EfficientNet-B4 + unsharp
masking (accuracy 89.92% and AUC
0.948)

Image enhancements: unsharp masking,
high-frequency emphasis filtering, and
contrast-limited adaptive histogram
equalization—deep learning (ResNet-50,
EfficientNet-B4, and ResNet-18)

Radiologist’s readingShenzhenMunadi et al
[65]

AlexNet (AUC 0.998, sensitivity 99.7%,
and specificity 99.9%)

AlexNetRadiologist’s readingMontgomery CountyAbbas and
Abdelsamea
[66]

Multiple-instance learning + active learn-
ing (pixel-level AUC 0.870)

Multiple-instance learning + active
learning

Radiologist’s readingZambiaMelendez et al
[67]
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Best resultMachine learning-deep learningReference standardData setStudy

Proposed stacked ensemble: Montgomery
County (accuracy 99.26%, AUC 0.99,
sensitivity 99.42%, and specificity
99.15%) and Shenzhen (accuracy 99.22%,
AUC 0.98, sensitivity 99.39%, and speci-
ficity 99.47%)

Logistic regression, SVM with linear and
radial basis function kernels, decision
tree, RF, and AdaBoost—CNNs (VGG-
16, VGG-19, ResNet-101, ResNet-150,
DenseNet, and Xception)

Radiologist’s readingMontgomery County,
Shenzhen

Khatibi et al
[68]

TBNet on Johns Hopkins Hospital (AUC
0.87, sensitivity 85%, specificity 76%,
positive predictive value 0.64, and nega-
tive predictive value 0.9) and Majority
VoteTBNet and 2 radiologists (sensitivity
94%, specificity 85%, positive predictive
value 0.76, and negative predictive value
0.96)

ResNet-50 and TBNetCulture (Johns Hop-
kins Hospital); radiol-
ogist’s reading

ChestX-ray14, Mont-
gomery County,
Shenzhen, Johns Hop-
kins Hospital

Kim et al [69]

Without segmentation: CheXNet (accura-
cy 96.47%, precision 96.62%, sensitivity
96.47%, F1-score 96.47%, and specificity
96.51%); with segmentation: DenseNet201
(accuracy 98.6%, precision 98.57%, sensi-
tivity 98.56%, F1-score 98.56%, and
specificity 98.54%)

Lung segmentation—U-Net; classifica-
tion—MobileNetv2, SqueezeNet,
ResNet18, Inceptionv3, ResNet 50,
ResNet101, CheXNet, VGG19, and
DenseNet201

Unclear (Kaggle, Be-
larus, National Insti-
tute of Allergy and In-
fectious Diseases, Ra-
diological Society of
North America); radi-
ologist’s reading

Kaggle, National Li-
brary of Medicine,
Belarus, National Insti-
tute of Allergy and In-
fectious Diseases TB
data set, Radiological
Society of North
America CXR data set

Rahman et al
[70]

ResNet18: AXIR1 (accuracy 98%, sensi-
tivity 99%, specificity 97%, precision
97%, and AUC 0.98) and AXIR2 (accura-
cy 80%, sensitivity 72%, specificity 89%,
precision 87%, and AUC 0.80)

ResNet18Unclear (East Asian
Hospital); radiolo-
gist’s reading

ChestX-ray14, Shen-
zhen, East Asian Hos-
pital

Yoo et al [71]

Proposed ConvNet (accuracy 87.8%)Proposed ConvNetRadiologist’s readingShenzhenOloko-Oba
and Viriri [72]

Ensemble: Shenzhen (accuracy 94.59%-
98.46%, specificity 95.57%-100%, recall
93.66%-98.67%, F1-score 94.7%-98.6%,
and AUC 0.986-0.999) and National Insti-
tutes of Health (accuracy 89.56%-95.49%,
specificity 96.69%-98.50%, recall
78.52%-90.91%, F1-score 85.5%-94.0%,
and AUC 0.934-0.976)

Artificial bee colony (VGG16, VGG19,
Inception V3, ResNet34, and ResNet50)
and ResNet101 (proposed ensemble
CNN)

Radiologist’s readingShenzhen, National
Institutes of Health

Guo et al [73]

Bayesian convolutional neural network:
Montgomery County (accuracy 96.42%)
and Shenzhen (accuracy 86.46%)

Proposed Bayesian convolutional neural
network

Radiologist’s readingShenzhen, Mont-
gomery County

Ul Abideen et
al [74]

aCNN: convolutional neural network.
bAUC: area under the curve.
ckNN: k-nearest neighbor.
dmiSVM: multiple instance support vector machine/ maximum pattern margin support vector machine.
eRF: random forest.
fELM: extreme learning machine.

