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Abstract

Background: Cardiac surgery–associated acute kidney injury (CSA-AKI) is a major complication following pediatric cardiac
surgery, which is associated with increased morbidity and mortality. The early prediction of CSA-AKI before and immediately
after surgery could significantly improve the implementation of preventive and therapeutic strategies during the perioperative
periods. However, there is limited clinical information on how to identify pediatric patients at high risk of CSA-AKI.

Objective: The study aims to develop and validate machine learning models to predict the development of CSA-AKI in the
pediatric population.

Methods: This retrospective cohort study enrolled patients aged 1 month to 18 years who underwent cardiac surgery with
cardiopulmonary bypass at 3 medical centers of Central South University in China. CSA-AKI was defined according to the 2012
Kidney Disease: Improving Global Outcomes criteria. Feature selection was applied separately to 2 data sets: the preoperative
data set and the combined preoperative and intraoperative data set. Multiple machine learning algorithms were tested, including
K-nearest neighbor, naive Bayes, support vector machines, random forest, extreme gradient boosting (XGBoost), and neural
networks. The best performing model was identified in cross-validation by using the area under the receiver operating characteristic
curve (AUROC). Model interpretations were generated using the Shapley additive explanations (SHAP) method.

Results: A total of 3278 patients from one of the centers were used for model derivation, while 585 patients from another 2
centers served as the external validation cohort. CSA-AKI occurred in 564 (17.2%) patients in the derivation cohort and 51 (8.7%)
patients in the external validation cohort. Among the considered machine learning models, the XGBoost models achieved the
best predictive performance in cross-validation. The AUROC of the XGBoost model using only the preoperative variables was
0.890 (95% CI 0.876-0.906) in the derivation cohort and 0.857 (95% CI 0.800-0.903) in the external validation cohort. When the
intraoperative variables were included, the AUROC increased to 0.912 (95% CI 0.899-0.924) and 0.889 (95% CI 0.844-0.920)
in the 2 cohorts, respectively. The SHAP method revealed that baseline serum creatinine level, perfusion time, body length,
operation time, and intraoperative blood loss were the top 5 predictors of CSA-AKI.

Conclusions: The interpretable XGBoost models provide practical tools for the early prediction of CSA-AKI, which are valuable
for risk stratification and perioperative management of pediatric patients undergoing cardiac surgery.
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Introduction

An increasing number of pediatric patients worldwide undergo
cardiac surgery each year for various reasons, including
congenital heart disease and acquired cardiac conditions [1].
Cardiac surgery–associated acute kidney injury (CSA-AKI),
characterized by an abrupt decrease in renal function, is a major
complication following pediatric cardiac surgery. The reported
incidence of CSA-AKI among pediatric patients undergoing
cardiac surgery ranges from 5% to 42% [2]. Importantly,
CSA-AKI is associated with significantly increased morbidity
and mortality, prolonged length of hospital stay, and an
increased risk of chronic kidney disease [3-5].

The early prediction of CSA-AKI could significantly improve
the implementation of preventive and therapeutic strategies
during the perioperative periods. Specifically, preoperative
prediction could facilitate surgery risk assessment and
prevention of CSA-AKI, and early postoperative prediction
could help with the early identification of CSA-AKI for
proactive interventions [6]. Therefore, it is of great clinical
interest to establish precise prediction models for CSA-AKI to
identify high-risk patients and to optimize the perioperative
management of pediatric patients undergoing cardiac surgery.
Recently, several prediction models combining biomarkers and
clinical variables have been established with the goal to predict
the development of CSA-AKI in the pediatric population [7-9].
However, those models were limited by small sample sizes,
lack of internal and external validation, and additional financial
burdens due to the use of novel biomarkers.

