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Abstract

Background: Anxiety and depression are the most common mental disorders worldwide. Owing to the lack of psychiatrists
around the world, the incorporation of artificial intelligence (AI) into wearable devices (wearable AI) has been exploited to
provide mental health services.

Objective: This review aimed to explore the features of wearable AI used for anxiety and depression to identify application
areas and open research issues.

Methods: We searched 8 electronic databases (MEDLINE, PsycINFO, Embase, CINAHL, IEEE Xplore, ACM Digital Library,
Scopus, and Google Scholar) and included studies that met the inclusion criteria. Then, we checked the studies that cited the
included studies and screened studies that were cited by the included studies. The study selection and data extraction were carried
out by 2 reviewers independently. The extracted data were aggregated and summarized using narrative synthesis.

Results: Of the 1203 studies identified, 69 (5.74%) were included in this review. Approximately, two-thirds of the studies used
wearable AI for depression, whereas the remaining studies used it for anxiety. The most frequent application of wearable AI was
in diagnosing anxiety and depression; however, none of the studies used it for treatment purposes. Most studies targeted individuals
aged between 18 and 65 years. The most common wearable device used in the studies was Actiwatch AW4 (Cambridge
Neurotechnology Ltd). Wrist-worn devices were the most common type of wearable device in the studies. The most commonly
used category of data for model development was physical activity data, followed by sleep data and heart rate data. The most
frequently used data set from open sources was Depresjon. The most commonly used algorithm was random forest, followed by
support vector machine.

Conclusions: Wearable AI can offer great promise in providing mental health services related to anxiety and depression.
Wearable AI can be used by individuals for the prescreening assessment of anxiety and depression. Further reviews are needed
to statistically synthesize the studies’ results related to the performance and effectiveness of wearable AI. Given its potential,
technology companies should invest more in wearable AI for the treatment of anxiety and depression.

(J Med Internet Res 2023;25:e42672) doi: 10.2196/42672
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Introduction

Background
Anxiety and depression are among the common mental illnesses
with a high global prevalence. It was reported that as of 2020,
a total of 19% of people worldwide were living with depression
or anxiety, which prevented them from doing their daily
activities as they normally would have for ≥2 weeks [1]. In
addition to having a significant economic impact on society [2],
anxiety and depression affect people in terms of years lost
because of illness. The statistics are astounding; depression is
the world’s leading cause of disability within the youth
population [3-5]. As per a study among US adults, at 18 years
of age, adults with depression had 28 more years of
quality-adjusted life expectancy than adults without depression,
resulting in a 28.9-year quality-adjusted life expectancy loss
owing to depression [6]. Depression is also a significant risk
factor when it comes to suicide [7]. Given the abovementioned
statistics and the fact that there are only approximately 9
psychiatrists per 100,000 people in high-income countries [8]
and 0.1 per 1 million people in low-income countries [9], the
situation is challenging to say the least. Current approaches for
the assessment of anxiety and depression disorders are primarily
based on the clinical observation of patients’ mental states,
clinical history, and self-report questionnaires, such as the
Generalized Anxiety Disorder-7 for anxiety and Patient Health
Questionnaire-9 for depression. However, these methods are
subjective, time consuming, and challenging to repeat. As a
result, contemporary psychiatric assessments can be inaccurate
and ineffective at assessing anxiety and depression symptoms
in a reliable and personalized manner. Therefore, there is a
significant need to develop automatic techniques to address the
limitations of the current psychiatric approaches for assessing
anxiety and depression disorders and overcome the shortages
and uneven distribution of mental health professionals.

Recently, there have been rapid ongoing developments in
artificial intelligence (AI) technology and wearable technology
for health care and clinical use, offering numerous advantages
for individualizing diagnoses and the treatment management of
psychiatric disorders, including anxiety and depression [10-12].
Wearable technology includes electronic devices that users can
wear near the body (eg, smartwatches, smart glasses, and smart
bracelets), on the body (eg, electrocardiogram electrodes), and
in the body (eg, implantable smart patches) and electronic
textiles (eg, smart clothes). Wearable devices are designed to
provide a constant stream of health care data for disease
diagnosis and treatment. This is achieved by continuously
recording physiological parameters such as temperature; blood
pressure; blood oxygen; respiratory rate; physical movement;
and the electrical activity of the heart, brain, and skin. Symptoms
of anxiety and depression can be assessed by many parameters
collected in real time by wearable devices for the diagnosis and
monitoring of patients with anxiety and depression.

However, the dramatically accelerating pace of the development
and adoption of wearables coupled with a shortage of skilled
caregivers has led to an evolving need for automatic, efficient,
and real-time approaches to analyze the large volumes of data
collected by wearable sensors. This has motivated the integration
of AI methods into wearable devices, introducing the “Wearable
AI” technology. Wearable AI refers to intelligent electronic
devices that are designed to be worn on the user’s body and
possess intelligent operations. Wearable devices typically deal
with monitoring and analyzing patients’ health data. However,
when paired with AI, wearable devices introduce fundamental
developments in the diagnosis and treatment of anxiety and
depression. It has the potential to provide an early and accurate
diagnosis of anxiety and depression, facilitate more
individualized treatment for patients with anxiety and
depression, and assist in developing preventive measures for
groups at the risk of anxiety and depression.

Research Problem and Aim
Several studies were published on wearable devices combined
with AI for the treatment of anxiety and depression. Several
reviews were conducted to summarize previous studies;
however, they had the following limitations. First, they focused
on wearable devices rather than wearable devices paired with
AI [10-15]. Second, they did not describe in detail the features
of the used wearable devices and AI models [10-15]. Third,
they targeted only certain age groups, such as children and
adolescents [10,12]. Fourth, they focused on wearable devices
for either anxiety [11,14] or depression [12,13,15] rather than
both anxiety and depression. Fifth, they did not search relevant
databases, such as MEDLINE [14], PsycINFO [10,13,15], IEEE
Xplore [10-14], and ACM Digital Library [10-15]. Finally, they
focused on wearable devices used for only diagnostic purposes
using only electrocardiogram data [11] or electroencephalogram
data [15]. Therefore, the need for a review that focuses on
AI-paired wearable devices for anxiety and depression has never
been higher. The quality of this review should as high as that
of a previous review conducted on AI-paired wearable devices
for diabetes [16]. The current review aims to explore the features
of wearable AI used for anxiety and depression to both help
customers make educated selections and help the research
community advance in this field by identifying gaps and
examining future prospects.