Tw e n t y - f ive  o f  t h e  i n c l u d e d  s t u d i e s
[14,17-19,34,36-38,47-49,52,53,56,59,62-66,68,70,72-74]
reported comparison results with several other previous studies,
while the remaining 22 did not. Twenty-six of 47 included
studies [19,20,35,38-40,42,43,45,47-50,53,55,56,58-62,65,
69-71,74] were funded or sponsored by companies, private or
university research institutions, and governmental institutions,
while for the remaining 21 studies no funding sources were
identified. Most of the included studies focused on the
development of a model or architecture as the proposed solution.
Only 2 studies [46,55] developed and built an application for
the proposed solution, and another study [57] focused on the

diagnostic performance of the commercial software. Almost all
included studies were published in the last 5 years, while only
1 study [43] was published in 2002 and considered as one of
the early publications that applied AI methods in detecting
abnormalities in the chest radiograph. A more detailed analysis
of the extracted characteristics is presented as Multimedia
Appendix 2.

Risk of Bias Assessment Result
Figures 2-3 illustrate the QUADAS-2 assessment results
regarding the risk of bias and applicability concerns of included
studies. There were 2 studies [13,71] that have a high risk of
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bias in terms of “patient selection.” This is mainly due to
incomplete information on data selection. One study [45] was
identified to have a high risk of bias in terms of “index test”
due to missing mandatory information of model architecture
and hyperparameters being deployed in the study. No high risk
of bias in terms of “reference standard” was detected; however,
17 of the included studies [13,17,20,35,
36,38,39,42,44,47,49,52,54,55,59,70,73] did not provide explicit
and clear information about reference standards applied for the
diagnosis of TB. Hence, we further explored available data
sources and publications cited in those included studies to find
the reference standards being used. As shown in Table 2, the
most commonly used reference standard was a report of a human

radiologist. A few studies applied a microbiological reference
standard, that is, mycobacterial culture. However, reference
standards for several custom and nonpublic data sets could not
be determined and are labeled as “unclear” in Table 2.

In terms of “flow and timing,” 6 studies [13,39,42,43,54,71]
were categorized as having an unclear risk of bias, and 1 study
[36] was assessed with a high risk of bias. These are mainly
because no clear information was given regarding the time
interval and intervention given between index test(s) and the
reference standard used in those studies. Regarding the
applicability concerns, all 47 included studies had low concerns,
meaning proposed solutions in those studies are feasible and
applicable in detecting TB on CXR using ML and DL methods.

Figure 2. Quality Assessment of Diagnostic Accuracy Studies version 2 (QUADAS-2) assessment results of included studies.

Figure 3. Graphical representation of the Quality Assessment of Diagnostic Accuracy Studies version 2 (QUADAS-2) assessment results of included
studies.
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Study Results
Various ML and DL methods have been applied in the included
studies: 7/47 (15%) studies [13,14,37,40,43,63,67] focused on
using ML approaches, while 34/47 (72%) studies
[17-20,34-36,39,41,44-56,58-62,65,66,69-72,74] used DL
approaches; 4/47 (9%) studies [38,64,68,73] used both ML and
DL approaches, while 2/47 (4%) [42,57] focused on
industrial-grade DL image analysis software and various deep
AI models without further information on the types of AI
techniques used.

The most popular DL architectures used in the included studies
were ResNet-50 (n=11), followed by VGG-16 (n=8), VGG-19
(n=7), and AlexNet (n=6). However, it is noteworthy that
various DL ensemble (n=9) [17,18,36,48,54,60-62,64] and
custom (n=9) [20,35,45-47,50,53,58,59] methods were also
introduced by authors in this field. For the ML approaches,
SVM (n=5) was the most applied method, followed by KNN
(n=3) and RF (n=2). Figure 4 depicts the distribution of the
ML-DL methods employed in the included studies, noting that
more than 1 ML and DL methods might be applied by a study.

Figure 4. Summary of ML-DL methods employed in included studies. ANN: artificial neural network; CNN: convolutional neural network; DL: deep
learning; DT: decision tree; ELM: extreme learning machine; ERT: extremely randomized trees; kNN: k-nearest neighbor; LR: logistic regression; ML:
machine learning; OSELM: online sequential extreme learning machine; RF: random forest; SVM: support vector machine.

In terms of performance measurements being used in the
included studies, accuracy (35/47, 74%), AUC (34/47, 72%),
sensitivity (27/47, 57%), and specificity (23/47, 49%) were the
most used ones. Accuracy is the proportion of all cases that are
either true positives or true negatives, while AUC is derived
from the receiver operating characteristics curve and is another
quantitative measure of model accuracy [75]. Sensitivity and
specificity are common metrics in the clinical test domain.

