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Abstract

Background: Most existing automated sleep staging methods rely on multimodal data, and scoring a specific epoch requires
not only the current epoch but also a sequence of consecutive epochs that precede and follow the epoch.

Objective: We proposed and tested a convolutional neural network called SleepInceptionNet, which allows sleep classification
of a single epoch using a single-channel electroencephalogram (EEG).

Methods: SleepInceptionNet is based on our systematic evaluation of the effects of different EEG preprocessing methods, EEG
channels, and convolutional neural networks on automatic sleep staging performance. The evaluation was performed using
polysomnography data of 883 participants (937,975 thirty-second epochs). Raw data of individual EEG channels (ie, frontal,
central, and occipital) and 3 specific transformations of the data, including power spectral density, continuous wavelet transform,
and short-time Fourier transform, were used separately as the inputs of the convolutional neural network models. To classify
sleep stages, 7 sequential deep neural networks were tested for the 1D data (ie, raw EEG and power spectral density), and 16
image classifier convolutional neural networks were tested for the 2D data (ie, continuous wavelet transform and short-time
Fourier transform time-frequency images).

Results: The best model, SleepInceptionNet, which uses time-frequency images developed by the continuous wavelet transform
method from central single-channel EEG data as input to the InceptionV3 image classifier algorithm, achieved a Cohen κ agreement
of 0.705 (SD 0.077) in reference to the gold standard polysomnography.

Conclusions: SleepInceptionNet may allow real-time automated sleep staging in free-living conditions using a single-channel
EEG, which may be useful for on-demand intervention or treatment during specific sleep stages.
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Introduction

Polysomnography (PSG) is the gold standard for assessing sleep
quality and diagnosing sleep disorders. PSG sleep staging
requires visual inspection of electroencephalogram (EEG),
electromyogram, and electrooculogram data, which is
time-consuming and labor-intensive, that is, trained technicians
may spend hours manually scoring a single night of sleep [1,2].
Thus, the resultant high cost of PSG makes it an unappealing
method for longitudinal or population-based sleep studies. The
inter- and intrarater variability of PSG scoring is also a concern
in manual sleep stage classification [3-5]. In addition, PSG
typically requires bulky instrumentation and overnight stays in
a sleep laboratory, which may disrupt the natural sleep pattern
of patients [2]. To address these limitations, wearable and less
obtrusive sleep trackers are more desirable in free-living
conditions. One example is actigraphy, which has been widely
applied in sleep research owing to its advantages of
cost-efficiency and reduced influence on sleep [6].
Actigraphy-based sleep scoring has been further encouraged
with the recent use of machine or deep learning algorithms [7,8]
or additional physiological parameters such as heart rate
variability [9,10]. However, the actigraphy-based sleep scoring
algorithms suffer from low specificity, that is, low performance
in detecting Wake epochs (between 0.28 and 0.67 [11]), and
distinguishing different sleep stages with actigraphy is even
more challenging. Hence, alternative noninvasive approaches
with better performance are required.

With advances in wearable technology, noninvasive ambulatory
recording of single-channel EEG is possible. Sleep staging based
on single-channel EEG may be a potential solution to overcome
the limitations of PSG and actigraphy. This approach may allow
unobstructive, wearable monitoring of sleep stages in free-living
conditions, because the setup requires a minimal number of
sensors, which can usually be applied by the patients without
the help of a technician. Compared with actigraphy, richer
temporal information in EEG makes it more suitable for scoring
all sleep stages instead of distinguishing only sleep and wake
[12-25]. However, no previous studies with the aim of
developing single-channel EEG sleep classification have
systematically evaluated how different preprocessing methods
and EEG channels affect the performance of these algorithms.
In addition, most of these studies required a sequence of epochs
to score a specific epoch, and thus, are not capable of real-time
sleep scoring [20-25]. The aims of this study are to (1)
investigate different preprocessing methods of EEG data before
importing them into classification algorithms, (2) investigate
the performance in sleep stage scoring of available convolutional
neural networks using raw or preprocessed EEG data as input,
and (3) investigate the effect of different single-channel EEG
data and their combination (multichannel) on sleep stage
classification performance. The ultimate goal is to identify and
test the performance of the best model based on the above
findings to check the potential of applying single-channel EEG
in real time, that is, immediately after each epoch sleep
classification.

