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Abstract

Background: In 2021 alone, diabetes mellitus, a metabolic disorder primarily characterized by abnormally high blood glucose
(BG) levels, affected 537 million people globally, and over 6 million deaths were reported. The use of noninvasive technologies,
such as wearable devices (WDs), to regulate and monitor BG in people with diabetes is a relatively new concept and yet in its
infancy. Noninvasive WDs coupled with machine learning (ML) techniques have the potential to understand and conclude
meaningful information from the gathered data and provide clinically meaningful advanced analytics for the purpose of forecasting
or prediction.

Objective: The purpose of this study is to provide a systematic review complete with a quality assessment looking at diabetes
effectiveness of using artificial intelligence (AI) in WDs for forecasting or predicting BG levels.

Methods: We searched 7 of the most popular bibliographic databases. Two reviewers performed study selection and data
extraction independently before cross-checking the extracted data. A narrative approach was used to synthesize the data. Quality
assessment was performed using an adapted version of the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2)
tool.

Results: From the initial 3872 studies, the features from 12 studies were reported after filtering according to our predefined
inclusion criteria. The reference standard in all studies overall (n=11, 92%) was classified as low, as all ground truths were easily
replicable. Since the data input to AI technology was highly standardized and there was no effect of flow or time frame on the
final output, both factors were categorized in a low-risk group (n=11, 92%). It was observed that classical ML approaches were
deployed by half of the studies, the most popular being ensemble-boosted trees (random forest). The most common evaluation
metric used was Clarke grid error (n=7, 58%), followed by root mean square error (n=5, 42%). The wide usage of
photoplethysmogram and near-infrared sensors was observed on wrist-worn devices.

Conclusions: This review has provided the most extensive work to date summarizing WDs that use ML for diabetic-related
BG level forecasting or prediction. Although current studies are few, this study suggests that the general quality of the studies
was considered high, as revealed by the QUADAS-2 assessment tool. Further validation is needed for commercially available
devices, but we envisage that WDs in general have the potential to remove the need for invasive devices completely for glucose
monitoring in the not-too-distant future.

Trial Registration: PROSPERO CRD42022303175; https://tinyurl.com/3n9jaayc
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Introduction

Background 
Despite advances over the past decades, including improved
life expectancy and quality of life [1], in 2021 alone, diabetes
mellitus, a metabolic disorder primarily characterized by high
blood glucose (BG) levels, affected 537 million people globally.
According to the International Diabetes Federation, over 6
million deaths were reported. These staggering figures are
projected to increase in the coming years, with forecasts
predicting that 643 million people (1 in 9 adults) will have
diabetes by 2030. Furthermore, it is estimated that 784 million
people will have diabetes mellitus by 2045 [2]. For people living
with diabetes, maintaining a normal range of BG levels is vital;
otherwise, short- or long-term complications can occur due to
hyperglycemia or hypoglycemia. The risk of
cardiovascular-related disease is dramatically increased if a
higher than optimal BG level is observed, which could
ultimately lead to death. Complications can also lead to heart
attacks, strokes, loss of vision, kidney failures, and nerve
damage, as well as complications during pregnancy. The World
Health Organization outlines the need for collaborative
intervention from various stakeholders, such as health care
providers, governments, medicine suppliers, and food suppliers,
along with the technology industry, which is seen as a key
component, for there to be a significant impact in the reduction
of diabetes [3].

Despite breakthroughs in BG monitoring techniques, most
detection technologies remain invasive. The commonly used
home electronic glucose meters need the person with diabetes
to invasively self-prick to extract blood from the fingertips of
the person with diabetes, exposing the person with diabetes to
infections as well as stress and suffering caused by the recurrent
operation, which is often expected numerous times per day. The
availability and improvements of smart gadgets such as
smartphones have made diabetes-related functions more
accessible. Many studies have been conducted to investigate
this much-appreciated technology [4,5]. These often still
necessitate the use of an externally attachable sensor, and
monitoring is then given via an app or a separate continuous
glucose monitoring device, which is often semi-invasive and
requires connectivity range via Bluetooth or Wi-Fi signal. The
use of completely noninvasive technologies, such as wearable
devices (WDs), to regulate and monitor BG levels in people
with diabetes is a relatively new concept and still in its infancy.
Researchers have reported on the efficacy of sensors in
commercially accessible products such as smart watches and
smart bands in diabetes monitoring [6,7].