Sensitivity is defined as the ability of a model/test to correctly
identify people with a condition, while specificity is the ability
of a model/test to correctly identify people without a condition
[76,77]. Figure 5 shows the proportion of the performance
metrics used in the included studies. The full description of
performance metrics used in each corresponding study is
presented in Multimedia Appendices 2 and 3.
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Figure 5. Performance metrics proportion in included studies. AUAFROC: area under the alternative free-response ROC curves; AUC: area under the
curve; MCC: Matthews correlation coefficient; NPV: negative predictive value; PPV: positive predictive value; ROC: receiver operating characteristic
curve; TDR: true detection rate; TNR: true negative rate; TPR: true positive rate.

The overall performance results of the methods reviewed in this
study, in terms of accuracy, AUC, sensitivity, and specificity
of all included studies, are shown as a box plot in Figure 6. As
seen, accuracy ranged from 64% [45] to 99.4% [14] with a mean
value of 88.38% and median value of 89.92%; AUC ranged
from 70.54% [20] to 100% [58] with a mean value of 91.78%
and median of 94.1%; sensitivity ranged from 59% [51] to 100%
[58] with a mean value of 90.15% and median of 92%; and
specificity ranged from 49% [40] to 100% [17,58,73] with a
mean value of 89.31% and median value of 92.3%. All
performance metrics are negatively skewed and have relatively
same distribution values. However, there are some outliers
detected, 1 for sensitivity at 59% [51] and 3 for specificity at
49% [40], 50% [43], and 69.44% [44] of the included studies.

We separately analyzed the performance results of ML and DL
approaches. Among 11 (7+4) [13,14,37,38,40,43,63,64,67,68,73]

studies that used ML, the accuracy ranged from 77.6% [38] to
99.4% [14] with a mean score of 93.71% and median of 97.23%,
the AUC ranged from 82% [43] to 99.9% [73] with a mean
score of 92.03% and median of 93.4%, the sensitivity ranged
from 78.52% [73] to 99.42% [68] with a mean score of 92.55%
and median of 96.835%, and the specificity ranged from 49%
[40] to 100% [73] with a mean score of 87.01% and median of
98.7%. Meanwhile, among 38 (34+4) studies that used DL, the
accuracy ranged from 64% [45] to 99.26% [68] with a mean
score of 87.83% and median of 89.77%, the AUC ranged from
70.54% [20] to 100% [58] with a mean score of 92.12% and
median of 94.55%, the sensitivity ranged from 59% [51] to
100% [58] with mean score of 89.84% and median of 91.455%,
and the specificity ranged from 69.44% [44] to 100% [17,58,73]
with a mean score of 91.54% and median of 92.3%. Figure 7
shows the individual performance results for each ML and DL
approach.
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Figure 6. Overall performance of both machine learning (ML) and deep learning (DL)-based methods reviewed. AUC: area under the curve.

Figure 7. Individual performances of machine learning (ML)–based and deep learning (DL)–based methods reviewed. Acc: accuracy; AUC: area under
the curve; Sens: sensitivity; Spec: specificity.
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In the meta-analysis phase, we analyzed 10 of the included
studies [13,17,34,36,39,50,54,63,66,70] that provided confusion
matrix results. Among those 10 included studies, 2 used ML
approaches, such as SVM, RF, kNN [13], extreme learning
machine (ELM), and online sequential ELM [63], while 8
[17,34,36,39,50,54,66,70] used various DL methods, particularly
CNN architectures, such as AlexNet, GoogLeNet, VGG16,
DenseNet, ResNet, and MobileNet to name a few. A total of
14,521 observations were classified including 7148 true

positives, 142 false positives, 104 false negatives, and 7127 true
negatives. Review Manager (RevMan; The Nordic Cochrane
Centre, The Cochrane Collaboration) software [78] was utilized
to conduct the analysis and create the forest plot as shown in
Figure 8. All 10 studies revealed high sensitivity and moderate
to high specificity. To conclude, the pooled estimate of
sensitivity is 0.9857 (95% CI 0.9477-1.00) and the pooled
estimate of specificity is 0.9805 (95% CI 0.9255-1.00).

Figure 8. Forest plot of pooled sensitivity and specificity of the 10 included studies. FN: false negative; FP: false positive; TN: true negative; TP: true
positive.

