
Original Paper

An Explainable Artificial Intelligence Software Tool for Weight
Management Experts (PRIMO): Mixed Methods Study

Glenn J Fernandes1,2, MS; Arthur Choi3, PhD; Jacob Michael Schauer2, PhD; Angela F Pfammatter2, PhD; Bonnie J

Spring2, PhD; Adnan Darwiche4, PhD; Nabil I Alshurafa1,2, PhD
1Department of Computer Science, Northwestern University, Evanston, IL, United States
2Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
3Department of Computer Science, Kennesaw State University, Kennesaw, GA, United States
4Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, United States

Corresponding Author:
Glenn J Fernandes, MS
Department of Computer Science
Northwestern University
633 Clark St
Evanston, IL, 60208
United States
Phone: 1 847 491 3500
Email: glennfer@u.northwestern.edu

Abstract

Background: Predicting the likelihood of success of weight loss interventions using machine learning (ML) models may enhance
intervention effectiveness by enabling timely and dynamic modification of intervention components for nonresponders to treatment.
However, a lack of understanding and trust in these ML models impacts adoption among weight management experts. Recent
advances in the field of explainable artificial intelligence enable the interpretation of ML models, yet it is unknown whether they
enhance model understanding, trust, and adoption among weight management experts.

Objective: This study aimed to build and evaluate an ML model that can predict 6-month weight loss success (ie, ≥7% weight
loss) from 5 engagement and diet-related features collected over the initial 2 weeks of an intervention, to assess whether providing
ML-based explanations increases weight management experts’ agreement with ML model predictions, and to inform factors that
influence the understanding and trust of ML models to advance explainability in early prediction of weight loss among weight
management experts.

Methods: We trained an ML model using the random forest (RF) algorithm and data from a 6-month weight loss intervention
(N=419). We leveraged findings from existing explainability metrics to develop Prime Implicant Maintenance of Outcome
(PRIMO), an interactive tool to understand predictions made by the RF model. We asked 14 weight management experts to
predict hypothetical participants’ weight loss success before and after using PRIMO. We compared PRIMO with 2 other
explainability methods, one based on feature ranking and the other based on conditional probability. We used generalized linear
mixed-effects models to evaluate participants’ agreement with ML predictions and conducted likelihood ratio tests to examine
the relationship between explainability methods and outcomes for nested models. We conducted guided interviews and thematic
analysis to study the impact of our tool on experts’ understanding and trust in the model.

Results: Our RF model had 81% accuracy in the early prediction of weight loss success. Weight management experts were

significantly more likely to agree with the model when using PRIMO (χ2=7.9; P=.02) compared with the other 2 methods with
odds ratios of 2.52 (95% CI 0.91-7.69) and 3.95 (95% CI 1.50-11.76). From our study, we inferred that our software not only
influenced experts’understanding and trust but also impacted decision-making. Several themes were identified through interviews:
preference for multiple explanation types, need to visualize uncertainty in explanations provided by PRIMO, and need for model
performance metrics on similar participant test instances.

Conclusions: Our results show the potential for weight management experts to agree with the ML-based early prediction of
success in weight loss treatment programs, enabling timely and dynamic modification of intervention components to enhance
intervention effectiveness. Our findings provide methods for advancing the understandability and trust of ML models among
weight management experts.
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Introduction

Background
Obesity-attributable medical costs remain high for health care
systems and patients and are on the rise [1,2]. Although there
has been an increase in the number of mobile intervention based
weight loss treatment programs [3-5], effective and economical
interventions have not been adequately identified or
disseminated. To save costs and improve health outcomes,
interventions that can predict nonresponse early during a
treatment program enable dynamic modification of intervention
components (ie, stepped-care models [6]) to steer the course of
treatment toward achieving a response or the desired health
outcome, analogous to clinical decision-making over time.
Clinical decision-making involves making a decision that
maximizes what the patient values, and so, treatment decisions
could be informed by better predictions of what treatments work
for whom and when. Machine learning (ML) models help make
early predictions; however, building models to predict human
behavior early on (eg, if a patient will lose weight in the near
future) poses several challenges [7-10].

A growing body of literature provides evidence for using ML
models to understand health behavior [11-14]; however, 3
critical challenges are associated with using ML models to
predict health behavior. The first is that ML models used to
represent complex health behavior data are often black boxes
that are overly complex; for example, a random forest (RF)
algorithm—a classifier known for increasing predictive accuracy
even without hyperparameter tuning, comprising many decision
trees where each tree uses a different number of features or
variables to determine a classification—is difficult to understand
intuitively and, by extension, difficult to use in practice.
Although RF outperforms several other ML methods in
prediction accuracy, it is notoriously hard to interpret [15].
There is an apparent trade-off between the performance of
classifiers (accuracy) and their ability to explain the reasoning
behind their results (explainability). Despite this, researchers
have been quick to use the predictability waves of RF
algorithms. Several publications have used RF algorithms for
critical tasks such as risk prediction [16,17], estimating energy
prediction [18], and early detection of depression [19]; however,
their clinical utility has yet to be realized, which may be because
of the lack in using explainability.

Explainability methods developed by computer scientists might
help users gain insight into the inner workings of a model.
However, it is unknown whether weight management experts
will agree with predictions provided by ML models even when
visualization and interactive design components included in
these techniques attempt to convey to domain experts the
reasoning behind the decisions made by the model [20,21].
Research has highlighted an overreliance problem among
clinicians in primary care settings, where the misuse of a system

can occur when placing too much trust in automated systems,
resulting in user agreement with incorrect system suggestions
[22]. However, Jacobs et al [23] recently reported that
psychiatrists with higher familiarity with ML were less likely
to use an ML recommendation of which antidepressant drug to
use compared with clinicians with lower ML familiarity.
However, overreliance can be mitigated by using explainability
metrics. This leads to the second challenge: health behavior is
often more difficult to predict, so it is unknown whether there
would be a lack of adoption of ML or overreliance.
Consequently, it remains unknown whether weight management
experts are less likely to use ML recommendations even when
attempting to increase credibility with explainability metrics.