When used properly, these technologies are affordable and easily
accessible, and they can improve the quality of life of patients
noninvasively. Due to their wide adoption and acceptance
globally, researchers and patients have a unique opportunity to
leverage WDs for the purpose of providing noninvasive medical

care away from hospital settings in a portable yet affordable
manner. Even though WDs do not possess the capabilities of
smartphones, they are increasingly able to gather, store, transmit,
and process data, the features of which can be applied for
management, treatment, assessment, forecasting (based on past
observations), and even prediction (taking associated data into
consideration, eg, diet, activity, and medications along with
previous BG values), the latter 2 terms often used
interchangeably. For the purpose of this study, neither did we
distinguish these terms in our search and filter processes as this
is how we found their usage in the reviewed studies, nor did we
attempt to classify them according to these definitions. Many
WDs are often linked through Wi-Fi or Bluetooth to external
devices such as smartphones, where computationally intensive
processing is conducted for the simple purpose of storage or as
a gateway to cloud spaces. Cloud storage allows physicians to
monitor patients without requiring hospitalization. Several
valuable sensors are already integrated into WDs like
smartphones, including near-infrared (NIR) accelerometer,
galvanic skin response, electrocardiogram, and
photoplethysmography (PPG) sensors. Due to WDs being in
close contact with the user, they provide further advantages
over external sensor-driven devices when it comes to sensing
physiological signs such as skin temperature and heart rate. This
is particularly interesting for forecasting and monitoring
diabetes-related metrics.

To digest meaningful knowledge from the large amounts of
continuous data generated by WDs, artificial intelligence (AI)
algorithms are used to provide advanced and clinically
meaningful analytics. Machine learning (ML) as a terminology
is often used interchangeably with AI, although technically it
is a subset of AI. As a broad definition, AI is when machines
are made smarter, and ML is a set of AI algorithms that learn
patterns from data while having the ability to self-learn; over
time, they get ever smarter without human intervention. Deep
learning is a further branch of AI, which processes large amounts
of data using neural networks that are computational models
mimicking the human brain. There are 2 types of ML algorithms
classifications: classical and modern. In comparison to modern
approaches, classical methods require less training data and
computer resources for pattern recognition. Modern approaches,
on the other hand, frequently outperform traditional ones. Deep
learning is a modern ML methodology in which algorithms
replicate the brain’s neural networks to train with or without
supervision; yet, unlike classical ML approaches, which are
easy to explain, it might suffer from the “black box” problem.
While some researchers have produced prototypes specifically
designed with diabetes in mind, many have taken existing WDs
not originally designed for diabetes management and adapted
them by changing the sensory data in order to use them for
diabetes-related metrics [8,9]. WDs have a wide range of uses,
including forecasting, diagnostics, glucose estimation,
monitoring, prevention, and classification. Unfortunately, the
reported studies are still low compared to that of smartphones.
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By using ML algorithms from the expanding field of AI and
correctly managing and processing enormous amounts of data,
there is untapped potential to improve the quality of life for
those with diabetes.

Research Gap and Aim
Several studies have explored the use of WDs that use ML
models for forecasting BG levels, but the evidence from these
studies is scattered. Existing studies may also have different
scopes and various aims, and therefore, systematic reviews are
needed to aggregate the available evidence and draw conclusions
about their effectiveness. A recent systematic review looked at
mobile and wearable technology for monitoring parameters
related to diabetes mellitus; although the authors report some
ML features of each review, it does not include in-depth
extraction of features (ie, the focus is not on AI) [10].
Furthermore, the same study does not report metrics related to
the performance of ML algorithms used within each reviewed
study, such as accuracy, Clarke grid error (CGE), and root mean
square error (RMSE). Another recent systematic review does
report outcome metrics such as sensitivity and accuracy.
Although their review contains WDs within, the focus was on
any technologies using deep learning for diabetes care, therefore
no in-depth ML-related features were extracted [11]. Other
recent reviews in this field are not detailed systematic reviews
that focus on using ML; rather, they discuss the development
of WDs for glucose biosensing [12] or the current status and
challenges with available devices [13]. To address these
limitations, this review aims to examine the effectiveness of
WDs that use ML models for the purpose of BG-level
forecasting. To the best of our knowledge, this is the first
systematic review covering this topic.

Methods

Study Registration
This systematic review was conducted following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [14]. The protocol has been registered
with the International Prospective Register of Systematic
Reviews (PROSPERO; ID: CRD42022303175).

Search Strategy

Search Sources
To identify relevant studies, 6 electronic databases were
searched: MEDLINE, PsycInfo, Embase, IEEE Xplore, ACM

Digital Library, and Web of Science. Google Scholar was used
to identify further grey literature. We inspected the first 100
hits retrieved by searching Google Scholar, as it sorts by
relevance according to the search topic, typically returning
several hundred items. The bibliographic collection took place
from October 25, 2021, to October 30, 2021. The reference lists
of the included articles were then searched for additional
sources. The relevant papers that cited the included studies using
Google Scholar’s “cited by” tool (forward reference list
checking) were also checked.