Methods

Overview
To achieve the objective of the study, we conducted a scoping
review consistent with PRISMA-ScR (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses Extension for
Scoping Reviews) [17]. PRISMA-ScR checklist for this review
is presented in Multimedia Appendix 1 [17]. The methods used
in this review are detailed in the following subsections.
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Search Strategy
To identify relevant studies, we searched 8 electronic databases
on May 30, 2022: MEDLINE (via Ovid), PsycINFO (via Ovid),
Embase (via Ovid), CINAHL (via EBSCO), IEEE Xplore, ACM
Digital Library, Scopus, and Google Scholar. We set up an
automatic biweekly search for 24 weeks (ending on September
30, 2022). Given that Google Scholar retrieved a massive
number of hits and ordered them based on their relevance, only
the first 100 hits (ie,10 pages) were checked in this review. To
identify additional studies, we checked the reference lists of the
included studies (ie, backward reference list checking) and
screened studies that cited the included studies (ie, forward
reference list checking).

To develop the search query, 3 experts in digital mental health
were consulted, and relevant previous reviews were checked.
The search query was composed of 3 groups of terms: terms
related to AI (eg, artificial intelligence, machine learning, and
deep learning), terms related to wearable devices (eg, wearable
OR smart watch OR smartwatch), and terms related to anxiety
and depression (eg, anxiety OR anxious OR depression).
Multimedia Appendix 2 presents the detailed search query used
for searching each database.

Study Eligibility Criteria
This review included studies that focused on developing AI
algorithms for anxiety and depression using data collected by
wearable devices. Specifically, we focused on all AI algorithms
used for any purpose related to anxiety and depression (eg,
diagnosis, monitoring, screening, therapy, prediction, and
prevention). The wearable devices that were used for collecting
data had to be noninvasive on-body wearables, such as
smartwatches, smart glasses, smart clothing, smart bracelets,
and smart tattoos. By contrast, we excluded studies that used
data collected by the following devices: nonwearable devices,
handheld devices (eg, mobile phones), near-body wearable
devices, in-body wearable devices (eg, implants), wearable
devices connected to nonwearable devices using wires, and
wearable devices that can be placed on users only by an expert
(eg, wearable devices composed of many electrodes that need
to be placed in very specific points of the body). Studies that
used data collected via any method (eg, nonwearable devices,
questionnaires, and interviews) in addition to via wearable
devices were considered in this review. We excluded studies
that showed only a theoretical framework of AI-based wearable
devices for anxiety and depression. We included journal articles,
conference papers, and dissertations that were published in the
English language since 2015. We excluded reviews, preprints,
conference abstracts, posters, protocols, editorials, and
commentaries. No restrictions were enforced regarding the
measured outcomes, setting, or country of publication.

Study Selection
We followed 3 steps in the study selection process. In the first
step, we used EndNote X9 (Clarivate Plc) to remove duplicates
from all the retrieved studies. In the second step, we checked
the titles and abstracts of the remaining publications. Finally,
we screened the entire texts of the studies selected in the
previous step. Two reviewers independently performed the study
selection process. Disagreements between them in the second
and third steps were resolved through discussion. Cohen κ was
calculated to measure the interrater agreement [18], and it was
0.85 for “title and abstract” screening and 0.92 for full-text
reading.

Data Extraction
Two reviewers used Excel (Microsoft Corp) to independently
extract data on study metadata, wearable devices, and AI
techniques. Any disagreements between the reviewers were
resolved through discussion. The data extraction form used in
this review was piloted using 5 studies and is shown in
Multimedia Appendix 3.

Data Synthesis
Data extracted from the included studies were synthesized using
the narrative approach, wherein data were summarized and
described using texts, tables, and figures. More specifically, we
began by describing the metadata of the included studies (eg,
year of publication and country of publication). Then, we
presented the features of the wearable devices used in the
included studies (eg, their status, type, placement, and operating
system). Finally, we summarized the characteristics of the AI
techniques used (eg, AI algorithms used, their aim, data set size,
and data input type). We used Microsoft Excel to manage data
synthesis.

Results

Search Results
As shown in Figure 1, searching all preidentified databases
retrieved 1203 records. Of these 1203 records, 340 (28.26%)
duplicates were detected and removed using a reference
management software (EndNote X9). Screening the titles and
abstracts of the remaining 71.74% (863/1203) of records resulted
in the exclusion of 58.6% (506/1203) of records. Of the
remaining 41.4% (357/1203) of records, we could not find the
full text of 0.8% (3/1203) of records. Reading the full text of
the remaining 99.2% (354/357) of records led to the exclusion
of 84.2% (298/357) of records for several reasons, which are
shown in Figure 1. We identified 13 additional records relevant
to this review by backward and forward reference list checking.
In total, 69 records were included in this review [19-87].

J Med Internet Res 2023 | vol. 25 | e42672 | p. 3https://www.jmir.org/2023/1/e42672
(page number not for citation purposes)

Abd-alrazaq et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Flowchart of the study selection process. AI: artificial intelligence.

Characteristics of the Included Studies
The included studies were published between 2015 and 2022
(Table 1). The year in which the largest number of included
studies was published was 2021 (17/69, 25%), followed by 2019
(16/69, 23%) and then 2020 (15/69, 22%). The studies were
conducted in 21 countries (Table 1). More than a quarter (21/69,
30%) of the studies were published in the United States. The
included studies were peer-reviewed journal articles (49/69,
71%), conference proceedings (18/69, 26%), and theses (2/69,
3%).

The number of participants in the included studies ranged from
8 to 4036, with an average of 186.7 (SD 522.2; Table 1). The

mean age of the participants was reported in 72% (50/69) of
studies and ranged between 5.2 and 78 years, with an average
of 36.4 (SD 15.4) years. Only 9% (6/69) of the included studies
targeted children (aged <18 years), and 4% (3/69) of studies
focused on only older adults (aged ≥65 years). The percentage
of female participants was reported in 54 studies and varied
between 2.4% and 100%, with an average of 59.8% (SD 15.3%).
More than one-third (26/69, 38%) of the studies recruited
individuals with any health condition, and approximately 30%
(21/69) of the studies included both patients with depression
and healthy individuals. Multimedia Appendix 4 [19-87] shows
the characteristics of each included study.
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Table 1. Characteristics of the included studies (N=69).