The widespread use of machine learning to analyze clinical data
derived from electronic health records offers considerable
advantages for establishing prediction models. Machine learning
is a scientific discipline that uses computer algorithms and learns
from data with minimal human intervention [10]. Advanced
machine learning algorithms can model nonlinear relationships,
analyze complex high-order interactions, and robustly handle
multicollinearity among the predictor variables. The application
of machine learning has led to significant breakthroughs in
various medical fields such as emergency department triage
[11], prediction of postinduction hypotension [12], and risk
stratification of postcontrast acute kidney injury [13]. Machine
learning approaches have also shown promising performance
in the early prediction of adult CSA-AKI [14-19], but their

predictive performance for CSA-AKI in the pediatric population
has not been tested. The primary diseases, underlying
pathophysiology, and risk factors of CSA-AKI in pediatric
patients are significantly different from those in adult patients
[20-22]. Therefore, the existing prediction models for adult
CSA-AKI are not applicable to pediatric patients. The objective
of this study was to develop and validate machine learning
models for predicting the development of CSA-AKI in pediatric
patients undergoing cardiac surgery.

Methods

Study Design
This study includes patients from 3 distinct medical centers of
Central South University in China. The derivation cohort
comprised patients admitted at the Second Xiangya Hospital
between January 2015 and March 2022. The external validation
cohort consisted of patients admitted at Xiangya Hospital
between January 2016 and December 2021 and patients admitted
at the Third Xiangya Hospital between January 2015 and
December 2021.

Ethics Approval
This study follows the Declaration of Helsinki and the
Transparent Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis statement [23]. This study
protocol was approved by the medical ethics committee of the
Second Xiangya Hospital of Central South University
(2022-K031). The requirement for informed consent was waived
due to the retrospective nature and minimal risk of this study.

Study Participants
This study includes all pediatric patients aged between 1 month
and 18 years who underwent cardiac surgery with
cardiopulmonary bypass. We included patients with at least one
serum creatinine (SCr) measurement before surgery and another
within 7 days after surgery. We excluded patients with
congenital renal malformation, preoperative estimated

glomerular filtration rate (eGFR) of 15 mL/min/1.73 m2 or
lower, or multiple surgeries within 7 days. We calculated eGFR
using the modified Schwartz equation, or if body length was
missing, using the Full Age Spectrum equation [24,25]. Details
on patient selection in the derivation and external validation
cohorts are provided in Figure 1.
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Figure 1. Flow diagram of patient selection. eGFR: estimated glomerular filtration rate; SCr: serum creatinine.

Predictor Variables
Potential predictors included those considered clinically relevant
to the development of CSA-AKI and available in the electronic
health records, with less than 30% of such observations missing.
Potential predictors were divided into preoperative and
intraoperative variables. Preoperative variables included patient
demographics, preoperative conditions, laboratory tests, and
medications. Preoperative conditions were determined according
to the diagnosis on admission, preoperative diagnosis, and
preoperative anesthesia interview records. The most recent
preoperative measurements were used for laboratory variables.
Medications were classified based on the Anatomic Therapeutic
Chemical classification system and included if administered
within 7 days before the surgery [26]. Intraoperative data were
extracted from the records of anesthesia, cardiopulmonary
bypass, and surgery. The complexity of the surgeries was
determined by the Risk Adjustment for Congenital Heart
Surgery-1 (RACHS-1) score, which is a consensus-based tool
for short-term mortality risk based on the type of the procedure
performed [27]. The volume of blood loss was calculated as the
sum of blood loss in operative fields, residual volume in the

pump, and any additional loss by other routes. The total fluid
balance was calculated as the difference between the total fluid
input and total fluid output and corrected for body weight.

Outcome Measures
The primary outcome was the development of CSA-AKI, which
was determined according to the 2012 Kidney Disease:
Improving Global Outcomes (KDIGO) clinical practice
guideline [28]. CSA-AKI was defined as an increase in SCr
level of at least 0.3 mg/dL within 48 hours or 50% within 7
days after surgery compared with the baseline. The most recent
SCr value within 90 days prior to the surgery was used as the
baseline. Secondary outcomes included CSA-AKI stages 2-3
(defined by the KDIGO criteria), in-hospital mortality, length
of stay in the intensive care unit, and length of postoperative
hospital stay.