Search Terms
Keywords were compiled by authors according to each database
term; for example, IEEE and Google Scholar limit search queries
were truncated based on their allowed limits. We applied a
combination of keywords, “Diabetic” OR “Diabetes” describing
the relevant population (diabetes), with each kind of relevant
intervention to wearables (“wearable*” OR “smart watch*” OR
smartwatch* OR “fitness band*” OR “flexible band*” OR
“wristband*” OR “smart insole*” OR “bracelet*”) and AI
(“Artificial Intelligence” OR “Machine Learning” OR “Deep
Learning” OR “Decision tree” OR “K-Nearest Neighbor*” OR
“Support vector machine*” OR “Recurrent neural network*”
OR “convolutional neural network*” OR “Artificial neural
network*” OR “Naïve Bayes” OR “Naive Bayes” OR “Fuzzy
Logic” OR “K-Means” OR “Random Forest” OR “LSTM” OR
“autoencoder” OR “boltzmann machine” OR “deep belief
network”). For example, the following search term was applied
in Google Scholar: (“Artificial Intelligence” OR “Machine
Learning” OR “Deep Learning” OR “convolutional neural
network*” OR “Artificial neural network*”) AND (wearable*”
OR “smart watch*” OR “smart*”) AND (“Diabetic” OR
“Diabetes”). A search time limit was set within the query from
2015 to the present, and the language in each database was set
to English only.

Study Eligibility Criteria
The eligibility of the retrieved studies was checked against the
criteria shown in Textbox 1. We included peer-reviewed articles
and proposals that were about AI-driven WDs used by
individuals for forecasting BG outside of a clinical setting. AI
for the purpose of diabetes was a key criterion for inclusion,
and the process had to be noninvasive. Refer to Textbox 1 for
inclusion and exclusion criteria.
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Textbox 1. Inclusion and exclusion criteria.

Inclusion criteria

• Publications that are in English and published in 2015 and onwards

• Peer-reviewed articles and proposals

• Population with, or suspected to have, diabetes. No restrictions regarding age, gender, and ethnicity

• Commercial, medical, or prototypes but with condition wearable device and uses artificial intelligence (AI)

• Wearable useable by individual person not with the help of clinical staff or plugged in to hospital setting

• Wearables using methods for diabetes analysis are to be noninvasive

• Empirical studies looking at blood glucose levels in diabetes

Exclusion criteria

• Publications that are not in English, published before 2015, and not peer-reviewed

• Nondiabetic-related population

• Any study that does not contain AI as an intervention

• Not a wearable device (eg, artificial implant or body-infused device)

• Studies that include only statistical measures for the analysis of collected data

• Sensors or tracking devices infused inside a person’s body

• Wearable devices that need professional or hospital sittings

Selection Process
For study selection, 2 reviewers (first and second author) having
identified and removed duplicates independently reviewed the
titles and abstracts of all retrieved papers. In the second phase,
the reviewers read the full texts of the papers included in the
first step. All the articles acquired from databases in a Research
Information Systems format were uploaded to Rayyan software
(Qatar Computing Research Institute, Hamad Bin Khalifa
University) [15], a web-based tool for data management of
systematic reviews. Rayyan was used to filter citation
management. Throughout the process, any disagreements
between the 2 reviewers were resolved through consensus via
discussion and a third reviewer (third coauthor). To examine
interrater agreement among reviewers, Cohen κ [16] was
computed, and it was 0.88 and 0.91 in the first and second steps
of the selection procedure, respectively, suggesting a very
excellent degree of agreement.

Data Collection Process
A data extraction form was designed by the first and second
authors, as shown in Multimedia Appendix 1. The same 2
authors extracted the data using MS Excel, and any
discrepancies were resolved by discussion and agreement.

Study Risk of Bias (Quality) Assessment and Concerns
of Applicability
Two reviewers independently assessed the risk of bias of the
included using an adapted version of the Quality Assessment
of Diagnostic Accuracy Studies—Revised (QUADAS-2) tool
[17]. A checklist was compiled after consulting other similar
study approaches [18-20]. A third reviewer resolved
disagreements between both reviewers. This tool is intended
for use in systematic reviews to assess the risk of bias and
applicability of primary diagnostic accuracy studies. The quality
of chosen publications was assessed using the QUADAS-2
criteria, which evaluated four domains: (1) patient selection,
(2) index test, (3) reference standard, and (4) flow and timing.
As shown in Table 1, the signaling questions for each
QUADAS-2 domain were adapted to the purpose of this
evaluation. For each domain, this evaluation gave a risk of bias
to research and ranked it as low (score=2), high (score=1), or
unclear (score=0). Each study’s total score was computed by
summing the number of satisfied criteria for each signaling
question following under respective domains, with a higher
score reflecting greater methodological quality. The 2
independent reviewers (authors 1 and 2) piloted the adapted
QUADAS-2 tool (a checklist was formed after consultation
with similar papers) before applying it to the selected studies
(12 articles), and disagreements were addressed by consensus.
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Table 1. Quality Assessment of Diagnostic Accuracy Studies-2 criteria used for qualitative assessment description.

Flow and timingReference standardIndex testPatient selection

Signaling question 1: Was there an
appropriate interval between index
tests and reference standard?

Signaling question 1: Is the refer-
ence standard likely to correctly
classify the target condition?

Signaling question 1: Data acquisi-
tion methods detailed?

Signaling question 1: Data prepro-
cessing specified?