Traditional ML evaluation metrics, such as accuracy and
sensitivity, provide an overall metric of the model’s performance
but fall short of providing insights into the reasoning for the
model’s prediction. Recent developments in the field of
explainable artificial intelligence (AI) have resulted in new
explainability metrics or explanations that provide a further
understanding of the reasoning behind the decisions made by
an ML model. One example of an explainability metric, or
explanation, is feature ranking to understand the degree to which
features influence a model. Model-agnostic explanations, such
as Shapley additive explanations (SHAP) [24], local
interpretable model-agnostic explanations (LIME) [25], and
Anchors [26], are currently the standard approaches to
explainability. LIME and Anchors rely on local explanations
that aim to explain the model’s reasoning for a given instance
(eg, to answer the question, Why was this instance classified
as X?); however, these algorithms are based on approximations
by defining the contribution of a feature to the difference
between the actual and mean prediction (ie, inaccurate
explanations). Although local explanations are specific to
understanding a specific instance, when combined with
explanations of multiple instances, they could provide an
understanding of the model’s overall behavior, similar to a
global explanation. Global explanations describe the overall
working of the ML model [27], such as feature importance. For
example, a local explanation would be generating explanations
for a prediction made by an ML model trained to predict whether
a patient would lose weight. However, a global explanation
would be looking at feature importance to understand which
features contributed more toward the model’s capability to
discern one class from the other.

SHAP by Lundberg and Lee [24] can create global explanations
by aggregating Shapley values (an approach with a solid
foundation in game theory) to create feature importance,
summary, and dependence plots. Shapley values are feature
attributions that act as driving forces, either contributing to the
prediction or not contributing to the prediction. This implies
that, unlike LIME, SHAP does not train an interpretable model
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that can make predictions. The literature has since defined a set
of principles for designing explanations.

The use of prime implicants as explanations for weight
management experts is supported by current literature describing
the design principles for human explanations [28]. These
principles state that explanations should be “contrastive,”
explaining why the model predicted an instance as one class
over another. A prime implicate explanation denotes a region
that is sufficient to arrive at a given prediction. To arrive at a
different prediction, it is necessary (but not sufficient) to go
outside that region. Thus, prime implicants also follow the
second principle of being exhaustive.

We designed Prime Implicant Maintenance of Outcome
(PRIMO; our interactive explainable software) to translate prime
implicants into understandable quantities (Multimedia Appendix
1). The explanation’s primality leads it to be parsimonious. The
authors additionally emphasize the need to provide guidelines
for the effective use of interactive explanation tools. Our
explanation tool provides users with a step-by-step intuitive
approach for generating and evaluating explanations. Our
interactive explainability tool, PRIMO, is designed based on
these design principles in addition to leveraging methods from
SHAP, LIME, and Anchors.

The need for exact, accurate explanations that health experts
can intuitively visualize and interact with led to our unique
approach of extending the methods developed by Shih et al
[29-31] by compiling an RF classifier into ordered decision
graphs, a tractable representation also called ordered binary
decision diagrams (OBDDs). We used this tractable
representation alongside visualization methods used in prior
research to build PRIMO, a tool to generate, visualize, and
interact with prime implicant based explanations. However, the
third challenge arises despite prior research among other domain
experts; it is unknown whether explainability methods advance
the trust and understanding of ML models among weight
management experts. The primary objective of this case study
was to build a weight loss prediction model to assess whether
providing ML-based predictions and explanations from this

model increases weight management experts’ agreement with
ML model predictions of success or failure and to conduct
evaluation studies with weight management experts to
understand the impact of such models on the trust and
understanding of ML models and ultimately adoption in the real
world. This work aimed to support the use of explainable ML
to support decisions related to changing the course of treatment
for someone who has already started treatment based on their
initial response.

Explainability Definition
Several explainability AI methods have been designed to
improve the interpretability of ML models. Kim et al [32] tested
an interpretability method designed for conditional recurrent
neural networks to predict weight loss at 16 weeks using features
collected across the 16-week study. However, this method does
not apply to RF models and does not focus on early weight loss
prediction. Explainability AI involves the communication of
ML model results and operations for different audiences and
purposes, and our main goal is to study its effectiveness in
communicating these explanations to the weight management
expert audience. To do this, we defined explainability as the
ability of weight management experts to trust and understand
the explanations presented when related to the problem at hand,
predicting weight loss.

Methods

Overview
Figure 1 shows our proposed framework in three steps: (1)
selecting an optimal early prediction time point, (2) generating
a tractable decision diagram representation of the RF model
using the RF classifier, and (3) building a software tool to enable
visualization and interaction with the explanations. We have
described each of these steps in the subsequent sections,
followed by details of our one-on-one interviews with domain
experts using our software tool, the statistical analysis to assess
the agreement of weight management experts with our ML
model output, and the questions used to assess the trust and
understanding of ML models.

Figure 1. (A) Trade-off between the performance of a model (accuracy) and the explainability. (B) Black box machine learning (ML) model.