ReferencesValuesFeatures

Year of publication, n (%)

[27,30,38,48,52,59,63,64,69,81]10 (13)2022

[19-21,23,25,28,41,45,49,54,61,62,68,73,74,77,78]17 (25)2021

[22,29,31,33,40,43,44,53,57,60,66,70,71,76,79]15 (22)2020

[26,32,34,42,46,47,51,56,65,67,72,75,80,84-86]16 (23)2019

[35,36,50,55,83]5 (7)2018

[24,37,39,58]4 (6)2017

[87]1 (1)2016

[82]1 (1)2015

Type of publication, n (%)

[19,21,23,25-30,34,38-46,48-54,56-61,64-66,69-71,73-75,77-79,81,82,84,86,87]49 (71)Journal article

[20,22,24,31-33,35-37,55,62,63,67,68,72,80,83,85]18 (26)Conference paper

[47,76]2 (3)Thesis

Country of publication, n (%)

[24,25,30,31,37,41,42,50,54-56,59,61,66,74,76,77,80,83-85]21 (30)United States

[34,58,65,69-71,86]7 (10)Mexico

[20,32,35,36,43,47]6 (9)Norway

[29,38,48,72,78]5 (7)United Kingdom

[26-28,46,60]5 (7)South Korea

[33,63,67,79]4 (6)Japan

[21,22,45]3 (4)Pakistan

[23,39,44]3 (4)China

[51,53]2 (3)India

[62,81]2 (3)Taiwan

[19,40,49,52,57,64,68,73,75,82,87]11 (16)Others

Number of participants

[19-87]186.9 (522.2; 8-4036)Mean (SD; range)

[19-22,24,26,27,30-40,42-49,53,55,56,58-68,70,71,75-79,81-83,85-87]53 (77)1-100, n (%)

[23,25,41,50,51,54,57,69,73,80,84]11 (16)101-500, n (%)

[28,29,52,72,74]5 (7)>500, n (%)

Age of the participants (years)

[19-21,26-30,32,34-38,41-43,46-48,51,52,54-59,61-71,73-80,83,85,86]36.4 (15.44; 5.2-78)Mean (SD; range)

[54-56,59,76]5 (7)<18, n (%)

[21,26,29,37,51,52,58,66,67,73-75,77,78,80,83,85]17 (25)18-40, n (%)

[19,20,27,30,32,34-36,38,41-43,47,48,57,62-65,68-71,79,86]25 (36)41-65, n (%)

[27,46,61]3 (4)>65, n (%)

[19-22,26-32,34-38,41-48,50,52,53,55-59,61-71,73,75-81,83,85,86]59.4 (15.64; 2.4-100)Sex (female; %), mean (SD; range)

Participant health conditionsa, n (%)

[19,20,23,24,26,30,32,34-38,42,43,46-48,50,57,59,60,62,65-71,77,79,86]32 (46)Depression

[19,20,32,34-36,42,43,47,48,50,54-57,60,62,65,67-71,75,76,79,86]27 (39)Healthy

[21,22,25,27-29,31,33,39,41,44,45,52,53,58,61,63,64,72-74,80,83-85,87]26 (38)Any health condition

[54-56,76]4 (6)Internalizing disorders
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ReferencesValuesFeatures

[26,49,82]3 (4)Bipolar

[40,51,69,75,78,81]6 (9)Others

aNumbers do not add up, as participants in many studies had >1 health condition.

Features of Wearable Devices
The included studies focused on wearable devices for depression
(44/69, 64%), anxiety (17/69, 25%), or both (8/69, 12%).
Approximately, 90% (62/69) of the included studies used
commercial wearable devices (Table 2). The included studies
used 41 different wearable devices. All studies, except for 7,
used only 1 wearable device. The most common wearable device
used in the included studies was Actiwatch AW4 (Cambridge
Neurotechnology Ltd; 17/69, 25%), followed by Fitbit (Fitbit
Inc) series (eg, Fitbit Charge, Fitbit Flex, and Fitbit Altra; 13/69,
19%) and Empatica (Empatica Inc) series (eg, E3 and E4; 7/69,
10%). The commercial wearable devices were manufactured
by 25 different companies, the most common companies of
which was Cambridge Neurotechnology (17/69, 25%), followed
by Fitbit Inc (13/69, 19%) and Empatica Inc (7/69, 10%).
Multimedia Appendix 5 [19-87] shows the features of the
wearable devices in each included study.

The wearable devices in the included studies were available in
7 forms, but the most common form was smart bands (50/69,
72%), followed by smartwatches (16/69, 23%; Table 2). The
wearable devices in the included studies were worn on 11
different parts of the body, but wrist-worn devices were the
most common (57/69, 83%) in the included studies. The
compatibility of the wearable devices with the operating systems
of other devices was identified in 61 studies. The wearable
devices were compatible with only 1 operating system in 41%
(25/61) of the studies and >1 operating system in 59% (36/61)
of the studies. The most common operating systems compatible
with the wearable devices in the included studies was Windows
(Microsoft Corp; 52/61, 85.2%), followed by iOS (Apple Inc;
36/61, 59%) and Android (35/61, 57%).

Only 21 studies (30%) used a gateway between the wearable
device and the main host device (Table 2). In 62% (13/21) of
studies, the gateways were PCs, smartphones, and tablets. The

included studies used 4 types of host devices (ie, end gate
devices that store data collected by wearable devices). More
than one host device was used in 20% (14/69) of studies. The
most common host device in the included studies was computer
(46/69, 67%), followed by database server (30/69, 43%). Data
were transferred from the wearable device to the host device
through 6 different modes. In approximately 46% (32/69) of
the studies, >1 mode of data transfer was used. The most
common mode was Bluetooth (41/69, 59%), followed by
docking stations (27/69, 39%) and the internet (24/69, 35%).