Signaling question 2: Did all pa-
tients receive a reference standard?

Signaling question 2: Were the ref-
erence standard results interpreted
without knowledge of the results of
the index test?

Signaling question 2: BGa-level
forecasting or prediction approach
detailed? That is, network architec-

ture provided or MLb models param-
eters?

Signaling question 2: At least 50
participants were selected for analy-
sis

Signaling question 3: Sufficient de-
tail to allow replication about defini-
tion of ground truth (Was the
method described in sufficient detail
to reproduce the presented results?)

Signaling question 3: More than one
performance metrics used

Signaling question 3: Balance of
number of participants within the
subgroups (ie, diabetic or nondiabet-
ic, male or female, healthy or some
disease)

aBG: blood glucose.
bML: machine learning.

Data Synthesis Methods
The narrative technique was used to synthesize the data from
the included research. Narrative research is a broad term that
encompasses a wide range of methods that rely on people’s
written or spoken words, as well as visual representations [14].
Study information and data were synthesized by the second
author from an Excel data extraction sheet related to the
characteristics of recognized studies meeting the inclusion or
exclusion criteria. The focus of the analysis was on studies that
make use of AI and ML technologies for diabetes patients’
management and handling via WDs for BG level forecasting
or prediction.

A traditional meta-analysis was not possible due to (1) the
paucity and lack of raw data required to meta-analyze accuracy
measures and (2) the considerable clinical and methodological
heterogeneity in the included studies in terms of characteristics
of WDs (eg, WD type, placement of the WD, device brand, and
sensing approach), AI algorithms (eg, ML category, data size,

data type, and type of validation), and performance metrics (eg,
accuracy, mean absolute deviation, RMSE, and Clarke grid
error). Due to this, we were unable to comment on pooled
metrics. Previous systematic reviews looking at the application
of AI also reported similar reasoning [19,21].

Results

Study Selection
Having searched 7 bibliographic databases, this study returned
3872 citations. As shown in Figure 1, we subsequently removed
294 duplicates. Further, 3422 records were excluded after
checking their titles and abstracts for the reasons reported in
Figure 1. Of the remaining 156 references, 144 publications
were excluded during the full-text screening. With 12 studies
remaining, this number remained unchanged even after
performing backward and forward reference list checking. The
final synthesis includes 12 studies that met our inclusion criteria.
Figure 1 illustrates the PRISMA process that was followed.
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses chart. IC: inclusion criteria; EC: exclusion criteria.

Study Characteristics
Table 2 shows that 6 of the included articles were published in
2019, whereas 2018, 2020, and 2021 each have 2 publications.
The countries of Asia mainly Bangladesh, China, Pakistan,
India, Sri Lanka, and Taiwan had the most publications (n=8,
66%), followed by North America, which included the United
States and Mexico (n=3, 25%), and Europe, comprising
Switzerland, had single study. The number of participants was
reported in 10 studies and ranged from 2 to 514 subjects, with

an average of 77 subjects. The diversity in participants was
observed in a number of publications, such as the selection of
people with diabetes in 42% (n=5) or gender differences in 50%
(n=6) of studies. Half of the studies (50%) specified the age
range of included participants, and all of them contained
participants in the age range of 18-50 years. The duration of
data collection from participants varies from study to study,
with a minimum duration of 8 seconds and a maximum duration
of 7 months.
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Table 2. Study metadata and population characteristics.

Duration of data collectionAge (years)Medical conditionsMale, nParticipants, nCountryYearStudy

N/Aa18-71Diabetics112200Pakistan2020Hina et al [22]

MonthsNRbDiabeticsN/A71Switzerland2018Alfian et al [23]

Minutes18-44N/AN/A514Mexico2019Alarcon-Paredes et al [24]

Days22-25DiabeticsN/A25Bangladesh2019Islam et al [8]

N/A40-50N/ANR50Sri Lanka2019Kularathne et al [25]

Seconds24-50N/A2646India2020Joshi et al [26]

WeeksNRDiabetics48China2019Zhou et al [27]

MinutesNRN/A1215Bangladesh2019Mahmud et al [28]

Days35-65Prediabetics716United States2021Bent et al [29]

N/ANRN/AN/AN/ATaiwan2021Lee et al [9]

SecondsNRN/AN/AN/AUnited States2019Shrestha et al [30]

N/ANRN/AN/A2China2018Li et al [31]

aNA: not applicable.
bNR: not reported.