Weight Loss Study
The Opt-IN study was a 6-month, theory-guided, and
technology-supported weight loss intervention to explore the

factors contributing to substantial weight loss. The details of
the study have been described previously [33,34]. This study

enrolled adults with a BMI between 25.1 kg/m2 and 39.9 kg/m2.
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Eligible participants had stable weight (no loss or gain >11.3
kg for the past 6 months), were not enrolled in any formal weight
loss program or taking weight-reducing medications, and were
interested in losing weight. The participants obtained their
personal physician’s approval to participate, and the physician
agreed to receive the study reports. All study procedures were
approved by an institutional review board, and all participants
provided written informed consent before enrollment. We used
demographic information and data collected from participants’
smartphones to determine what factors early in the intervention
predicted weight loss at 6 months. We defined clinically
meaningful weight loss as ≥7% weight reduction from baseline.
In the Diabetes Prevention Program, 7% weight loss over 6
months led to a 58% reduction in the development of diabetes
[35].

Step 1: Optimal Early Prediction Time Point and
Building an RF Model for Early Prediction
To identify the critical early time point for building a machine
learned model, we built several learned models at different time
points to select the model time point pair with the highest
predictability. We combined both evidence-based and
data-driven practices to guide the process. Evidence-based
practice guided our initial selection of features and the subset
of time points for early prediction to select from [36-42].
Data-driven approaches guided the dimensionality reduction
through feature selection and the development of a machine
learned model at each time point. We built multiple models
using the RF classifier to predict a binary weight loss outcome

at the end of 26 weeks. We observed a local optimum in the
predictability of models at the end of weeks 2 and 3; we decided
to select an earlier time point and therefore selected the end of
week 2 as the optimum time point. We used potential predictors
to build an RF classifier observing the change over time in data
collected from baseline until the end of week 2 to predict a
weight loss outcome at the 6-month time point [37,38].

On the basis of RF feature importance analysis and prior
literature supporting the potential for initial weight loss [36-38],
fat intake [39,40], and patterns of engagement with mobile
health tools to predict health behavior trends [41,42], we
identified a minimal number of highly predictive features
combining self-reported dietary variables (initial weight loss,
fat intake, and saturated fat intake) and engagement variables
(entry of food items and entry of custom food items) to build
the RF model. This enabled the reduction of the number of
features from 10 features (Multimedia Appendix 2) to 5 features,
resulting in reduced complexity and further aiding the
understanding of generated explanations. After rejecting
participants with missing data points, we trained the RF
classifier (N=419) using these 5 features in the scikit-learn
Python library and optimized the classifier to have 13 trees, a
maximum depth of 3 for each tree, and an accuracy of 81%.

Step 2: Generating a Tractable Representation to
Facilitate the Computation of Prime Implicant
Explanations
The RF model underwent 3 steps (Figure 2).

Figure 2. Generating tractable representation of machine learning model to compute prime implicant explanations.

Reduction to Propositional Logic
An RF classifier generally takes continuous variables as input,
but each continuous feature becomes a proposition when it

appears in any given decision tree. Hence, we can view any RF
classifier’s input or output behavior as a propositional function.
An RF classifier consists of an ensemble of decision trees and
classifies an instance by evaluating each decision tree. Note that
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an RF classifier (and each decision tree in its ensemble)
evaluates instances using various tests of the form xi≥t or xi<t,
both propositions. When we take all the variable tests for a
particular feature Xi, they induce a partitioning of the space of
Xi into mutually exclusive and exhaustive intervals. In our
reduction, we represent each interval as a binary variable in our
propositional formula, which can be viewed as a discretization
of the original continuous variable.

We defined a propositional formula for the RF by defining a
propositional variable for each interval appearing in the RF.
Given a leaf node in a decision tree, the propositional formula
for the leaf node’s class label is the conjunction of the decisions
found on the path from the root to the leaf. Given a decision
tree, the propositional formula for a class label is the disjunction
of the paths’ formulas to each class label leaf. The propositional
formula of a random for a class label is determined by
aggregating the formulas for each decision tree using a majority
gate. For a given assignment of features to values, the resulting
propositional formula is true if the RF labels the feature vector
with the corresponding label.

Generating Tractable Representation (Conversion to
OBDD)
Simply obtaining the propositional formula underlying an RF
is not helpful because reasoning with the formula will not be
tractable. For example, testing whether there exists a satisfying
assignment (ie, testing whether there exists some feature vector
that obtains a given label) is a nondeterministic polynomial time
hard problem. Hence, we appeal to the field of knowledge
compilation to obtain a tractable representation of the formula
[43]. Knowledge compilation is a subfield of AI that studies,
in part, tractable Boolean circuits and the trade-offs between
succinctness and tractability, that is, by enforcing different
properties on the structure of a Boolean circuit, one can obtain
greater tractability (the ability to perform specific queries and
transformations in polytime) at the possible expense of
succinctness (the size of the resulting circuit). We followed
Choi et al [31] to compile the propositional formula of an RF
into an ordered decision graph or, equivalently, an OBDD. We

adapted an RF compiler [44] to compile a propositional formula
into an OBDD; many queries of interest become tractable,
typically requiring time that is only linear in the size of the
resulting OBDD.

Computing Prime Implicant Explanations
To generate explanations, we compiled the discrete RF classifier
into an OBDD, which is a tractable function representation and
can be used to answer queries and facilitate efficient
explanations of classifiers. Once we have an OBDD
representation of our RF classifier, we reason about and generate
explanations for the behavior of the classifier [45,46]. One type
of explanation is called a sufficient explanation [47], which
corresponds to computing the prime implicants of an RF
classifier’s propositional function. A prime implicant of an RF’s
propositional formula can be considered as a minimal
assignment of features to values that will fix the output of the
RF classifier. It is a partial feature vector sufficient to fix the
classifier’s decision. The behavior of an RF can be wholly
described as a disjunction of all its prime implicants (also called
its prime cover). Given a propositional formula represented as
an OBDD, efficient algorithms exist for computing its prime
implicants [48,49].