Statistical Analysis
Descriptive statistics are presented as medians and interquartile
ranges for continuous variables and as numbers and percentages
for categorical variables. Data distributions were compared
using the Mann-Whitney U test for continuous variables and
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chi-square tests for categorical variables. One-hot encoding was
performed by preprocessing each categorical variable into binary
variables. Missing data were imputed by the random forest
method using the missForest package in R [29]. The description
of the data types and the missing values for each variable can
be found in Table S1 of Multimedia Appendix 1.

Feature Selection
Predictor variables with near-zero variance, identified as those
with the percentages of unique values less than 5%, were
removed from the analysis. Subsequently, 4 feature selection
methods were used to obtain subsets of the predictor variables
for further model development. The methods included Least
Absolute Shrinkage and Selection Operator, Boruta algorithm,
random forest-recursive feature elimination, and random
forest-filtering. The results obtained by the 4 methods were
comprehensively evaluated, and the predictor variables that
appeared more than 3 times among the 4 methods were
ultimately selected to build the model. Feature selection was
conducted twice—first to include only the preoperative variables
and then by combining the preoperative and intraoperative
variables. The glmnet, Boruta, and caret packages in R were
used for feature selection.

Model Development and Validation
For model development, the following machine learning
algorithms were applied to the preoperative-only and the
combined data sets of the derivation cohort: K-nearest neighbor,
naive Bayes, support vector machines, random forest, extreme
gradient boosting (XGBoost), and neural networks. We
conducted 5 random shuffles of 5-fold cross-validation to ensure
an unbiased assessment of model performance and to identify
the optimal hyperparameters for each model. Model performance
was assessed based on the mean area under the receiver
operating characteristic curves (AUROCs) from 5×5 iterations.
After that, the best performing machine learning model was
chosen for each data set. The caret package in R was used for
model development. The details on functions, packages, and
tuning parameters used for each machine learning algorithm
are provided in Table S2 of Multimedia Appendix 2.

The performance of the final prediction models was further
evaluated in the external validation cohort. The metrics for
model performance included AUROC, the area under the
precision-recall curve (AUPRC), and the calibration plot.
AUROC was used as the primary performance metric because
it is independent of the thresholds in the setting of class
imbalance. AUPRC is known to be more informative for
class-imbalanced prediction tasks because it is sensitive to
changes in the number of false-positive predictions [30]. In
addition, the performance of the final machine learning models
was compared with that of the traditional logistic regression

models. The framework of model establishment is depicted in
Figure S1 of Multimedia Appendix 3.

Model Interpretations
The Shapley additive explanations (SHAP) method was used
to explore the interpretability of the final prediction models.
SHAP is a unified approach to the interpretations of model
predictions, which provides consistent and locally accurate
attribution values for each feature within a prediction model,
namely, the SHAP values [31]. Higher SHAP values indicate
an increased probability of CSA-AKI. The contribution of the
predictor variables to CSA-AKI can be explained as the
cumulative effects of variable attributions to the entire output
risk for each observation.

Sensitivity Analysis
Sensitivity analysis was performed to examine the predictive
power of the models for CSA-AKI stages 2-3. Model
performance was also evaluated in the subgroups, focusing on
patients in different age groups (infancy: 1 month to 1 year;
childhood: 2-10 years; adolescence: 11-18 years) [32] and
patients with different surgical complexities (RACHS-1 score
of 2 or lower; RACHS-1 score of 3 or higher). In addition, to
translate the prediction models into clinical risk-stratification
tools, we identified the low- and high-risk cutoff values of the
predictive probabilities. The analyses included sensitivity,
specificity, positive and negative predictive values, and positive
and negative likelihood ratios. Finally, to evaluate the effect of
the imbalanced outcomes on model performance, we applied
upsampling or downsampling to generate a balanced derivation
cohort for model training. All statistical analyses were performed
using R 4.1.2 [33]. A 2-tailed P value of <.05 was considered
statistically significant.