Quality Assessment Results

Risk of Bias in Studies
In the patient selection domain, over one-third of the studies
(n=6, 38.5%) reported a high risk of bias in patient sampling as
they did not use an appropriate sampling process to select
diverse participants among different subgroups. Incomplete
coverage of data processing measures were taken for the
conversion of WD-attained data as input to AI models (Figure
2). In most studies, the sample size was less than adequate for
training and testing algorithms, which minimizes the impact of
overfitting and enhances the quality performance metrics [32].
The risk of bias in index tests was rated as low in most studies
(n=11, 92%), due to proper documentation of the nature of the
tests, where the models’ data acquisition process, network
architecture details, forecasting methodologies, and reasons

were specified. The index test was evaluated on multiple
performance metrics, thus better signifying the model prediction
accuracy. Most of the studies used medically approved invasive
methods for diabetes measurements as a reference standard, but
one did not specify the details, which led to an unclear risk of
bias. The reference standard in all studies overall (n=11, 92%)
was classified as low as all ground truths were easily replicable.
Since the data input to AI technology was highly standardized
and there was no effect of flow or time frame on the final output,
both factors were categorized in a low-risk group (n=11, 92%)
except for one study that did not specify details and another that
used a subset of participants and only considered the availability
of better results if a specific medical condition (low BG level)
was targeted. Multimedia Appendix 2 shows the QUADAS-2
tool risk of bias judgment in each included study across all 3
domains as well as applicability concerns for each study.

Figure 2. Risk of bias assessment.

Concerns of Applicability
Figure 3 demonstrates the applicability concern in the patients’
selection domain. It was considered high in the majority of

included studies (n=4, 33%) as the patient’s characteristics and
the condition and setting of each test do not match the review
question and criteria. Some studies selected participants
randomly without checking their diabetic conditions, while

J Med Internet Res 2023 | vol. 25 | e40259 | p. 7https://www.jmir.org/2023/1/e40259
(page number not for citation purposes)

Ahmed et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


some selected patients from other medical illnesses without
considering the target audience. Similarly, in the index test, the
included studies were deemed to have a low applicability issue.
This is because the AI algorithm approach used in the included
research corresponds to the review definition of AI. However,

the reference standard’s applicability was assessed as unclear
and high in single studies because the data samples in these
studies were acquired from various databases without detailing
selected conditions. Multimedia Appendix 3 demonstrates the
details regarding each domain.

Figure 3. Concerns of applicability.

Features of WD
Most studies developed their prototype (n=9, 75%), whereas
only 25% (n=3) made use of commercially available WDs
(Figure 4). As shown in Table 3, the most common type of WD
used in the included studies was wearable sensors at 58% (n=7).
More than half of the WDs were wrist-worn (n=7, 58%),
followed by finger-worn (n=3, 25%). The Raspberry Pi Zero
device brand was the most popular among studies (n=3, 25%).
The sensing approach opted by most of the devices was
opportunistic (n=7, 58%), where minimal to no input data were
required from the participant’s side and sensors automatically
collected data, while others (42%, n=5) used a participatory
approach, where users’ input was exclusively required. Most

of the studies used a single WD (n=10, 83%). The sensing
technology type used in WDs was either built-in devices or
comprised of multiple sensors incorporated in more than 1
device. Among the sensors used, NIR sensing was the most
used (n=5, 42%) in combination with other sensors, followed
by PPG sensor usage (n=5, 42%). The smartphone was the most
common (n=6, 50%) gateway device used in studies for
transferring data from WDs to end-host devices. The mode of
data transfer between end points was mostly Bluetooth (n=5,
42%), followed by internet technology (n=3, 25%) consisting
of either Wi-Fi signals or cellular networks; 5G technology was
also observed. The end data host device (ie, where data were
processed or stored) was cloud services, in half of the studies
(n=6, 50%).

Figure 4. Evolution of wearable technology type.
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Table 3. Features of wearable devices used for blood glucose forecasting or prediction.

Mode of da-
ta transfer

Host de-
vice

GatewaySensing typeDe-
vices,
n

Sensing

approach

Device tech-
nology or
brand

Place-
ment of
wear-
able de-
vice

Wearable de-
vice type

Wearable
technology
type

Authors

N/AN/AN/ANIRb, PPGc1ParticipatoryN/AaFingerWearable
sensor

PrototypeHina et al
[22]

BluetoothCloudSmart-
phone

BLEd sensors4ParticipatoryMi Band 2:
Mi Band 2,
Mi Smart
Scale, Care-
sens, and
Omro

WristSmart wrist-
band

Commer-
cial

Alfian et
al [23]

N/AN/AN/APPG sensor and

GSRe sensor

1ParticipatoryN/AHandWearable
sensor

PrototypeAlarcon-
Paredes
et al [24]

InternetSmart
devices

N/ARaspberry Pi cam-
era

1ParticipatoryRaspberry Pi
Zero

FingerWearable
sensor

PrototypeIslam et
al [8]

InternetSmart
devices

N/ATilt switch sensor,
calibrated load cell

sensor, DHT22f

1OpportunisticRaspberry Pi
Zero

FootWearable
sensor

PrototypeKu-
larathne
et al [25]

InternetCloudSmart-
phone

NIR1OpportunisticN/AFingerWearable
sensor

PrototypeJoshi et al
[26]

BluetoothCloudSmart-
phone

NIR and ECGg1OpportunisticGlutracWristSmart watchCommer-
cial

Zhou et
al [27]