For each instance that is input into the classifier, we generated
a shortest prime implicant that is compatible with it (ie, the
shortest subinstance that is also a prime implicant). As explained
by Shih et al [30], one way to verify the behavior of a classifier
is to verify whether the classifier is compatible with the
expectations of a domain expert. A domain expert may define
the expectations of input-output pairs for a classifier to be
reliable. For example, a domain expert may say that anyone
who has lost ≥1% of their weight and is maintaining low intakes
of saturated fat early in treatment is on the trajectory toward
clinically significant distal weight loss. To facilitate this
understanding of expected behavior, we provide a visual of the
intervals or ranges for each variable, such that if the value of
each variable falls within these ranges, the classifier output will
remain the same. Figure 3 shows 2 sample visuals of a basic
weight loss archetype and a complex weight loss archetype
along with their corresponding visuals, which we call PRIMO.

Figure 3. In the 2 Prime Implicant Maintenance of Outcome (PRIMO) visuals, the red point indicates the patient profile for basic and complex weight
loss archetypes. The complex weight loss archetype tends to be difficult because the red points fall at the edges of the PRIMO-generated prime implicant
ranges.
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Step 3: Designing a Tool for Weight Management
Experts
An interactive software tool (Figure 4) was designed to enable
researchers to query the ML model and generate explanations
for the hypothetical archetypes of individuals. The user creates
custom instances by assigning values to each feature and

selecting a “Generate Explanation” button. The software queries
the interpretable model to provide a prediction and PRIMO’s
visual. PRIMO was designed to be interactive and intuitive by
enabling users to enter values for model features by adjusting
sliders that represent standardized values for each feature. The
slides show the z score and corresponding actual value for each
feature to create an instance.

Figure 4. Prime Implicant Maintenance of Outcome software interface. Ex-AI: explainability artificial intelligence; ML: machine learning.

The explanation provided by the model is displayed in the form
of highlighted ranges on the interface. If one were to tweak the
input values of an instance within the respective ranges specified
by the explanation, the model’s prediction and explanation are
guaranteed not to change. However, on tweaking the input value
outside the displayed ranges, the prediction and explanation
may or may not change. This allows users to understand the
model’s limits that may or may not produce a different output,
thereby providing better insight into the model’s functionality.
In some cases, there is a possibility that, on selecting specific
inputs, there is no explanation range for one or more features.
This indicates that given the values for all the features with
defined ranges, the value of the feature without a range does
not affect the output of the predictor.

Evaluation Study With Weight Management Experts
A total of 14 participants (Multimedia Appendix 3) were
recruited (mean age 45, SD 5 years) for one-on-one interviews
conducted over an interactive videoconference. The length of
each interview was approximately between 1 and 1.5 hours.
The participants included mobile health researchers for weight
loss. Participants were recruited from an obesity research special
interest group mailing list and listservs focusing on weight loss
research. Participants had backgrounds in ≥1 of the following
areas: psychology, nutrition, epidemiology and clinical
experience, statistics, and data science. The study’s primary
goal was to evaluate among end users, the weight management
experts, whether the explanations are understandable and
whether they would trust the tool for use in a real-world
scenario. Figure 5 shows the overall study design.

Figure 5. Study design. ML: machine learning; PRIMO: Prime Implicant Maintenance of Outcome.
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Participants were asked about their background and experience
with analysis metrics and ML. They were presented with details
of the weight loss intervention for which the RF model was
based. They were then required to provide feedback on 2 other
explanation types besides PRIMO. These 2 explanation types
were used to help participants become acquainted with the idea
of explainability and to use explainability tools to understand
predictions from an ML classifier.

Our explainability framework enabled the generation of the
other 2 explanation types (Multimedia Appendix 4). (1)
Monotonicity (baseline metric 1), which closely resembles
feature ranking, was where we calculated for each feature a
percentage that denotes the proportion of instances for which
the classifier was either monotonically increasing or decreasing.
For example, we would expect that the greater the reported
weight reduction, the more likely the participant was to lose
weight; if this were always the case, it would be 100%. (2)
Best-worst case (baseline metric 2), which closely resembled a
conditional probability approach, was designed to convey the

information gained about the class label of an instance based
on observing a particular feature and value pair. In the best-worst
case, we computed for a feature variable X, with value x, the
proportion of feature vectors classified as either positive or
negative class. The goal of adding these metrics was to get
participants to think beyond the existing explainability metrics
provided. For each metric, we created four hypothetical
archetypes of individuals (Figure 6; Table 1 reports z scores
and actual values), two basic and two complex cases for
prediction, including (1) a participant expected to lose sufficient
weight at the end of the study (basic weight loss), (2) a
participant expected not to lose weight (basic failed weight
loss), (3) a participant that was borderline but expected to lose
sufficient weight (complex weight loss), and (4) a participant
that was borderline and not expected to lose weight (complex
failed weight loss).

We asked the participants to predict the outcome of each
hypothetical archetype before and after viewing each explanation
type.

Figure 6. Hypothetical archetypes shown to participant types. Values presented as z score (actual value).

Table 1. Hypothetical archetypes shown to participant types.

Complex failed weight loss,
z score (actual value)

Complex weight loss, z
score (actual value)

Basic failed weight loss, z
score (actual value)

Basic weight loss, z score
(actual value)

−2.05 (−6.2%)−0.1 (−1.54%)0.5 (−0.11%)−2.51 (−7.3%)Weekly weight change

−1.97 (3 items)1.44 (12 items)0 (8.19 items)0 (8.19 items)Daily food entry

−0.11 (36.9 g)−0.75 (30.45 g)0.76 (45.7 g)−2.07 (17.1 g)Daily fat

−0.12 (1.8 items)1.78 (5 items)0 (2 items)0 (2 items)Daily custom food entry

1.2 (13.07 g)0.4 (9.79 g)1.79 (15.5 g)−1.67 (1.291 g)Daily saturated fat

Ethical Considerations
The study was deemed exempt from ethics approval by
Northwestern University’s institutional review board
(STU00213879), and all weight management experts provided
written informed consent before participating in the study.