Discussion

Principal Findings
In this SLR, we reviewed available evidence related to the usage
and performance of both ML and DL methods for TB detection,
particularly on CXR images. Most included studies have recently
been published, and only 2 studies [37,43] were published before
2016. Around 2785 Google Scholar citations were recorded for
all the included studies by March 21, 2022, where the top 3
cited publications were Lakhani and Sundaram [17] with 1131
citations, van Ginneken et al [43] with 289 citations, and Pasa
et al [59] with 175 citations. This confirms the increasing
popularity of ML and DL implementation in the medical field,
especially for TB disease detection using CXR.

Various CXR data sets have been used in the included studies.
Three of the most popular ones are SZ (n=36), MC (n=29), and
ChestX-ray14 (n=4). Particularly, SZ and MC data sets are the
most widely used as they are available to the public in Jaeger
et al’s [32] publication. There are 662 (326 normal and 336 TB)
CXR images in SZ, while for MC there are 138 (80 normal and
58 TB) CXR images. Hence, they are considered as small data
sets because the total number of both data sets is less than 1000
(800 to be precise). By contrast, ChestX-ray14 contains around
112,120 CXR images of 30,805 patients [79], which is
considered as a large data set [80-82]. However, it serves
common thorax diseases [33] and is commonly used to add data
for classes other than TB. Therefore, application to TB disease
detection requires proper data curation [69].

In terms of the performance results, ML showed higher accuracy
(mean ~93.71%) and sensitivity (~92.55%), while on average
DL models achieved better AUC (~92.12%) and specificity
(~91.54%). The ML methods tend to have better accuracy
because the feature engineering phase is usually validated by
experts. Moreover, they are carefully tuned with different
parameters settings. By contrast, both feature engineering and

parameter tuning in the DL are automatically done by the deep
networks’ architecture without human intervention [83].
However, the DL approach has better AUC than the ML
approach. This metric is commonly used in medical settings to
evaluate the predictive performance of a classifier [84]. It is
considered a better evaluation metric than accuracy [84,85],
especially when used in imbalanced data settings [86].

From the grouped box plots shown in Figure 7, both ML and
DL seem to have similar performance results in general.
However, 2 performance metrics, namely, accuracy and
specificity, have different interquartile ranges. This suggests
that the developed ML and DL methods in the included studies
have different level of agreement in terms of reported accuracy
and specificity. The accuracy of studies that applied ML has a
better level of agreement than DL but the box plot is negatively
skewed. It means that among the included studies that applied
ML, more studies reported lower accuracy results with wider
variance than those that reported higher accuracy results above
the median value. The similar finding for specificity can be
deducted from the box plot of ML which is very negatively
skewed than DL. In general, DL has a better level of agreement
for most performance metrics results of included studies as
indicated by the shorter interquartile ranges than ML with the
exception for accuracy. Therefore, DL tends to give a more
stable and consistent result than ML for TB detection.

Both ML and DL have high sensitivity (ML ~92.55%/DL
~89.84%) and specificity (~87.01%/~91.54%). Further analysis
on the 10 included studies that provided confusion matrix results
confirms this finding. The pooled sensitivity is 0.9857 and the
pooled specificity is 0.9805, which once again shows the
potential value of ML and DL approaches for TB detection
using CXR. A more complete data summary is provided in
Multimedia Appendix 3.

Another important factor that might influence the performance
results of the DL approach is the data volume used in the
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learning phase. It is a well-known fact that a lot of data number
is needed in the training phase for a DL method to work well
[87,88]. However, as previously stated, most of the included
studies used the SZ and MC data sets, which are considered
small data sets. One possible immediate solution is to apply
data augmentation techniques to increase the data volume. Data
augmentation is regarded as a data-space solution that could
enhance both data size and quality to increase DL performance
[89]. Some popular data augmentation techniques are kernel
filters, geometric transformations, random erasing, mixing
images, color and feature space transformations, and even
DL-based data augmentation, such as the variational
autoencoders [90,91] and generative adversarial network [89,92].

Transfer learning is another approach that can be utilized to
handle insufficient data volume. It transfers the knowledge from
source to target domain by relaxing the hypothesis that training
data should be independent and identically distributed with test
data [93,94]. Using this approach, the dependency on target
domain large data volume can be reduced [95]. Unarguably,
this approach has been largely applied in many included studies
in this SLR, as can be seen in the utilization of various pretrained
DL models with promising results, such as Mizan et al [34],
Hwang et al [35], Abbas and Abdelsamea [66], Kim et al [69],
and Rahman et al [70].