WiredRaspber-
ry Pi

N/APPG, temperature,
GSR sensors

2OpportunisticArduino
Nano, Rasp-
berry Pi

WristSmart watch
and wearable
sensor

PrototypeMahmud
et al [28]

BluetoothCloudSmart-
phone or
PC

PPG, ACCh, EDAi,
or GSR sensor, in-
frared thermopile

1OpportunisticEmpatica E4WristSmart wrist-
band

Commer-
cial

Bent et al
[29]

BluetoothCloudSmart-
phone

PPG and NIR1OpportunisticCustomWristSmart watchPrototypeLee et al
[9]

BluetoothCloudSmart-
phone

Metal oxide semi-
conductor–based
chemical sensors

1ParticipatoryN/AWristSmart wrist-
band

PrototypeShrestha
et al [30]

N/ANoneN/ANIR1OpportunisticCustomWristWearable
sensor

PrototypeLi et al
[31]

aN/A: not applicable.
bNIR: near-infrared.
cPPG: photoplethysmography.
dBLE: Bluetooth low energy.
eGSR: galvanic skin response.
fDHT22: digital-output relative humidity and temperature sensor.
gECG: electrocardiogram.
hACC: accelerometer.
iEDA: electrodermal activity.

AI-Related Features of WDs
A hierarchical categorization of the ML approaches was used
in the chosen research; Figure 5 illustrates this. We observed
that classical ML approaches were deployed by half of the
studies (n=6, 50%) of those who mostly opted for
ensemble-boosted trees mainly comprising random forest (n=5,
42%). In the majority of modern approaches, artificial neural

networks–type convolutional neural networks (n=3, 17%) were
used.

The input data used for ML models by a quarter (n=3, 25%) of
the publications were BG levels, PPG signals, or NIR. Among
all the other included articles, Shrestha et al [30] did not disclose
the input details of the model. The validation method used by
most of the studies was train or test split (n=8, 67%). The data
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decomposition of data sets used in studies was done based on
the number of samples selected; the majority of the studies have
separate data samples collected for testing purposes (n=5, 42%).
The best models identified among studies from classical models
were random forest (n=3, 25%) and convolutional neural
network (n=3, 25%) in modern. Multiple and varied evaluation
metrics were reported by studies, and the evaluation outcomes
of the corresponding best models in each study are reported in
Table 4. The most common evaluation metric used was CGE
(n=7, 58%), followed by RMSE (n=5, 42%). However, owing
to the lack of a uniform assessment metric across research, we

do not summarize the reported metrics (calculation of mean,
SD, etc). To validate the performance of ML models for
forecasting or predicting BG levels from wearable data collected,
all the studies made use of at least 1 ground truth method for
reference glucose measurement. More than half of the studies
made use of medical devices (med-devices; n=10, 83%) such
as, glucometer or any portable device method used in daily
routine. Other options used for ground truth collection were
medical tests that may comprise laboratory blood tests or
medical examinations, which were used by 25% (n=3), and an
expert opinion was opted for in one of the studies [23].

Figure 5. Hierarchical categorization of machine learning approaches.
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Table 4. Artificial intelligence–related features of wearable devices for forecasting.

Ground truthReported best diag-
nostic performance
of model

Algorithm
best perfor-
mance

Data set decomposi-
tion

Data valida-
tion method

InputAlgorithm used
for forecasting
or predictions

Machine
learning
category

Author

Med-deviceFGSVRTrain or test
split

PPGc signalLinear regres-

sion, FGSVRa,

ClassicalHina et al
[22]

•• Coefficient of
determination

(R2): 0.937

Training: 60% of
200 subjects

• Validation: 40%
SVRb, and en-

• mARDd:semble-boosted
trees 7.62%

• RMSEe: 11.20
mg/dL

• Clarke error
grid: 95%

Expert and
med-device

LSTMTwo BG data sets:Train or test
split

Insulin dose,

BGg level,
LSTMfModernAlfian et

al [23]
• Correlation co-

efficient (r) and
RMSE

• Data set 1: 148
recordsmeal inges-

tion, and ex- • (Data set 1)
RMSE: 25.621

• CGMh data set:
single diabetesercise activi-

ty mg/dL, r:0.647
patient taken: • (Data set 2)

RMSE: 2.28526,167 records

mg/dL, r: 0.999Both data sets used
80% for training and
rest for testing

MedicalANNK-fold cross
validation,

Fingertip im-
ages

NDi—ANNjModernAlarcon-
Paredes
et al [24]

•• MAEMk: 10.37Training: 514
hostograms • Clarke grid er-

ror: 90.32%train or test
split

• Train or test (for
model selection):
70% of whole
data set

• Validation subset
(model valida-
tion): 30%

Med-deviceCNNTrain or test
split

PPG signal,

GSRm, and
BG

CNNlModernIslam et
al [10]

•• Clarke grid er-
ror: 80%

210 data points
• Training: 204 da-

ta points
• Testing: 6 data

points (4 nondia-
betic and 2 dia-
betic)