Results

Patient Characteristics
A total of 3863 participants were enrolled in this study, that is,
3278 in the derivation cohort and 585 in the external validation
cohort. The baseline characteristics and outcomes of the patients
in the derivation and external validation cohorts are shown in
Table 1. In the derivation cohort, 564 (17.2%) patients
developed CSA-AKI, comprising 356 (10.9%) with stage 1,
142 (4.3%) with stage 2, and 66 (2%) with stage 3. In the
external validation cohort, 51 (8.7%) patients developed
CSA-AKI, comprising 25 (4.3%) with stage 1, 14 (2.4%) with
stage 2, and 12 (2.1%) with stage 3. The comparison of the
baseline characteristics and outcomes according to the
development of CSA-AKI are provided in Table S3 and Table
S4 of Multimedia Appendix 4.
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Table 1. Baseline characteristics and outcomes of the patients in the derivation and external validation cohorts.

External validation cohort (n=585)Derivation cohort (n=3278)Variables

Demographics

4 (1-8)1 (0.5-4)Age (year), median (IQR)

288 (49.2)1709 (52.1)Sex (male), n (%)

100 (80-128)79 (65-105)Body length (cm), median (IQR)

15.0 (10.0-22.5)9.5 (6.0-16.0)Weight (kg), median (IQR)

ABO blood groups, n (%)

200 (34.4)1100 (33.6)Type A

134 (23)744 (22.7)Type B

197 (33.8)1182 (36.1)Type O

51 (8.8)252 (7.7)Type AB

Preoperative conditions

113 (19.3)740 (22.6)Cyanotic heart disease, n (%)

241 (41.2)1763 (53.8)Pulmonary hypertension, n (%)

30 (5.1)293 (8.9)Pulmonary infection, n (%)

9 (1.5)44 (1.3)Infective endocarditis, n (%)

21 (3.6)181 (5.5)Previous cardiac surgery, n (%)

12 (2.1)72 (2.2)Genetic disease, n (%)

15 (2.6)111 (3.4)Noncardiac malformation, n (%)

10 (1.7)168 (5.1)Preoperative intensive care, n (%)

6 (3-7)4 (2-7)Preoperative length of stay (day), median (IQR)

American Society of Anesthesiologists physical status, n (%)

0 (0)21 (0.6)Ⅰ

120 (21.2)589 (18)Ⅱ

339 (59.8)1978 (60.6)Ⅲ

108 (19)665 (20.4)Ⅳ

0 (0)12 (0.4)V

Laboratory tests

44.0 (36.0-53.0)25.3 (20.4-33.5)Baseline creatinine (µmol/L), median (IQR)

85.0 (72.4-97.1)118.0 (99.5-138.0)Baseline estimated glomerular filtration rate (mL/min/1.73 m2),

median (IQR)

66 (62-70)69 (66-73)Left ventricular ejection fraction (%), median (IQR)

125 (117-135)119 (107-129)Hemoglobin (g/L), median (IQR)

13.6 (12.9-14.7)13.4 (12.7-14.7)Red blood cell distribution width (%), median (IQR)

7.6 (6.3-9.5)8.0 (6.5-9.8)White blood cells (×109/L), median (IQR)

271 (223-326)314 (253-383)Platelets (×109/L), median (IQR)

4 (0.8)57 (2.1)Dipstick albuminuria, n (%)

4.16 (3.22-5.05)4.08 (2.96-5.12)Blood urea nitrogen (mmol/L), median (IQR)

7.3 (5.1-11.0)7.4 (5.1-10.9)Total bilirubin (µmol/L), median (IQR)