Wearable devices measured >1 biosignal in 88% (61/69) of the
studies (Table 3). The most commonly measured biosignals
were physical activity measures (eg, step counts, calories,
distance, and metabolic rate; 62/69, 90%), followed by sleep
measures (eg, duration and patterns; 53/69, 77%) and heart rate
measures (eg, heart rate, heart rate variability, and interbeat
interval; 32/69, 46%). The wearable devices in the included
studies contained 18 different sensors, and those in
approximately 64% (44/69) of the included studies contained
>1 sensor. The most common sensor in the wearable devices
were accelerometers (63/69, 91%), followed
photoplethysmography sensors (31/69, 45%). Although the
wearable devices in 67% (46/69) of the studies used an
opportunistic approach to collect data (ie, an automatic approach
without the user’s input), those in the rest of the studies (23/69,
33%) used both opportunistic and participatory approaches (ie,
manual input by the user). The wearable devices in 55% (38/69)
of the studies used a passive sensing method to collect data (ie,
the sensor captures only signals that come from an object
without the transmission of signals to it), whereas those in the
remaining (31/69, 45%) studies used both a passive sensing
approach and an active sensing approach (ie, the sensor emits
signals or light to an object and then captures the reflected
signals or light via a detector to measure the biosignal).
Multimedia Appendix 6 [19-87] shows the features of the
sensors of the wearable devices in each included study.
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Table 2. Features of the wearable devices (WDs) the included studies focused on (N=69).

ReferencesValues, n (%)Features

Target condition

[19,20,23-28,30,32,34-38,42,43,46-53,57,59,60,62,64-71,73,77,79,82-84,86]44 (64)Depression

[21,22,31,39-41,45,58,61,72,74,75,78,80,81,85,87]17 (25)Anxiety

[29,33,44,54-56,63,76]8 (12)Anxiety and depression

Status of WDa

[19-38,40-43,46-60,62-71,73-81,83-87]63 (91)Commercial

[39,44,45,61,72,82,87]7 (10)Noncommercial

Name of WDb

[19,20,32,34-36,42,43,47,48,62,65,68-71,86]17 (25)Actiwatch AW4 (Cambridge Neurotechnology)

[25,26,30,31,33,38,50,52,59,63,73,80,84]13 (19)Fitbit series (Fitbit Inc)

[27,37,58,66,75,78,85]7 (10)Empatica series (Empatica Inc)

[54-56,76]4 (6)3-Space Sensor (Yost Labs)

[21,22,58]3 (4)Muse

[23,24,28,29,39-41,44-46,49,51,53,57,58,60,61,64,67,72,74,77,79-83,85,87]29 (42)Others

[39,44,45,61,72]5 (7)Not reported

Company of WDb

[19,20,32,34-36,42,43,47,48,62,65,68-71,86]17 (25)Cambridge Neurotechnology

[25,26,30,31,33,38,50,52,59,63,73,80,84]11 (16)Fitbit Inc

[27,37,58,66,75,78,85]7 (10)Empatica Inc

[54-56,76]4 (6)YEI Technology

[21,22,58]3 (4)InteraXon

[41,46,57]3 (4)Philips

[23,24,28,29,39,40,44,45,49,51,53,57,58,60,61,64,67,72,74,77,79-83,85,87]27 (39)Others

[39,44,45,61,72,82]5 (7)Not applicable

Type of WDb

[21-26,28-31,33-40,42,44,45,47,50-59,61,63,66,69-76,78,79,81,84,85]50 (72)Smart band

[19,20,32,41,43,46,48,49,60,62,65,67,68,77,83,86]16 (23)Smartwatch

[64,80,82,85,87]5 (7)Others (smart shirt, smart adhesive electrodes,
smart headset, smart glasses, smart ring, and
smart shirt)

Placementb

[19,20,23-39,41-52,57-63,65-71,73-75,77-81,83-86]57 (83)Wrist

[21,22,53,54,58,76,87]7 (10)Head

[28,54-56,72,76]6 (9)Waist

[58,80,82,85]4 (6)Chest

[27,39,40,64,87]1 (each) (1)Others (ankle, arm, eyes, finger, hand, neck, and
thigh)

Compatibility with OSc,d

[19-22,25-27,30-38,40-43,46-50,52,53,57-59,61-63,65-75,78,80,81,83-87]52 (75)Windows (Corp)

[21-31,33,37,38,50-53,58-60,63,64,66,73-75,77-81,83-85,87]36 (52)iOS (Apple Inc)

[21-23,25-28,30,31,33,37,38,40,50-53,58-60,63,64,66,73-75,77-81,83-85,87]35 (51)Android

[21,22,25-27,30,31,33,37,38,50,52,53,58,59,63,66,67,73-75,78,80,81,84,85,87]27 (39)Mac OS (Apple Inc)
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ReferencesValues, n (%)Features

[21,22,58]3 (4)Linux

[39,44,45,54-56,76,82]8 (12)Not reported

Gatewaye

[23,25,26,29-31,33,38,40,50,52,59-61,63,64,73,79,80,83,84]21 (30)Smartphone

[25,26,30,31,33,38,50,52,59,63,73,80,84]13 (19)PC

[25,26,30,31,33,38,50,52,59,63,73,80,84]13 (19)Tablet

[79]1 (1)Silmee L20 gateway

[19-22,24,27,28,32,34-37,39,41-49,51,53-58,62,65-72,74-78,81,82,85-87]48 (70)Not reported

Hostf

[19-22,27,28,32,34-37,39-49,53-58,62,65-72,74-78,81,85-87]46 (67)PC

[23,25-27,29-31,33,37,38,50,52,58-61,63,64,66,73-75,78-85]30 (43)Server

[21,22,24,27,37,51,53,58,66,74,75,77,78,81,85,87]16 (23)Smartphone

[21,22,53,58,74,77,81,87]8 (12)Tablet

Mode of data transferg

[21-27,29-31,33,37,38,40,50-56,58-61,63,64,66,73-81,83-85,87]41 (59)Bluetooth

[19,20,27,32,34-37,41-43,47-49,57,62,65-71,75,78,85,86]27 (39)Docking station

[23,25,26,29-31,33,38,40,50,52,54-56,59,61,63,64,73,76,79,80,83,84]24 (35)Internet

[39,44,45,54-56,76,82]8 (12)Removable media

[28,46,54-56,58,72,76]8 (12)Wired

[81]1 (1)ANT+ (ANT Wireless)

aThe number of studies does not add up, as 1 (1%) study has both commercial and noncommercial wearable devices.
bThe number of studies does not add up, as several studies have used >1 wearable device.
cThe number of studies does not add up, as several studies have used >1 wearable device, and many wearable devices are compatible with >1 operating
system.
dOS: operating system.
eThe number of studies does not add up, as several studies used >1 wearable device, and many wearable devices used >1 gateway.
fThe number of studies does not add up, as several studies used >1 wearable device, and many wearable devices used >1 host.
gThe number of studies does not add up, as several studies used >1 wearable device, and many wearable devices used >1 mode of data transfer.
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Table 3. Features of the sensors of the wearable devices in the included studies (N=69).