Medical and
med-device

Linear re-
gression

NANAnAge, BMI,
current
blood glu-

Linear regres-
sion

ClassicalKu-
larathne
et al [25]

• MSEo: 0.0150
• R2 score:

0.7834cose level,
• Variance score:

0.7346
genetic fac-
tors, smok-
ing,
HbA1c,Carbs

Medical and
med-device

MPR3Train or test
split

NIRq signalsDeep neural

network, MPRp
Classical
and mod-
ern

Joshi et al
[26]

•• mARD: 4.86%Training sam-
ples: 187 • AvgE: 4.88%

• Testing samples:
46

• Mean absolute
deviation:
9.42%

• RMSE: 13.57
mg/dL

Med-deviceRFTrain or test
split

NIR signals,
heart rate
variability,

RFrClassicalZhou et
al [27]

•• Clarke grid er-
ror: 80.35%

Training sam-
ples: ND

• Avg RMSE:
1.44 mg/dL

• Test samples:
168pulse trans-

fer time, BG
level
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Ground truthReported best diag-
nostic performance
of model

Algorithm
best perfor-
mance

Data set decomposi-
tion

Data valida-
tion method

InputAlgorithm used
for forecasting
or predictions

Machine
learning
category

Author

Med-device• Clarke grid er-
ror (values not
mentioned)

CNN• Training sam-
ples: 15 instance
data of 15 sub-
jects

• Testing: another
25 data

• Chosen data
length: 1024

Train or test
split

Infrared
channels,
GSR and
temperature
signal

CNNModernMahmud
et al [28]

Med-device• RMSE: 35.7
mg/dL

• Mean absolute
percentage er-
ror: 5.1%

RF• Training: 16 par-
ticipants

• Testing: 10 par-
ticipants

Train or test
split, leave
on out

Interstitial
glucose sum-
mary and
glucose vari-
ability met-
rics

Multiple regres-
sion model, RF

ClassicalBent et al
[29]

Med-device• Clarke error
grid: 84.29%

CNN349 of PPG data sam-
ples:
• Training: 279

sets
• Testing: 70 sets

Train or test
split

PPG signalCNNModernLee et al
[9]

Med-device• Accuracy: 97%SVMNANANASVMsClassicalShrestha
et al [30]

Med-device• MAE: 17.27%
• Clarke error

grid: 56.52%

RFNANANIR signalRFClassicalLi et al
[31]

aFGSVR: fine Gaussian support vector regression.
bSVR: support vector regression.
cPPG: photoplethysmography.
dmARD: mean absolute relative difference.
eRMSE: root mean square error.
fLSTM: long short term memory.
gBG: blood glucose.
hCGM: continuous glucose monitoring.
iND: not defined.
jANN: artificial neural network.
kMAE: mean absolute error.
lCNN: convolutional neural network.
mGSR: galvanic skin response.
nNA: not applicable.
oMSE: mean square error.
pMPR: multiple polynomial regression.
qNIR: near-infrared.
rRF: random forest.
sSVM: support vector machine.

Discussion

Principal Findings
ML for BG forecasting using WDs holds great promise. Most
of the studies reported RMSE and CGE for evaluation purposes,
with only a couple of studies reporting high accuracy as a metric.
Support vector machine algorithm was reported in 1 study with
up to 97% accuracy. The general quality of the studies was
considered high, as revealed by the QUADAS-2 assessment

tool. The patient selection category was deemed low in half the
studies, largely due to an inappropriate sampling process for
selecting diverse participants among different subgroups. There
were also no real applicability concerns in the quality assessment
of the majority of the studies, except in the patient selection
domain. The features extracted reflect the current situation as
to the technologies that are commercial products, but also
identify what the future holds with many prototypes in the
included studies. This field is very much in its infancy, but we
hereby provide insight for researchers with our findings.
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Strengths
This review followed the PRISMA extension for systematic
reviews, and the protocol was preapproved by International
Prospective Register of Systematic Reviews. The authors believe
that by providing the quality assessment aspect, this is the first
in-depth review of its kind focusing on WDs targeting BG level
forecasting for diabetes using AI techniques. Compared to
previous reviews, we consider our list of extracted features to
be exhaustive in this field. The authors consisted of experts in
the research computer science field as well as medical research
practitioners, which allowed the exploration of current
technologies in detail. As a result, this review reports
high-impact findings to help identify gaps in the research
community. The most popular databases were searched within
the IT and health care fields, with further searches in Google
Scholar and forward and backward reference list checking, thus
reducing the risk of publication bias by allowing an exhaustive
search of the literature.