Another interesting finding from this SLR is that the use of
multiple input data types (multimodal) could enhance the
performance results of both ML and DL than using only 1 input
type (unimodal, ie, CXR alone). The other input data types are
clinical features [40], demographic information [19], and even
other images, such as microbiological and computed tomography
[96,97]. This is in line with the conclusion of several other
studies [98-100]. Particularly, 6 out of the 47 included studies
in this SLR used the multimodal approach than the unimodal
approach. Melendez et al [40] used CXR and 12 other clinical
features, such as BMI, axillary temperature, heart rate,
mid-upper arm circumference, HIV status, anemic conjunctivae,
lung auscultation findings, cough, hemoptysis, night sweats,
dyspnea, and chest pain. Ahsan et al [41] and Owais et al [48]
used CXR images together with their text attributes (age, gender,
and TB state). Similarly, Rajpurkar et al [46] used CXR and 8
clinical features (age, oxygen saturation, hemoglobin, CD4
T-cell count, white blood cell count, temperature, current
antiretroviral therapy status, and patients’ previous history of
TB). Gozes and Greenspan [52] utilized both CXRs and their
metadata (age, gender, and patients’ position), while Heo et al
[19] used CXR and demographic information (age, gender,
weight, and height).

It is worth noting that most of the included studies focused on
the development of ML and DL models or architectures as the
proposed solution. Only 2 studies [46,55] have developed and
built an application or running prototype as the proposed
solution in detecting TB disease based on CXR. Although there
is some commercial DL software available, they are mainly
utilized in high-resource environments. Hence, further
development and implementation of a running application are
needed, especially in low-resource settings.

The absence of longitudinal (temporal) aspect of the data sets
could not be ignored in this study. In practice, the diagnostic
decision of TB detection by a medical practitioner or a
radiologist using CXR is generally made by detecting change
in a lesion compared with the previous observation. However,
none of the included studies have considered the longitudinal
dimension of the data sets used when building the model and
making the decision. Hence, the proposed approaches are prone
to false prediction, especially when used on an older age group
and people with a history of TB.

We also assessed the publication bias and applicability of the
47 included studies using the QUADAS-2 tool. Among 4 key
aspects in the Risk of Bias assessment, namely, patient selection,
index test, reference standard, and flow and timing, most
included studies had low risks. However, it is important to note
that 17 studies were regarded as having unclear risks for the
reference standard aspect, and 6 studies as having unclear risks
for the flow and timing aspect. This is mainly because no
explicit and clear information was given about reference
standards, time intervals, and any intervention being conducted
in those studies. Hence, future studies should pay close attention
to these 2 aspects of risk of bias because they could affect our
confidence with the studies’ results.

Particularly, the missing information about the reference
standards’ procedure in determining the pulmonary TB (PTB)
disease could really affect the confidence of the performance
results achieved by various ML and DL methods. It is generally
agreed that the mycobacterial culture is closest to a gold standard
while the radiology, even under ideal circumstances, is an
imperfect diagnostic tool. Therefore, a human radiologist’s
diagnosis, even a consensus diagnosis, is an imperfect criterion.
Comparing machine reading with this reference standard may
tend to overestimate the “true” accuracy. By contrast, it is
conceivable that machine reading might be better than human
radiologists at detecting microbiologically confirmed PTB, if
the algorithm is trained against microbiologically confirmed
cases and controls. The use of a radiological reference standard
would fail to detect this benefit.

For the applicability concerns, 3 aspects were assessed for all
47 included studies. We conclude that all the included studies
have low concerns regarding applicability. This means that the
proposed solutions in the included studies are logically sound,
feasible, and applicable in solving the task to detect TB based
on CXR using ML and DL approaches.

Limitations
There are some limitations to this SLR. First, we only utilized
3 major databases in identifying and collecting all publications,
namely, Scopus, PubMed, and IEEE. We argue that these
databases adequately represent the domain of TB detection using
ML and DL approaches on CXR. Next, we did not seek further
information on reference standards used in each included study.
As most included studies used publicly available CXR data
sources, reference standards used in those studies were assumed
to be the same. Lastly, we did not include any studies that
focused on the use of various AI-powered technologies, such
as CAD4TB [101-106], Lunit [107], and qXR [108], without
proper explanation about the AI-based algorithms used. This
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review study was specifically designed around the use of ML
and DL for TB detection on CXR. Without enough information
on the underlying algorithms used in those AI-powered
technologies, insightful investigation related to the review
question could not be achieved.

Conclusions
These findings confirm the high potential of both ML and DL
for TB detection using CXR. DL approaches, particularly the

CNNs, dominantly applied than ML approaches. Besides, DL
approaches tend to have more stable and consistent performance
results than ML approaches. Data volume and quality were the
main concerns of this review, where most of the included studies
used relatively small data sets. Therefore, proper data curation
and augmentation, transfer learning, and multimodal approaches
could be considered in future studies.
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