14.2 (11.1-19.0)16.4 (11.7-25.3)Alanine aminotransferase (U/L), median (IQR)

31.4 (25.6-39.1)34.9 (27.4-45.4)Aspartate aminotransferase (U/L), median (IQR)

43.1 (41.0-45.4)40.3 (38.2-42.3)Albumin (g/L), median (IQR)
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External validation cohort (n=585)Derivation cohort (n=3278)Variables

4.45 (4.19-4.73)4.80 (4.46-5.12)Potassium (mmol/L), median (IQR)

140.0 (138.7-141.1)138.3 (137.0-139.7)Sodium (mmol/L), median (IQR)

104.1 (102.7-105.5)103.2 (101.6-104.7)Chloride (mmol/L), median (IQR)

2.46 (2.37-2.54)2.40 (2.32-2.49)Calcium (mmol/L), median (IQR)

Preoperative medications, n (%)

73 (12.5)411 (12.5)Iodinated contrast media

11 (1.9)104 (3.2)Digoxin

38 (6.5)316 (9.6)Diuretics

12 (2.1)54 (1.6)Nonsteroidal anti-inflammatory drugs

4 (0.7)61 (1.9)Angiotensin converting enzyme inhibitor/angiotensin Ⅱ receptor
blocker

1 (0.2)61 (1.9)Nephrotoxic antibiotics

1 (0.2)163 (5)Antiviral drugs

Intraoperative variables

14 (2.4)168 (5.1)Emergent surgery, n (%)

190 (165-230)155 (129-197)Operation time (min), median (IQR)

63 (46-90)58 (44-84)Perfusion time (min), median (IQR)

37 (23-55)33 (23-51)Cross clamp time (min), median (IQR)

73 (12.5)279 (8.5)Cardioversion, n (%)

38 (31-45)35 (31-40)Lowest mean arterial pressure (mmHg), median (IQR)

33.3 (31.7-34.7)33.3 (31.8-34.4)Lowest core temperature (°C), median (IQR)

20.0 (15.4-26.2)21.4 (14.8-31.3)Intraoperative blood loss (mL/kg), median (IQR)

1.6 (–0.2 to 2.9)–0.7 (–1.9 to 0.1)Intraoperative fluid balance (%), median (IQR)

Risk Adjustment for Congenital Heart Surgery-1 score, n (%)

92 (16.2)480 (14.9)1

386 (67.8)2032 (63)2

84 (14.8)653 (20.3)3

7 (1.2)59 (1.8)4

Outcomes

51 (8.7)564 (17.2)Acute kidney injury, n (%)

26 (4.4)208 (6.3)Acute kidney injury stages 2-3, n (%)

5 (0.9)38 (1.2)In-hospital mortality, n (%)

1 (1-2)2 (1-3)Intensive care unit length of stay (day), median (IQR)

8 (7-9)8 (7-13)Hospital length of stay (day), median (IQR)

Predictor Variables
A total of 25 preoperative variables were selected as predictors
of CSA-AKI by the 4 feature selection methods and included
in the machine learning models (Table S5 of Multimedia
Appendix 5). When preoperative and intraoperative variables
were combined, a total of 27 variables were incorporated; of
those, 20 were preoperative variables and 7 were intraoperative
variables (Table S6 of Multimedia Appendix 5).