Limitations
A traditional meta-analysis was not possible due to the paucity
of raw data required to meta-analyze evaluation metrics.
Furthermore, there was considerable clinical and methodological
heterogeneity in the included studies. Studies in the English
language published between 2015 and 2021 were included;
therefore, there is the possibility that some relevant studies were
overlooked. Devices that could not be classified as WDs were
excluded, such as electroencephalogram and electrocardiogram
machines limited to hospital settings. The focus was on AI;
therefore, studies that only had a statistical measurement, which
is not considered an AI approach, were excluded. WD brands
within our keyword searches, such as Fitbit and Apple Watch,
were not included as this would return too many irrelevant
results; this is in line with previous review search strategies.
However, as a result, some relevant studies may have been
missed in the search.

Practical and Research Implications
There are several practical and research implications for this
work. For practical implications, we find that noninvasive
methods for calculating BG levels for people with diabetes to
forecast BG levels are a much-welcomed advancement in this
field. The ability to have such sensors on WDs that can be both
stylish and fashionable, the ability to be paired with other smart
devices, and general connectivity to clouds allows for continuous
collection of data using many biosensors. This allows the
measurement of vitals and biosignals without user interference;
all of these reasons allow for a wider acceptance than existing
traditional approaches such as continuous glucose monitoring.
Despite the fact that there have been many studies published
using WDs for diabetes, we found a lack of those that reported
usage of ML and only a handful used for the purpose of BG
forecasting. Although the number of studies reported in this
paper is small, there is great promise due to the general quality
assessment, including the accuracy levels of the ML approaches
used at high levels. We see that a lot of studies are still
developing their prototypes, whereas the existing commercially
available devices that have already been thoroughly tested for
usability and are already popular products on the market can

easily be repurposed. Commercial devices are waiting to be
validated with ML applications by researchers and reported in
scientific journals; a quick search on retail sites reveals many
commercial devices that claim to measure BG levels but have
no associated studies. Adapting these existing devices would
instill consumer confidence if engineers and data scientists came
together and further validated these devices by reporting their
effectiveness when ML techniques are applied to the generated
data. Currently, there is no standard way studies are reporting
performance and accuracy. Even when papers report high
accuracy, this can be misleading, as from a clinical perspective,
it is not important when BG levels are normal or around the
normal band; the real applicability of the algorithm is in the
glycemic event range. Therefore, the accuracy of these
algorithms needs to be measured and reported in the range where
it matters. Studies need to report these findings and not just
average accuracies, providing readers with more clinically
meaningful metrics. We feel it is high time that devices often
classified as WDs, such as continuous glucose monitoring,
which are still semi-invasive, should be less of a focus, and that
studies should now focus on completely noninvasive devices,
such as commercially available smart watches that make use of
noninvasive sensors. There are also many opportunities within
the IoT field; again, we feel there could be more integration of
WDs used for BG monitoring with existing technologies and
ML with Alexa, Google Homes, and Apple Watches. This could
allow endless opportunities for gathering data from multiple
sensors in real-time and personal patient data. Of course, the
issue of privacy and data sovereignty needs to be taken seriously
when it comes to mass data storage on cloud-based systems and
the various interconnected devices, hospital datacenters, and
consent legal and moral obligations. A multidisciplinary effort
from medical practitioners, engineers, and legal experts is
needed.

Conclusions
A comprehensive systematic review, including quality
assessment looking at WDs for BG level forecasting using AI
and WDs, is presented following PRISMA guidelines and the
QUADAS-2 tool for quality assessment.

Despite the low study numbers reported, we see great promise
due to the general quality assessment, including the high
accuracy levels of the ML approaches used. There is a large
scope for further quality studies in this field.

The research community needs to differentiate between
forecasting (based on past observations) and prediction (taking
associated data, such as diet, activity, and medications along
with a previous BG value, into consideration). For this study,
we did not categorize studies based on the difference in
definitions of these 2 terms as we found them used
interchangeably in the reviewed studies.

While there are commercial-grade WDs, to the best of our
knowledge, none of these devices have undergone safety and
efficacy trials to be classified as medical-grade (FDA or CE),
thereby currently limiting their use in clinical decision support.
For example, insulin pumps, especially for patients with type
1 diabetes, require BG devices to be safe to ensure automated
delivery of proper insulin dosage. However, WDs hold real
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promise, largely due to the broader consumer acceptance of
commercially available devices coupled with their noninvasive
sensors allowing for BG forecasting, which have been used
using ML approaches for patients with diabetes. These WDs
are getting better over time due to (1) the development of more
accurate noninvasive sensors and (2) improved ML algorithms
that not only use past BG values (forecasting) but also consider
other information such as activity, sleep, and BMI that are also
actively being measured by collocated sensors for better
prediction.

Researchers have an opportunity to perform studies and
validation on commercially available devices. This field is very

much in its infancy, but we hereby provide insight for
researchers with our findings.

We envisage the elimination of invasive devices due to WDs,
but for this to happen, commercial WD manufacturers need to
make raw data available as opposed to black box outputs
calculating diabetes-related parameters. For example, major
players currently do not provide raw PPG signals despite using
PPG or NIR sensors, with the exception of devices such as
Empatica; this restricts research studies to validate and optimize
parameters related to glucose management and BP against
traditional measurements.
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