Statistical Analysis to Assess Likelihood of Agreement
With ML Predictions
We used generalized linear mixed-effects models (GLMMs) to
evaluate participants’ agreement with ML predictions. Our
outcomes were binary (agreement yes or no), so our models

used logit link functions and random participant effects to
account for the correlation between outcomes within the same
participant. The primary analysis evaluated the likelihood of
final agreement across predictions or explainability methods.
We further examined the relationships between explainability
methods and two participant behaviors: (1) switching initial
incorrect predictions to agree with the ML models and (2)
switching initially correct predictions to disagree with the ML
models. For (1), the analyses considered only the initially
incorrect predictions by the participants, whereas models for
(2) included only the initially correct predictions by participants.
The models were fit using the lme4 library in the R programming
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language (version 4.1.2; R Foundation for Statistical
Computing). We fit a model with fixed explainability method
effects for each of these analyses and reported the estimated
effects, SEs, and 95% CIs. To examine the overall relationship
between explainability methods and outcomes, we also fit a
model omitting the explainability method effects and conducted
likelihood ratio tests (LRTs) for nested models (Cronbach
α=.05).

Advancing Explainability Through Trust and
Understanding
To further determine whether PRIMO advanced trust and
understanding compared with the other baseline methods, we

administered an intelligibility questionnaire and then requested
the experts to rank each of the 3 explanation types and then
probed them to discuss why they preferred one method over the
other. Quantitative responses were provided using REDCap
(Research Electronic Data Capture; Vanderbilt University), and
themes were identified based on the participants’ responses to
open-ended questions.

The intelligibility questions (Textbox 1 [50]) were evaluated
on a 5-point Likert response scale, ranging from 0 (not at all),
1 (a little), 2 (somewhat), 3 (quite a lot), to 4 (extremely).

Textbox 1. Intelligibility questionnaire (the 5 quantitative questions were presented as adapted from the study by Cahour et al).

Trust

• Trust: How much do you trust the model?

• Reliable: How reliable do you think the explainability metric is?

Understand

• Predictable: According to you, how predictable are the outputs of this model?

• Efficient: According to you, how efficient is the explainability metric in describing why the model generated the outputs or predictions?

• Confident: How confident are you in your answers?

We then calculated and compared the mean (SE) of the Likert
response scale values answered by participants for the 5
quantitative questions shown after each task. At the end of the
study, the participants were asked to rank the 3 explanation
types and to describe their suggestions regarding improvements
and which types enhanced their understanding of the ML
models. We also reported on themes regarding participant
preference for a specific metric type over another by
qualitatively analyzing their responses.

Qualitative questions were designed to engage the user in an
open-ended response to capture how and why the metric
facilitates the prediction of outcomes. The 3 open-ended
questions were as follows (with the first 2 adapted from the
study by Ribeiro et al [25]):

• Trust: Would you trust this model guided by this evaluation
metric to work well in the real world?

• Understanding: How do you think the model is able to
distinguish between the classes?

• Understanding: Do you have a better understanding of the
model? If yes, why? If not, how would you improve the
explainability metric?

Results

Overview
We trained an RF model using 5 engagement and diet-related
features, captured during the first 2 weeks of treatment, to
predict early on at week 2 if a participant would lose weight at
the end of the 6-month weight loss study. The model was trained
with 81% accuracy (specificity 86% and sensitivity 69%). The
five features obtained using a smartphone app were (1) average

daily food entry, (2) average daily custom food entry, (3)
average weekly weight change, (4) average daily fat, and (5)
average daily saturated fat.

Quantitative Findings
The GLMM results are presented in Table 2. Coefficients and
95% CIs are reported on the odds ratio scale. Across the
explainability methods, participants’ initial predictions were
often correct (PRIMO software, 67.9%; monotonicity, 69.6%;
and best-worst case, 66.1%). Explainability methods were
statistically significantly related to the final agreement (LRT

χ2=7.9; P=.02), and the PRIMO software method appeared to
have the strongest final agreement at 89.3% relative to the
monotonicity (76.8%) and best-worst case (67.9%) methods.
Explainability methods were also statistically significantly
related to participants switching initially correct predictions to

disagree with the ML models (LRT χ2=6.85; P=.03).
Participants responding to the PRIMO software method were
considerably less likely to change their initially correct responses
(2.6%) relative to monotonicity (5.1%) or the best-worst case
(18.9%). Finally, explainability methods were related to
participants switching to initially incorrect predictions to agree

with ML models (LRT χ2=6.27; P=.04). The PRIMO software
method saw a greater proportion of participants correcting
incorrect predictions (72.2%) relative to monotonicity (35.3%)
or the best-worst case (42.1%). Notably, the between-subject
variability was minimal (intraclass correlation coefficient <0.01)
for a final agreement and switching to disagreement but was
substantial for switching to incorrect predictions to agree with
ML models (estimated between-subject SD 0.855 on the logit
scale; intraclass correlation coefficient=0.18).
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Table 2. Generalized linear mixed-effects model results.

P valuePRIMOa software, odds
ratio (95% CI)

P valueMonotonicity, odds
ratio (95% CI)

P valueIntercept, odds ratio
(95% CI)

Dependent variable

.0093.95 (1.49-11.8)0.291.57 (0.68-3.68).012.11 (1.22-3.90)Final agreement (n=168 responses)

.050.12 (0.006-0.70).080.23 (0.03-1.04).0010.23 (0.071-0.501)Switch to disagree (n=114 responses)

.064.54 (0.93-22.13).700.75 (0.17-3.29).530.70 (0.23-2.10)Switch to agree (n=54 responses)

aPRIMO: Prime Implicant Maintenance of Outcome.