Model Performance
Among the considered machine learning models, the XGBoost
model achieved the best performance on both the
preoperative-only and the combined data sets, with a mean
AUROC of 0.795 and 0.832 in cross-validation, respectively
(Table S7 of Multimedia Appendix 6). The inclusion of the
intraoperative variables improved the predictive power of all
considered machine learning models. The AUROCs of the
XGBoost and traditional logistic regression models are shown
in Figure 2. The XGBoost model with only the preoperative
variables exhibited an AUROC of 0.890 (95% CI 0.876-0.906)
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in the derivation cohort and 0.857 (95% CI 0.800-0.903) in the
external validation cohort. When the intraoperative variables
were included, the AUROC of the XGBoost model increased
to 0.912 (95% CI 0.899-0.924) in the derivation cohort and
0.889 (95% CI 0.844-0.920) in the external validation cohort.
The XGBoost algorithm achieved higher AUROCs than
traditional logistic regression for both the derivation and external
validation cohorts. Details on other performance metrics,
including the AUPRCs and the calibration plots, are provided

in Figures S2 and S3 of Multimedia Appendix 7. Due to the
imbalance in the proportions of patients with and without
CSA-AKI, the AUPRC of the XGBoost model using the
combined data set was 0.747 in the derivation cohort and 0.476
in the external validation cohort. The Brier scores of the
XGBoost model for the combined data set were 0.085 and 0.060
in the derivation and the external validation cohorts,
respectively. The final XGBoost models can be accessed at
LuoXiaoqin123/pediatric-CSA-AKI (GitHub) [34].

Figure 2. Receiver operating characteristic curves of the extreme gradient boosting and traditional logistic regression models. (A-B) Receiver operating
characteristic curves of the models with only the preoperative variables in the (A) derivation and (B) external validation cohorts. (C-D) Receiver operating
characteristic curves of the models with the preoperative and intraoperative variables in the (C) derivation and (D) external validation cohorts. AUC:
area under the curve; XGBoost: extreme gradient boosting.

Model Interpretations
The SHAP summary plots of the XGBoost models are shown
in Figure 3, which illustrates how high and low values of each
feature relate to SHAP values. The plots also identify the
features that influenced the model predictions the most. Baseline
SCr, perfusion time, body length, operation time, and

intraoperative blood loss were the top 5 predictor variables
associated with CSA-AKI in the XGBoost model using the
combined data set. The SHAP dependence plots of the XGBoost
model with the combined data set are shown in Figures S4 of
Multimedia Appendix 8, which shows the nonlinear association
between the predictors and the risk of CSA-AKI. The plots
show how changes in a single feature can affect model output.
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Figure 3. Shapley additive explanations summary plots of the extreme gradient boosting models for cardiac surgery–associated acute kidney injury.
(A) Shapley additive explanations summary plot of the extreme gradient boosting model with only the preoperative variables. (B) Shapley additive
explanations summary plot of the extreme gradient boosting model with the preoperative and intraoperative variables. A dot is created for each feature
attribution in calculating the output risk for each observation. ALT: alanine aminotransferase; ASA: American Society of Anesthesiologists; AST:
aspartate aminotransferase; eGFR: estimated glomerular filtration rate; MAP: mean arterial pressure; RACHS: Risk Adjustment for Congenital Heart
Surgery; RDW: red blood cell distribution width; SHAP: Shapley additive explanations.

Sensitivity Analysis
The XGBoost models showed good predictive performance for
CSA-AKI stages 2-3, with AUROCs higher than 0.85 in both
the derivation and the external validation cohorts, respectively
(Figure S5 of Multimedia Appendix 9). When the models were
applied to patients in different age groups or patients with
different surgical complexities, the performance of the models
remained stable (Figures S6-S10 of Multimedia Appendix 10).
The low- and high-risk cutoff values were identified to facilitate
clinical applications of the XGBoost models. The diagnostic
test characteristics of the models at the low- and high-risk cutoff
points are shown in Table 2. For example, the XGBoost model
applied to the combined data set yields the following clinically

relevant threshold values. The low-risk cutoff value is 0.099
with sensitivity of 95% and a negative predictive value of
98.3%; this value captures the vast majority of patients with
CSA-AKI and leaves out only a small proportion of those that
are falsely negative. The high-risk cutoff value of 0.374 has
specificity of 95% and a positive likelihood ratio of 12.12.
Therefore, the low-risk cutoff is appropriate for low-level
interventions, while the high-risk cutoff value can be used to
identify patients at high risk of CSA-AKI who require more
intensive interventions. Additionally, when we used the balanced
derivation cohort by upsampling or downsampling to train the
models, the models still achieved promising predictive
performance (Figures S11 and S12 of Multimedia Appendix
11).
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Table 2. Diagnostic test characteristics of the extreme gradient boosting models at the low- and high-risk cutoff points.