Methods

Overview
To achieve the aims, we analyzed the overnight PSG recordings
collected in the Multi-Ethnic Study of Atherosclerosis (MESA)
[26,27]. We used the PSG recordings that were rated as high
quality (ie, all channels good for the entire sleep time of >6
hours) by a highly trained team of scorers for the training and
testing of all the models. We further evaluated the performance
of the best model, SleepInceptionNet, during the transition of
sleep stages (or wake) across the overnight period and its
generalizability to lower-quality PSG data.

Data Set
Sleep data collected in the MESA [26,27] were used for this
study. The data are freely accessible through the National Sleep
Research Resource website through a data use agreement.
MESA is a prospective study that investigates the risk factors
associated with the development of subclinical and clinical
cardiovascular diseases and other health outcomes. In MESA,
PSG was conducted between 2010 and 2013 using the
Compumedics Somte System (Compumedics Ltd). The system
consists of 3 EEG channels (central C4-M1, occipital Oz-Cz,
and frontal Fz-Cz leads), bilateral electrooculogram, chin
electromyogram, thoracic and abdominal respiratory inductance
plethysmography (by auto-calibrating inductance bands), an
airflow sensor (by nasal-oral thermocouple and pressure
recording from a nasal cannula), electrocardiogram sensors, leg
movement sensors, and finger pulse oximetry. All studies were
scored using published guidelines for sleep staging [26] by
trained research polysomnologists who regularly participated
in scoring reliability monitoring and retraining. The interclass
correlation coefficients for the 3 primary scorers for sleep
staging were 0.96 for Wake (after onset of sleep), 0.86 for N1,
0.63 for N2, 0.81 for N3, and 0.96 for rapid eye movement
(REM). Scorers also assigned quality codes to each channel and
each study, indicating the time of available signals that were
artifact-free and readily scorable as described. As the start and
end times of PSG studies were unspecified, the pulse oximetry
(SpO2) data of the PSG study were used to determine the actual
start and end times, that is, the first and last 5-minute block that
contained less than 15 seconds of missing data, poor or marginal
quality of SpO2 data (OXSTAT signal).

Participants
We did not recruit any additional participants for this study.
MESA participants with valid PSG data were included in this
study. PSG data with high-quality signals, that is, at least 6
hours of valid sleep data in all channels (n=276; 295,013
thirty-second epochs), were used for training and testing the
models in this study. In addition, the PSG data of another 607
individuals (642,962 thirty-second epochs) that were not rated
as high quality were used to evaluate the generalizability of the
best model. Details of the inclusion and exclusion criteria for
each of these data sets are presented in Multimedia Appendix
1. Table 1 summarizes the characteristics of the participants.
There were no major differences between the characteristics of
participants with higher- and lower-quality PSG; however, in
the higher-quality data set, the percentage of male participants
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was slightly higher, with less self-reported troubles in falling
asleep, and a higher percentage of African American participants

compared with the lower-quality data set.

Table 1. Characteristics of the study population.

Total (n=883)Lower-quality data (n=607)Higher-quality data (n=276)Characteristics

68.6 (8.7)68.9 (8.8)67.9 (8.5)Age (years), mean (SD)

Sex, n (%)

409 (46.3)269 (44.3)140 (50.7)Male

474 (53.7)338 (55.7)136 (49.3)Female

Race, n (%)

385 (43.6)282 (46.5)103 (37.3)White, Caucasian

96 (10.9)58 (9.6)38 (13.8)Chinese American

221 (25)138 (22.7)83 (30.1)Black, African American

181 (20.5)129 (21.3)52 (18.8)Hispanic

Diagnosed with insomnia by a physician, n (%)

39 (4.4)27 (4.4)12 (4.4)Yes

844 (95.6)580 (95.6)264 (95.6)No

Diagnosed with sleep apnea by a physician, n (%)