Table 3 presents the results of the GLMM fit to only responses
on complex items, which were deemed likely to be difficult to
classify. The data exhibited greater prior agreement on complex
items in the PRIMO software group (total trials: 16/28, 57%)
than for the monotonicity (11/28, 39%) and best-worst case
(11/28, 39%) groups. However, Table 3 displays that despite
the greater opportunity for participants to switch to disagree,
for these items, the odds of participants in the PRIMO software
group switching to disagree were 0.05 (95% CI 0.00-0.31)
relative to the best-worst case group. Similarly, among the
complex items for which there was prior disagreement, the odds
of participants in the PRIMO software group switching incorrect

prior responses to agree with ML models was over 4 times that
of either of the other groups (odds ratio relative to the best-worst
group 4.1; odds ratio relative to the monotonicity group 5.1).

Figure 7 shows 5 plots, 1 for each question in the intelligibility
questionnaire. Although there was no significant difference in
intelligibility between the 3 explainability metrics (all P>.05),
the result trended toward using the PRIMO software.
Participants were more confident about their answers to the
quantitative questions for the PRIMO software, followed by
the best-worst case and monotonicity. On average, the
participants found the PRIMO software to be more trustworthy,
predictable, reliable, and efficient.

Table 3. Comparison between overall agree, switch to disagree, and switch to agree groups.

P valuePRIMOa software, odds
ratio (95% CI)

P valueMonotonicity, odds ratio
(95% CI)

P valueIntercept, odds ratio
(95% CI)

.0038.056 (2.223-36.277).391.658 (0.53-5.42).480.714 (0.26-1.85)Overall agree (complex)

.0460.05 (0.00-0.31).160.168 (0.00-1.00).761.232 (0.0001-
56,695.11)

Switch to disagree (complex)

.144.140 (0.705-35.64).800.814 (0.15-4.31).520.646 (0.14-2.71)Switch to agreement (complex)

aPRIMO: Prime Implicant Maintenance of Outcome.

Figure 7. Likert scale analysis for intelligibility questionnaire (mean value and SE).

Qualitative Findings

Preference for Interactive Explanations
Participants found the PRIMO software to be the most
understandable because of its ability to provide an explanation
at an instance level. A few participants hoped to see explanations
at the instance level while going beyond a global understanding
of the model. Participant 2 stated, “Software was the most
understandable and allowed for considering multiple individuals,
multiple circumstances and really was user friendly even down
to the level of a participant.” The ability of the participant to
query and generate explanations that are of interest to them also

played a role in their understanding of the model. A similar case
was tested by Lakkaraju et al [51] who compared user
interest-based subspace explanations with decision lists and
decision sets.

Local Explanation Remains Insufficient for Answering
the Question “Why?”
Many participants found the interactive nature of the PRIMO
software and its ability to provide explanations to increase their
understanding. However, a few participants were looking to
reason from a behavioral perspective “why” the interpretable
model generates ranges for the explanations the way it does.
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Participant 2 stated the following concerning the PRIMO
software:

I really like the model. I would just say, somewhat
predictable. I thought I was setting threshold at 3
weeks that would be likely associated with weight loss
and was surprised that the model put the person in
the not-losing weight category. I think it’s really good,
really efficient, allows you to see the impact of your
various inputs are.

Having gone through the details of the PRIMO software and
using it a little, participant 11 stated the following:

So, if I wanted someone to understand it, I think you
know your explanation was really interesting of this
one because you said it tells you why, but it does not
tell you why. It tells you what ranges are causing you
to make that decision, but it’s not telling you why
those ranges matter, for like the behavior.

It appears that explainability metrics alone are not sufficient to
inform the user regarding the precise reasoning behind the
outcome.

Missing Model Performance–Related Information
Previous literature demonstrates that showing a model’s
accuracy on the held-out set can affect people’s perception of
the model’s performance and their trust [52]. Therefore,
throughout the study, domain experts were not shown any
information about the performance of the RF model or the
interpretable OBDD-based model, as our goal was to see how
the explanation independently affects people’s trust in the ML
model. However, participants were curious to know model
performance metrics, especially while interacting with the
PRIMO software:

[I] need to see metrics on how the model really
performs in some automated fashion rather than me
making changes to see. Human/human plus this
software makes better predictions—would be the real
test of this. In the sense, I can’t answer this because
it’s not been evaluated objective. [Participant 4]

I will still say quite a bit trustworthy. Because I’ll still
like to see other overall model performance metrics
about, I don’t know if accuracy would be the right
one to use, but something like overall model
performance would be nice to see as well, but I feel
like I understand the model. [Participant 5]

These model performance metrics provide an understanding of
the overall model performance along with a global explanation.
It seems that local or global explanations alone cannot fulfill
the domain experts’ need to create mental models that describe
the overall behavior of the model. Consequently, a combined
global and local explanation approach is necessary, reinforcing
prior findings in the explainability literature [24,51].

Features Related
The participants were shown results based on the 5 features that
were used to train the RF model. These features were also
selected based on permutation feature selection methods and
guided by experts. However, a few participants, through their

clinical and research practice, hoped to see features such as
gender or calories. Having gone through the first local
explanation type, participant 1 would have liked to have seen
a lot more variables:

I would like a lot of variables; I wouldn’t stick just
to these four. I don’t know how much I’d trust it just
based on these five features.

Participant 7, based on their practice, felt that “The single most
important one is calorie intake.”