Negative likeli-
hood ratio

Positive likeli-
hood ratio

Negative predic-
tive value (%)

Positive predic-
tive value (%)

Specificity (%)Sensitivity (%)Cutoff

value

Models, cohorts

Models with only preoperative variables

Derivation cohort

0.092.0198.129.452.7950.103Low-risk
cutoff

0.4711.1291.169.89555.30.365High-risk
cutoff

External validation cohort

0.204.2598.228.980.184.30.103Low-risk
cutoff

0.9241.8891.98099.87.80.365High-risk
cutoff

Models with preoperative and intraoperative variables

Derivation cohort

0.092.2898.332.258.3950.099Low-risk
cutoff

0.4212.129271.69560.30.374High-risk
cutoff

External validation cohort

0.244.1397.728.380.580.40.099Low-risk
cutoff

0.7420.9493.466.798.727.50.374High-risk
cutoff

Discussion

Principal Findings
In this multicenter retrospective study, we developed and
externally validated prediction models for pediatric CSA-AKI
by using machine learning approaches. Multiple machine
learning algorithms were tested in the process of model
development, with the XGBoost algorithm ultimately identified
as offering the strongest discrimination. In addition, the
XGBoost models showed promising predictive performance on
both the preoperative-only and combined data sets,
demonstrating their potential usefulness for predicting pediatric
CSA-AKI. To the best of our knowledge, our study is the first
to establish machine learning models for CSA-AKI in the
pediatric population that are valuable for risk stratification and
clinical decision-making.

Previous studies have shown the advantages of machine learning
algorithms in predicting CSA-AKI in adults [14-19]. Lee et al
[14] were the first to apply machine learning approaches to
predict all stages of CSA-AKI in adults. Their study showed
that XGBoost performed better in predicting CSA-AKI than
either the traditional logistic regression or risk scores. Additional
prediction models based on machine learning algorithms were
developed to predict CSA-AKI in the Chinese adult population
[18]. Another study established the machine learning models
that incorporated the intraoperative time-series and other features
to predict adult CSA-AKI. In that study, the ensemble model
(random forest + XGBoost) showed the best predictive

performance [19]. However, the primary disease, comorbid
conditions, and renal physiology in the pediatric population
differ significantly from those in adults, which makes the adult
prediction models unsuitable for predicting CSA-AKI in
pediatric patients [35]. To date, no prediction model for
CSA-AKI with prospective applications of machine learning
techniques has been established for infants and children. In this
study, the models using the XGBoost algorithm had the strongest
predictive power among the considered machine learning
models. The XGBoost models were further validated using an
external validation cohort, and they exhibited consistent
predictive performance for pediatric CSA-AKI. Additionally,
the sensitivity analyses showed that the XGBoost models
displayed comparable predictive performance in most subsets
of patients grouped by age or complexity of surgery. Overall,
the results demonstrated the robustness and applicability of the
XGBoost models in pediatric patients undergoing cardiac
surgery.

Both preoperative and intraoperative factors proved to contribute
to the prediction of postoperative AKI. Tseng et al [19]
emphasized the value of intraoperative features that reflected
rapid physiologic changes during surgery relevant to the
prediction of CSA-AKI in adults. Another retrospective study
found that, by integrating preoperative and intraoperative
features, the model for postoperative AKI could reclassify 40%
of the false-negative patients from the preoperative model [36].
Our study shows that the XGBoost model combining the
preoperative and intraoperative variables achieved better
predictive performance than that with the preoperative variables
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only. Nevertheless, both models exhibited adequate predictive
power and potential utility for the preoperative or early
postoperative prediction of pediatric CSA-AKI. The preoperative
prediction could assist practitioners in evaluating the risk of
surgery and support the implementation of preventive strategies.
Early postoperative prediction is useful for optimizing
postoperative management and care plans, such as continuous
assessment of renal function, hemodynamic monitoring,
avoidance of nephrotoxin, or renal replacement therapy.