ReferencesStudies, n (%)Feature

Measured biosignalsa

[19,20,23-28,30-39,41-52,54-60,62-86]62 (90)Physical activity measures 

[19,20,23-27,30-38,41-43,46-52,57-60,62-71,73-75,77-86]53 (77)Sleep measures 

[23,26,27,29-31,33,37,38,40,50,51,58-61,63,64,66,72-75,77-83,85,87]32 (46)Heart rate measures 

[27,37,39,44,58,64,66,75,78,79,83,85]12 (17)Skin temperature 

[27,37,40,58,61,66,72,75,78,83,85]11 (16)Electrodermal activity 

[28,41,46,49,57,77,83]7 (10)Light exposure 

[21,22,53,58,87]5 (7)Electroencephalograph 

[40,64,72,80,82]5 (7)Respiration measures 

[39,44,54,83]4 (6)Audio 

[40,80,85]3 (4)Electrocardiograph sensor 

[64,79,83]3 (4)UV level 

[39,44]2 (3)Skin humidity 

[60,83]2 (3)Air pressure 

[40,81]1 (each) (1)Others (blood oxygen saturation and location) 

Sensors in the wearablesb

[19,20,23-39,41-52,54-60,62-86]63 (91)Accelerometer 

[23,26,27,29-31,33,37,38,40,50,51,58-61,63,64,66,72-75,77-81,83,85,87]31 (45)PPGc sensors 

[27,37,39,44,58,64,66,75,78,79,83,85]12 (17)Thermometer 

[39,44,45,54-56,60,64,72,76,77,83]12 (17)Gyroscope 

[27,37,40,58,61,66,72,75,78,83,85]11 (16)Electroencephalograph sensor 

[26,31,33,38,50,63,73,74,80,81]10 (14)Altimeter 

[28,41,46,49,57,77,83]7 (10)Light sensors 

[40,58,80,82,85]5 (7)Electrocardiograph sensor 

[54-56,76,77]5 (7)Compass 

[39,44,54,83]4 (6)Microphone 

[64,79,83]3 (4)UV sensor 

[60,83]2 (3)Barometer 

[40,81,83]1 (each) (1)Others (GPS, oximeter, and piezoelectric sensor) 

Sensing approachd

[19-87]69 (100)Opportunistic 

[19,20,27,32,34-37,42,43,46-48,57,58,62,65,66,68-71,86]23 (33)Participatory 

Sensing typee

[19-22,25,26,28,33,35-37,40,42-50,53-58,63,65,67-71,76,82,84,86]38 (55)Passive 

[23,24,26,27,29-32,34,38,39,41,51,52,59-62,64,66,72-75,77-81,83,85,87]31 (45)Passive and Active 

aThe number of studies does not add up, as several studies used >1 wearable device, and most wearable devices assess >1 biosignal.
bThe number of studies does not add up, as several studies used >1 wearable device, and most wearable devices have >1 sensor.
cPPG: photoplethysmography.
dThe number of studies does not add up, as several studies used >1 wearable device, and many wearable devices used >1 sensing approach.
eThe number of studies does not add up, as several studies used >1 wearable device, and many wearable devices used >1 sensing type.
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Features of AI Algorithms
The included studies used AI for three clinical purposes: (1)
diagnosing or screening for anxiety and depression (41/69,
59%), (2) monitoring symptoms or levels of anxiety and
depression (15/69, 22%), and (3) predicting the occurrence or
level of anxiety and depression in the future based on previous
and current biosignals (13/69, 19%; Table 4). The included
studies used only machine learning algorithms (46/69, 67%),
only deep learning algorithms (7/69, 10%), or both machine
learning and deep learning algorithms (16/69, 23%). The studies
used these algorithms to solve classification problems (63/69,
91%), regression problems (11/69, 16%), and clustering
problems (3/69, 4%). More than 50 different algorithms were
used in the included studies; however, the most commonly used
algorithm was random forest (36/69, 52%), followed by support
vector machine (26/69, 38%), logistic regression (16/69, 23%),
decision tree (16/69, 23%), extreme gradient boosting (11/69,
16%), and k-nearest neighbors (11/69, 16%). Multimedia
Appendix 7 [19-87] shows the features of the AI algorithms
used in each included study.

The included studies identified the ground truth based on 27
different tools, but the most common tool was
Montgomery-Asberg Depression Rating Scale (MADRS; 17/69,
25%), followed by Patient Health Questionnaire-9 (12/69, 17%)
and State-Trait Anxiety Inventory (8/69, 12%). The included
studies used 7 different validation methods for the models.
Approximately, 22% (15/69) of the included studies used >1
validation method (Table 4). The most commonly used
validation method was k-fold cross-validation (33/69, 48%),
followed hold-out cross-validation (25/69, 36%) and
leave-one-out cross-validation (20/69, 29%). The included
studies evaluated the performance of the models using 33
metrics. The most common metric used in the included studies
was accuracy (50/69, 72%), followed by sensitivity (41/69,
59%), F1-score (30/69, 43%), specificity (28/69, 41%), precision
(24/69, 35%), and area under the curve (22/69, 32%).