Participant 6 also hoped to see a demographic feature and stated
the following:

What’s interesting is that I wish that the participant’s
sex was included as well because usually when I look
at weight loss percentages I, evaluate them a little bit
different for men vs women just because, in my
clinical experience and from a research perspective,
men tend to lose more weight than women.

Participant 13 thought it might be helpful to combine features,
stating the following:

You’re saying that they’re [custom food item]
separate from average food items, but what if you just
add them together as one total variable.

Misinterpreting the Term Model
The term “model” refers to the ML model. In our case, it refers
to the RF model that was trained and used to generate the
interpretable model. A few participants confused the term model
for the explanation type itself. Participant 3 was curious to know
how the model weighted factors but intended to understand how
the explanation was weighting different features:

I think somewhat [predictable] because I think when
it comes to predict the individual participants, it was
hard when not everything followed the principle of
monotonicity so I could not decide how the model
would end up weighting certain factors, so when
things were inconsistent I was not sure how that
would turn out.

Similarly, when asked if they trust the model guided by the
explanation (they referred to trusting the model), participant 2,
while going over the second explanation type, wanted to convey
that they trusted the explanation:

Somewhat trust the model, because to a certain extent,
it predicts and is consistent with what I know from
literature. The fact that it seems to discount the
completeness of the dietary record that makes me
question it a little bit, but I do know it’s important to
log fat, so I can see that being potentially important.

The Usefulness of Explanations to Patients
After having used the PRIMO software and testing it, participant
2 felt that it could be beneficial for patients to observe the
thresholds determined by the explanations to understand their
goal progress:

I can see even participants [patients] messing around
with it and seeing what their goal thresholds might
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need to be. The same limitations in terms of binary
categories and what I think is ideal.

Although an exciting hypothesis, we do not know how many
patients would find such helpful information. Future research
should explore such questions to determine whether providing
PRIMO explanations would benefit patients.

Weight Loss Definition
A few participants were curious to know about the definition
of weight loss itself. Specifically, what percentage of weight
loss is clinically significant? Participant 13 expressed their views
about a fixed threshold for defining weight loss and stated the
following:

For example, if we were to categorize, like what
weight change is right, is it, like what ’s the difference
between someone who has 0.00 vs someone who has
 0.01? But then one’s losing weight, and one’s not,
and then that kind of like muddies the water in a way,
so is it like that those who are in the middle of
transitioning to something.” Several definitions of
clinically significant weight loss vary based on the
clinical outcome of interest. For example, weight loss
as low as 2% has shown promise for preventing
diabetes, whereas weight loss of 7% to 10% may be
warranted to see changes in physical functioning.

Discussion

Principal Findings
We have demonstrated the feasibility of building a model that
predicts weight loss as early as 2 weeks into an intervention
using five engagement and diet-related features obtained from
a smartphone app: (1) average daily food entry, (2) average
daily custom food entry, (3) average weekly weight change, (4)
average daily fat, and (5) average daily saturated fat. The model
used yielded an 81% accuracy (specificity: 86% and sensitivity:
69%). Recent studies have demonstrated the predictive value
of initial self-reported weight loss on long-term weight loss,
which our model validates; however, most of these models
achieve low specificity (eg, 50.5%-53.6% [53]), which
demonstrates a challenge in predicting nonresponders. Predicting
nonresponse early is essential to be able to change the course
of treatment. We suggest that future predictive models assess
engagement (eg, number of times participants log food and
create custom food items) and self-reported fat intake (total fat
and saturated fat) to advance their prediction of nonresponders.
Although recent findings on engagement with smartphone apps
(eg, interaction length and density of use [54]) have been shown
to be predictive of positive health behavior trends, our findings
support the use of specific features, such as daily entries of food
logs and frequency of creation of new food items, as important
predictors of weight loss in the context of weight loss treatment
programs. Prior literature has shown support for fat intake
positively predicting change in body fat [55], and our findings
show that self-report based on food logging may be an important
feature in the early prediction of nonresponse. This model is a
first step toward saving intervention costs and improving health
outcomes by using an effective stepped-care model. This saves
intervention costs by predicting responders and potentially

stepping down care and improves health outcomes by predicting
nonresponders and stepping up care. Current studies, such as
the SMART study [56], are beginning to test stepped-care
approaches; however, they lack validated weight loss prediction
models. Future work should further validate this model in a
different study to assess its generalizability. We plan to analyze
data from a completed study and assess whether RF models can
help predict weight loss. We also plan to conduct a clinical trial
in the future to study the predictive power of the 5 predictors
we selected, in addition to day-to-day variability (Shahabi, F,
unpublished data, September 2022), macronutrients, and the
feasibility of using RF models and the PRIMO system as a
decision support tool for stepped-care treatment.

We have also addressed one of the critical challenges of
representing complex models using an explainability tool,
PRIMO, an interactive tool that uses prime implicants as an
explainability metric. Of the 14 weight management experts,
10 ranked the PRIMO software first in advancing their
understanding of ML models and 3 ranked it second. Some
participants felt that the PRIMO software was more reliable
and user-friendly and allowed for greater engagement to
consider different types of people. However, there was
agreement that the PRIMO software system could still be
improved by combining global explanations such as the accuracy
of the model. Weight management experts desire to design a
visualization tool that combines interactive instance-based
explanations with interactive global explanations. Participants
can then query the system to demonstrate the overall model
performance (similar to the other 2 explainability metrics).