The SHAP method was used to uncover the black box of the
XGBoost models. This method is a model-agnostic explanation
technique that has been widely used to interpret the contribution
of predictors to the model output [37,38]. Consistent with an
updated systemic review, we found that lower baseline SCr,
longer perfusion time, longer operation time, higher baseline
eGFR, younger age, and lower body weight are associated with
the development of pediatric CSA-AKI [3,39]. We also
identified body length, intraoperative blood loss, serum
potassium, and serum calcium as important predictors of
CSA-AKI. Notably, 3 of the top 5 important predictors were
intraoperative variables, suggesting that the surgical procedure
itself has a significant impact on the occurrence of CSA-AKI.
During cardiac surgery, significant pathophysiological changes
may occur, such as ischemia-reperfusion injury, inflammation
response, or activation of coagulation pathways, which may
lead to renal injury and dysfunction [40]. Additionally, the
conventional logistic regression used in previous studies is
limited to revealing the linear relationship between the predictors
and CSA-AKI [41-43]. In contrast, the SHAP dependence plots
in our study reflected complex nonlinear relationships, which
can assist in understanding the association between the changes
in predictor variables and the risk of CSA-AKI.

Our findings have significant clinical implications. First, the
low- and high-risk cutoff values were identified to promote the
clinical application of the XGBoost models. This should allow
the care team to identify the patients at high risk of CSA-AKI
and to develop optimal perioperative management strategies.

Second, our models used the preoperative and intraoperative
variables that are routinely collected in clinical practice, thus
adding no extra laboratory tests or financial burdens to the
standard clinical care procedures. Third, the discovery of
modifiable predictors may promote early interventions to
mitigate the risk of CSA-AKI.

Limitations
Our study has several limitations. First, data were retrospectively
collected from electronic health records. Second, the study
population was restricted to tertiary medical institutions, as
pediatric cardiac surgery is typically not offered in primary
health care institutions in China. Thus, the applicability of our
prediction models needs further validation in diverse
populations. Third, the urine output criteria were not used to
define CSA-AKI because hourly urine output data were not
available for most patients. However, given the routine use of
diuretics in the intraoperative and postoperative periods to
maintain urine output, few patients with CSA-AKI were missed
in this study. Finally, the causality between the predictors and
CSA-AKI needs further exploration. Randomized controlled
trials would need to be performed to verify whether the
modification of certain predictors can prevent the occurrence
of CSA-AKI.

Conclusion
Our study demonstrates the applicability of machine learning
approaches in predicting the development of CSA-AKI in the
pediatric population. The XGBoost models had consistent and
clinically applicable performance in the derivation and external
validation cohorts, which indicated their robustness and
expandability. Additionally, the predictive value of the
preoperative and intraoperative factors was demonstrated by
the improved performance of the model when these factors were
combined. Ultimately, our models should prove useful in
assisting practitioners with risk stratification and clinical
decision-making in pediatric patients undergoing cardiac
surgery.
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Abbreviations
AUPRC: area under the precision-recall curve
AUROC: area under the receiver operating characteristic curve
CSA-AKI: cardiac surgery–associated acute kidney injury
eGFR: estimated glomerular filtration rate
KDIGO: Kidney Disease: Improving Global Outcomes
RACHS-1: Risk Adjustment for Congenital Heart Surgery-1
SCr: serum creatinine
SHAP: Shapley additive explanations
XGBoost: extreme gradient boosting
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