Approximately, 20% (14/69) of the included studies reported
the data set size used for developing (ie, training and testing)
the models (Table 5). The data set size ranged between 168 and
1,570,144 inputs, with an average of 168,023 (SD 428,843)
inputs. The included studies used data sets from either closed
sources (ie, collected by the authors of the study or obtained
from previous studies; 50/69, 72%) or open sources (ie, public
databases; 19/69, 28%). Depression was the most common data
set obtained from open sources and used in the included studies
(16/19, 84%). In 59% (41/69) of the studies, AI algorithms were
developed using only data collected by wearable devices. Of
the included studies, approximately 17% (12/69) developed AI
algorithms using data collected by a combination of wearable
devices and self-administered questionnaires (ie, self-reported
data), approximately 13% (9/69) developed AI algorithms using
data collected by a combination of wearable devices and
nonwearable devices (eg, smartphones), and approximately 10%
(7/69) developed AI algorithms using data collected by a
combination of wearable devices, nonwearable devices, and
self-administered questionnaires. The included studies used >50
categories of data to develop their models. Although 43%
(30/69) of the studies used only 1 category of data to develop
their models, the rest (39/69, 57%) of the studies used >1
category of data. The most common category of data used to
develop the models was physical activity data (eg, step counts,
calories, and metabolic rate; 53/69, 77%), followed by sleep
data (eg, duration and patterns; 27/69, 39%), heart rate data (eg,
heart rate, heart rate variability, and interbeat interval; 26/69,
38%), mental health measures (eg, depression level, anxiety
level, stress level, and mood status; 14/69, 20%), location data
(eg, latitude, longitude, percentage of time spent at home, and
stationary time; 10/69, 14%), smartphone use data (eg, display
on or off, charging activity, and the number of apps used; 10/69,
14%), and social interactions (eg, call and message logs; 10/69,
14%). The number of features used in the model development
ranged from 2 to 5173. In approximately half (33/69, 48%) of
the studies, the number of features was ≤10. Multimedia
Appendix 8 [19-87] shows the features of the data used for AI
development in each included study.
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Table 4. Features of the artificial intelligence (AI) algorithms used in the included studies (N=69).

ReferencesStudies, n (%)Feature

AI category

[19,20,23,25,26,31,33,34,37,39,40,42,46,49-61,63-67,69-71,73,75-81,83,84,86,87]46 (67)MLa 

[24,29,32,44,47,62,82]7 (10)DLb 

[21,22,27,28,30,35,36,38,41,43,45,48,68,72,74,85]16 (23)ML and DL 

Problem-solving approachesc

[19-36,38-58,60-65,67-73,75,76,78-82,84-87]63 (91)Classification 

[37,42,50,59,66,73,74,77,79,83,85]11 (16)Regression 

[31,74,85]3 (4)Clustering 

AI algorithmd

[19-23,26,27,30,33-38,41,43,45,46,49,51,53,59-61,64-66,68-71,77-79,81,86]36 (52)Random forest 

[19,20,23,27,30,31,35,38,40,41,49,53,55,56,58,60,61,64,67,72,75,77-80,87]26 (38)Support vector machine 

[19,21-23,25,28,30,38,46,49,51,55-57,61,64]16 (23)Logistic regression 

[20,23,27,35,38,40,46,49,54-56,72,76,78,81]16 (23)Decision tree 

[20,27,28,41,42,59,64,73,74,79,81]11 (16)Extreme gradient boosting 

[23,27,35,38,40,41,55,56,64,78,87]11 (16)k-nearest neighbors 

[25,30,35,37,59,68,77,81,84]9 (13)AdaBoost 

[21,22,24,27,28,72,74,82]8 (12)Multilayer perceptron 

[32,43-45,47,48,62]7 (10)Convolutional neural network 

[25,27,45,59,77]5 (7)Gradient boosting 

[23,35,38,40,53]5 (7)Naive Bayes 

[19,28-31,35-37,40,41,43-45,47,48,50-53,59,63,66,68,74,77,81,83,85]28 (41)Others 

Aim of AI algorithm

[19,21,22,28,32,35,36,38-40,43,46-49,51,53-57,61-63,65,67-71,73-76,78-80,82,83,85,87]41 (59)Diagnosis or screening 

[20,23,27,34,37,42,44,45,50,58,60,64,66,72,86]15 (22)Monitoring 

[24-26,29-31,33,41,52,59,77,81,84]13 (19)Prediction 

Ground truth assessmente

[19,20,32,34-36,42,43,47,48,62,65,68-71,86]17 (25)MADRSf 

[23,24,27,28,30,38,52,53,59,60,73,77,83]13 (19)PHQg-4, -8, and -9 

[21,22,29,31,39,44,61,74]8 (12)STAIh 

[26,50,55,56,60,82]6 (9)DSMi-IV and -5 

[25,44,60,84]4 (6)BDI-IIj 

[27,29,33,37,40,41,45,46,49-51,54,57,58,63,64,66,69,75,76,78,79,81,82,85,87]26 (38)Others 

[67,72,80]3 (4)Not reported 

Validation approachk

[21-24,27,30,32,34,35,37,38,40,41,45,47,51,52,60,62,63,66,68,69,73-75,78-83,87]33 (48)k-fold cross-validation 

[26,28,29,31,32,34,37,44-46,48,49,51,60-62,66,67,70,71,74,81,82,84,86]25 (36)Hold-out cross-validation 

[20,25,32,33,36,37,42,43,45,50,53-56,58,59,75,76,84,85]20 (29)Leave-one-out cross-validation 

[19,64,77]3 (4)Nested cross-validation 

[57]1 (1)External validation 

[64]1 (1)Time-series cross-validation 
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ReferencesStudies, n (%)Feature

[87]1 (1)Repeated random subsampling 

[39,65,72]3 (4)Not reported 

Performance measuresl

[20-29,31-33,35,36,38-40,42,43,46-49,51,53-56,60-64,67-71,73,75,76,78,79,81,82,84,86-88]50 (72)Accuracy 

[19,21-23,26-28,32-36,38,41-43,46,47,51-54,56-58,60,62,64,65,67-73,79-81,84,86]41 (59)Sensitivity 

[19-22,25,27,28,32,33,35,36,38,44,46,47,50-52,60-64,67-69,72,80,81,84]30 (43)F1-score 

[19,21,26,32,34-36,41-43,46,47,51-54,56,58,62,65,67,70,71,73,79-81,86]28 (41)Specificity 

[19,22,28,32,33,35,36,38,46,47,51,53,58,60,62,64,67,68,70-73,84,86]24 (35)Precision 

[19,26,28,30,34,40,41,46,51,54-57,62,64,65,67,69,70,73,81,86]22 (32)Area under the curve 

[21,22,48,59,66,73,77,79,83]9 (13)Mean absolute error 

[35,36,43,47,62,68,69]9 (13)Matthews correlation coefficient 

[21,22,40,42,52,68,73]7 (10)Cohen κ 

[21,22,37,59,66,73]6 (9)Root mean square error 

[19,41,52,67,80,86]6 (9)Balanced accuracy 

[19,27,55,65,81,86]6 (9)Receiver operating characteristic 

[42,66,74,79,83]5 (7)Correlation coefficient (r) 