Another key challenge is whether weight management experts
are more or less likely to use ML recommendations when
provided with explainability metrics. In basic predictive
scenarios, ML with explainability may be more powerful than
other tools for encouraging weight management experts to
switch to agree (when they make simple errors [57,58]).
Although still powerful in switching to an agreement, in
complex scenarios, ML with explainability is not more powerful
than other simpler methods when switching the mind of a weight
management expert when they disagree with the algorithm.
However, it is more powerful than other basic tools when they
agree with the algorithm to prevent them from changing their
minds (ie, switching to disagree), acting as a great confirmatory
tool. When looking at switching to agree, the PRIMO software
tool had high numbers in both the basic and complex scenarios,
and in complex scenarios, it showed to be significantly more
likely to agree after viewing the PRIMO software. Future work
should further investigate the effect of ML with explainability
tools when the predictions are considered less controversial
(basic) compared with complex scenarios.

Despite the increased potential for the adoption of ML models
with explainability metrics, it is unclear whether an interactive
PRIMO software that uses ML models with explainability would
significantly advance trust compared with other methods. We
notice that PRIMO software, on average, yields the greatest
trust (mean 2.64, SD 1.15 vs 2.29, SD 0.47 for monotonicity
and 2.29, SD 0.73 for the best-worst case); however, it is not
significantly different from other methods. Most participants
liked the PRIMO software because of its interactive nature and
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felt it was more transparent and “trustworthy” than the other 2
methods. However, many still felt that although they could test
different hypothetical individuals and see the impact of these
changes on model output, they still did not fully understand
how the PRIMO software was generating these predictions and
windows of uncertainty. They liked that they could see the
combination of the different features and what they were likely
to predict; however, it seems that with any local explanation,
people still wanted to see the overall metrics (eg, accuracy and
specificity or sensitivity).

Limitations
Despite following the principles of designing human
explanations, there remain challenges in understanding these
models. Our findings support that the understanding of ML
models is improved through explainability metrics. However,
our interactive PRIMO software method did not show significant
improvements over other explainability methods, especially in
terms of efficiency, predictability, and confidence. In
explainability metrics, we must recognize that we are still only
learning a functional relationship between a set of features (ie,
consumption of fat or entry of a food item into the app) and a
class label (yes or no to weight loss after 6 months of
intervention), uncovering the patterns the RF finds in the data.
However, as 1 participant mentioned, to truly uncover an
understanding, we must answer the “Why?” which requires
building models of understanding the causal mechanisms
(including the latent ones), as discussed by Pearl and Mackenzie
[59] and Darwiche [60]. Although researchers often refer to the
output of a classifier trained on data as a learned model, in
reality, it is a learned function. It has become increasingly
apparent that the ability to answer the “Why?” question depends
on whether one is learning a function or a causal model. For
example, we learn a functional relationship between a feature
vector and a class label by learning a classifier using RF from
the data. Hence, a local explanation may only provide insight
into the sort of pattern an RF algorithm found in the data. In
contrast, with a model, we try to represent the underlying causal
mechanisms of a system (including latent ones); therefore, we
may be able to answer questions such as, “Why does consuming
more fat increase the odds of gaining weight?” In other words,
although local explanations may help increase one’s trust in a
classifier that was learned from data, the ability to answer
“Why?” questions may require that we go beyond functions
and classifiers and instead seek to learn and develop causal
models [59,60]. Our findings show promise in PRIMO gaining
the trust of weight management experts; however, the lack of
significance compared with other methods may be attributed to
our relatively small sample size (n=14) and to the fact that
defining trust in ML models or functions remains elusive.

Conclusions and Future Work
We performed a qualitative analysis of the one-on-one guided
interviews with weight management experts to study whether
an interactive explainability tool can enhance trust and
understanding of the behavior of the original model, thereby

increasing adoption. Our findings show that domain experts
showed a significant increase in agreement when using our
interactive explainability tool compared with other methods,
especially when it comes to explaining basic weight loss
archetypes (people that are easier to predict). This shows the
potential for interactive explainability tools to catch errors or
misjudgments in weight management experts’ initial predictions.
Moreover, we showed that participants were significantly less
likely to change their responses to disagree when their initial
predictions were aligned with the interactive prediction tool
[61]. In general, when shown local explanations of specific
hypothetical archetypes, participants felt the need to understand
the model’s behavior at a global level. Alternatively, when
shown global explanations, participants felt the need to
understand how specific instances would be classified and
explained by the model. Therefore, augmenting our interactive
explainability tool to include a visual representation combining
local and global explanations could further enhance the
agreement with ML models. In addition, model performance
metrics, such as accuracy, sensitivity, and specificity, are also
needed to enable domain experts to gauge their reliability in the
ML model’s decisions to avoid overreliance. This implies that
explanations are required at every step in the framework, from
visualizing and understanding trends in raw data to using the
model to make predictions. Through our findings, we also learn
that domain experts often differ, when compared with data
scientists, in the use of the term “model” where data scientists
often conflate learned models with learned functions. Aside
from a more refined use of terminology, expectations and
limitations need to be set in terms of what can be gained from
a learned function compared with a learned model. Future
studies could include testing a more comprehensive explanation
interface with aspects of local and global explanations. Weight
management interventions may benefit from such explanations
by testing the delivery of just-in-time adaptive interventions
based on the explanation ranges generated by the PRIMO
software to change the course of treatment. The just-in-time
adaptive intervention could explain to the patients in the
treatment program why the system thinks they need to stay or
change a course of treatment, potentially increasing users’ trust
in the system.

This work provides a foundation to aid in translating models in
communicating with other disciplines such that their use in
research contexts is more plausible. To the extent that
researchers can trust, use, and explain models to guide decisions,
these could be used in research protocols to guide testable
treatment decisions based on ML, rather than less-complex or
less-accurate correlational or clinical intuition methods. Future
studies should also test the effectiveness of these explanations
among patients and clinicians. We plan to provide PRIMO as
an open-source software tool for the community so that not only
weight management researchers but also computer science
researchers can build on this framework to develop more
rigorous tools for clinical decision support.
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