[22,40,50,52,53,57,59,71,73,74,77,85,86]13 (19)Others 

aML: machine learning.
bDL: deep learning.
cThe number of studies does not add up, as many studies have used >1 problem-solving approach.
dThe number of studies does not add up, as many studies have used >1 AI algorithm.
eThe number of studies does not add up, as many studies have used >1 tool to assess the ground truth.
fMADRS: Montgomery-Asberg Depression Rating Scale.
gPHQ: Patient Health Questionnaire.
hSTAI: State-Trait Anxiety Inventory.
iDSM: Diagnostic and Statistical Manual of Mental Disorders.
jBDI-II: Beck Depression Inventory-Second Edition.
kThe number of studies does not add up, as many studies have used >1 validation approach.
lThe number of studies does not add up, as most studies used >1 performance measure.
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Table 5. Features of the data used for artificial intelligence (AI) development in the included studies (N=69).

ReferencesValuesFeature

[22,23,28,37,41,44,45,51,58,60-62,70,73]168,022.5
(428,843.2; 168-
1,570,144)

Data set size, mean (SD; range)

Data set source, n (%)

[19,20,28,31,32,34,36,42,43,47,48,62,65,68-71,74,86]19 (28)Open

[21-27,29,30,33,35,37-41,44-46,49-61,63,64,66,67,72,73,75-85,87]50 (72)Closed

Data types, n (%)

[20-22,27,29,31-36,38,39,41-48,53-56,58,61,62,65,67,69-71,73,75,76,78-80,82,87]41 (59)WDa based

[19,26,28,30,49,51,52,57,68,81,85,86]12 (17)WD based and self-reported

[23,25,40,50,59,66,72,74,84]9 (13)WD based and non-WD based

[24,37,60,63,64,77,83]7 (10)WD based, non-WD based, and self-reported

Data input to AI algorithmb, n (%)

[19,20,23-27,30-32,34-38,41-51,54-57,59,60,62-74,76,77,79,81,83-86]53 (77)Physical activity data

[23-26,30,33,37,38,41,46,49-52,57,59,60,63,64,66,73,74,77,79,81,83,84]27 (39)Sleep data

[23,26,27,29-31,40,50,51,58-61,63,64,66,72,75,77-81,83,85,87]26 (38)Heart rate data

[24,26,30,37,46,49,50,52,57,60,64,77,81,85]14 (20)Mental health measures

[23-25,37,59,60,66,72,83,84]10 (14)Social interaction data

[23,25,37,50,59,64,66,74,83,84]10 (14)Location data

[23,25,37,59,60,64,66,74,83,84]10 (14)Smartphone use data

[27,37,40,58,61,66,72,75,78,85]10 (14)Electrodermal activity data

[27,75,78,79,85]5 (7)Skin temperature data

[30,52,57,68,85]5 (7)Demographic data

[21,22,53,87]4 (6)Electroencephalograph data

[26,46,60,79]4 (6)Light exposure

[39,44,54,85]4 (6)Audio data

[24,28,30,37,49,52,57,60,63,66,72-74,77,81,82,85]17 (25)Others

Number of featuresc, n (%)

[19,21-25,27,34-40,43,46,47,50,54-58,67,69-72,75,78,82,83,87]33 (48)1-10

[23,26,28,30,33,45,48,51-53,57,61,68,72,76,86]16 (23)11-20

[44,52,60,63,73,85]6 (9)21-30

[23,34,38,50,66,73]6 (9)31-40

[23,41,64,73,77,80]6 (9)41-50

[23,27,59,73,74,79,81,84]8 (12)>50

[20,29,31,32,42,49,62,65]8 (12)Not reported

aWD: wearable device.
bThe number of studies does not add up, as many studies used >1 data input.
cThe number of studies does not add up, as several studies used various numbers of features.

Discussion

Principal Findings
This scoping review aimed at exploring the features of AI and
wearable devices used for anxiety and depression. In this review,
approximately two-thirds of the studies used wearable AI for

depression, whereas the remaining studies used it for anxiety.
This may be attributed to the ability of wearables to collect
biosignals related to the symptoms of depression and anxiety.
More specifically, it is well known that depression is associated
with a decrease in activity and changes in sleep behaviors
[13,89,90], which can be objectively measured using wearable
devices. Furthermore, the analysis of depression symptoms does
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not rely on highly accurate data; that is, general trends are
sufficient to provide indications. By contrast, anxiety is usually
associated with heart rate variability [91]. Although wearable
devices can have an acceptable heart rate accuracy [92], the
quality of one device is different from that of another [93].
Moreover, monitoring the heart rate without contextual
information might be misleading because multiple factors impact
the heart rate; thus, detecting anxiety based on only objective
biosignals is questionable. Combining the data from wearable
devices with additional data sources is crucial. So far, only a
few studies included in this review were based on a combination
of data from different sources (ie, wearable devices, nonwearable
devices, and self-administered questionnaires).

In this review, the most frequent application of wearable AI
was in the diagnosis of or screening for anxiety and depression.
A similar result was reported in 2 previous reviews, which
showed that most studies focused on using wearables for
diagnostic purposes [10,13]. Although wearable AI can be used
for interventional and treatment purposes (eg, personalized
mindfulness, meditation, and biofeedback therapy [14]), none
of the systems in the included studies were used for such
purposes. This may be attributed to the lack of evidence on the
effectiveness of wearable AI in improving anxiety and
depression.

Smart bands worn on the wrist were the most common type of
wearable device used in the studies. This has been indicated in
previous reviews as well [10,13,14]. This can be attributed to
the fact that wrist-worn wearable devices are less distractive
and less obtrusive, easy to use, and more stylish and familiar
to most people. According to Hunkin et al [94], such features
are crucial for users’ acceptance and use of wearable devices.

The most commonly used category of data for model
development was physical activity data, followed by sleep data
and heart rate data. This is expected given that depression and
anxiety are associated with physical activity [13,89,90], sleep
patterns [13,95,96], and heart rate [91]. In addition, as this
review demonstrated, these are the most common biosignals
measured by commercial wearable devices.

Surprisingly, more than half of the studies considered only data
from wearables in their AI algorithms. However, wearables
cannot detect all the symptoms relevant to anxiety and
depression for 2 reasons. First, wearable devices cannot detect
several physiological data, such as weight loss or gain and
changes in appetite [13]. Second, wearable devices cannot
evaluate subjective symptoms such as social interaction, medical
history, and lifestyle changes [13]. It might be questioned
whether research has started to overrely on the diagnostic and
predictive power of data from only wearable devices.

Approximately, one-fourth of the studies relied on a data set
called Depresjon [35] to develop their models. Depresjon is a
freely available data set that contains data related to motor
activity measured using an actigraph watch worn on the wrist
(Actiwatch AW4) [35]. The data set also contains data related
to depression levels assessed using MADRS [35]. This explains
why the most common wearable device used in the included
studies was Actiwatch AW4 and why MADRS was the most
frequently used tool to assess the ground truth.

Regarding the target population, we must recognize that most
studies addressed individuals aged between 18 and 65 years.
Global statistics show that the that the incidence of depression
and anxiety is slightly higher in age groups between 15-64 years
than adult aged ≥65 years [1]. This might explain why the
studies mainly targeted the age group of 18 to 65 years. Another
explanation might be that wearables are more popular among
adults in that age group.

This review showed that k-fold cross-validation was the most
frequently used validation method. This can be attributed to
several factors. First, in comparison with hold-out
cross-validation, k-fold cross-validation is prone to less
variation, as each observation is used for both training and
testing. Second, the training set in k-fold cross-validation is
larger than that in hold-out cross-validation; therefore, k-fold
cross-validation has reduced bias and reduced overestimation
of test error. Finally, k-fold cross-validation is computationally
less expensive than leave-one-out cross-validation, as the
algorithm needs to rerun only k times (usually ≤10).

Research and Practical Implications
The performance of wearable AI in diagnosing, monitoring,
and predicting anxiety and depression was not assessed in this
review. Systematic reviews and meta-analyses are needed to
examine the performance of wearable AI devices. Future studies
should also compare the performance of different wearable
devices (eg, Fitbit vs Empatica), worn at different locations (eg,
wrist, chest, and waist), and using different data types (eg,
wearable-based data vs wearable-based data and self-reported
data). Conducting systematic reviews of such studies can help
researchers, developers, and wearable device companies identify
the most significant features and powerful AI algorithms for
diagnosing, monitoring, and predicting anxiety and depression.

AI research highly depends on the available data sets. However,
when only 1 data set is exploited by researchers, no conclusions
regarding the generalizability of study results can be drawn.
Therefore, we recommend that researchers (1) publish their data
sets in open databases after ensuring participants’ privacy and
confidentiality and (2) exploit different data sets available in
open databases.

This review found a lack of AI-based wearable devices used
for treatment purposes, although wearable AI can be used to
provide many interventions for anxiety and depression, such as
personalized mindfulness, meditation, and biofeedback therapy.
Technology companies should invest more in wearable AI
devices for the treatment of anxiety and depression. Researchers
should also assess the effectiveness of such technologies in
improving anxiety and depression.

The ground truth of mental states (anxiety or depression) in the
included studies was identified using 27 different tools.
Although most of these tools have been validated extensively,
they do not usually include physiological biomarkers (eg,
physical activity, heart rate, electrodermal activity, respiratory
rate, and electroencephalogram). This brings into question the
validity and reliability of drawing conclusions about mental
states (anxiety or depression) based on physiological biomarkers
when the ground truth of mental states is assessed using
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subjective questionnaires. Accordingly, the performance of
AI-based wearable devices will be underestimated.

Although the current studies have shown that wearable AI can
be used for monitoring symptoms or levels of anxiety and
depression, continuous tracking of physiological biomarkers
could trigger emotional instability and ruminative thinking [97].
Although wearable AI can approximate mental states (eg, feeling
nervous, anxious, or on edge) through heart rate and other
variables, it could provide many false positives, thereby
exacerbating or increasing the anxiety or depression of an
individual. The abovementioned downsides of wearable AI
should be considered and mitigated before developing AI-based
wearables in the future. More research is needed on the use of
wearable devices and individuals’ emotional and behavioral
responses to the automated feedback from wearable devices.

Wearable AI can help individuals conduct prescreening
assessments of mental health and well-being without an initial
hospital or clinical encounter. The individual could be notified
through the wearable device, smartphone, or desktop application
about their mental health status, which would encourage them
to visit a mental health and well-being professional. Such
prescreening feedback from wearables may help reduce mental
health stigma and allow a higher number of individuals to seek
help from a mental health professional.

The quality of the data, whether obtained from open sources or
generated by wearable devices, should be emphasized. To do
so, there is a need for more practical standards for wearable
device development that ensure accurate measurement of
different signals generated by wearable devices to improve
algorithmic performance.

Limitations
This review excluded many studies that focused on nonwearable
devices, handheld devices (eg, mobile phones), near-body

wearable devices, in-body wearable devices (eg, implants),
wearable devices connected to nonwearable devices using wires,
and wearable devices that can be placed on users only by
experts. Therefore, our findings may not be generalizable to
contexts in which such excluded devices are applied. Owing to
practical constraints, we included only studies published in the
English language. We also restricted our search to studies
published from 2015 onward, given that this is a fast-growing
field and, thereby, studies published before 2015 can be deemed
outdated. Consequently, it is likely that we missed some studies
published in other languages or before 2015. Another limitation
of this review is that we cannot comment on the performance
of wearable AI in diagnosing, monitoring, and predicting anxiety
and depression and the importance of features and variables, as
this is beyond the scope of this review and requires systematic
reviews, wherein the quality of the evidence and risk of bias
are assessed.

Conclusions
Wearable AI can offer great promise in providing mental health
services related to anxiety and depression. Wearable AI can be
used by individuals for the prescreening assessment of anxiety
and depression. Further reviews are needed to statistically
synthesize the results of studies on the performance and
effectiveness of wearable AI. More studies are needed on the
use of wearable devices and individuals’ emotional and
behavioral responses to the automated feedback from wearable
devices. Given its potential, technology companies should invest
more in wearable AI for the treatment of anxiety and depression.
The downsides of wearable AI devices (eg, false positive alerts
and triggering emotional instability and ruminative thinking)
should be considered and mitigated before developing them in
the future.
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