57 (6.5)43 (7.1)14 (5.1)Yes

(93.5)564 (92.9)262 (94.9)No

Diagnosed with restless legs by a physician, n (%)

32 (3.6)21 (3.5)11 (4)Yes

851 (96.4)586 (96.5)265 (96)No

Trouble falling asleep in the past 4 weeks, n (%)

483 (54.7)322 (53.1)161 (58.3)No, not in the past 4 weeks

99 (11.2)66 (10.9)33 (12)Yes, less than once a week

144 (16.3)104 (17.1)40 (14.5)Yes, 1 or 2 times a week

82 (9.3)57 (9.4)25 (9.1)Yes, 3 or 4 times a week

75 (8.5)58 (9.6)17 (6.2)Yes, 5 or more times a week

Chronotype, n (%)

321 (36.4)225 (37.1)96 (34.8)Definitely a morning type

231 (26.2)158 (26)73 (26.5)Rather more a morning than an evening type

103 (11.7)64 (10.5)39 (14.1)Rather more an evening than a morning type

122 (13.8)89 (14.7)33 (12)Definitely an evening type

106 (12)71 (11.7)35 (12.7)Neither a morning nor an evening type

Data Preprocessing
A total of 4 types of EEG data, as follows, were used to derive
the inputs for the neural networks: (1) single-channel frontal
(Fz-Cz) EEG, (2) single-channel occipital (Oz-Cz) EEG, (3)
single-channel central (C4-M1) EEG, and (4) the data of these
3 channels together (multichannel EEG). For each type of data,

four different methodologies were used to generate the inputs:
(1) no preprocessing (raw EEG), (2) power spectral density
(PSD) of EEG, (3) short-time Fourier transform (STFT) of EEG,
and (4) continuous wavelet transform (CWT) of EEG. Thus,
16 different sets of inputs were tested separately in this study
(Figure 1).
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Figure 1. Example of raw 30-second electroencephalogram (electroencephalogram [EEG] data and corresponding processed signals). Left panel: raw
EEG signal where the x-axis is associated with the time (second) and the y-axis is associated with the amplitude (mV). The second panel from the left:
Welch polysomnography (PSD) of the raw EEG, where the x-axis is associated with the frequency (Hz), and the y-axis is associated with the power.
Third panel from the left: short-time Fourier transform of the raw EEG, where the x-axis is associated with the time (seconds), and the y-axis is associated
with the frequency (Hz). Right panel: continuous wavelet transform of the raw EEG, where the x-axis is associated with the time (second), and the
y-axis is associated with the frequency (Hz). CWT: continuous wavelet transform; PSD: power spectral density; STFT: short-time Fourier transform.

Raw EEG
Each raw single- and multichannel EEG signal was divided into
30-second epochs, and all epochs were provided directly as
inputs to the neural networks. In this methodology, the input to
the networks was a 1D time series, with the shape of (t,1) for
single-channel data and (t,3) for multichannel data, where
t=7680 (30 seconds × 256 data/second) is the number of data
points in each 30-second epoch.

Welch PSD Estimate
PSD provides the power distribution of the EEG series in the
frequency domain [28]. The PSD was generated by the Welch
method using a 2-second moving window length with a
0.5-second overlap between moving windows. Using this
methodology, the input to the networks was a 1D sequence of
data, with the shape of (i,1) for single-channel data and (i,3) for
multichannel data, where i=257 is the length of the data
sequence (frequencies) in each 30-second epoch.

Short-Time Fourier Transform
The spectrograms were generated using a 2-second moving
window length, with a 0.5-second overlap between moving
windows. Using this methodology, the input to the networks
was a 2D image with the shape of (x,y,1), that is, gray image,
for single-channel data, and (x,y,3), that is, color image for the
multichannel data, where x=256 pixels and y=256 pixels are

the width (associated with time) and height (associated with
frequency) of the images, respectively.

Continuous Wavelet Transform
Scalograms were generated using the Morse wavelet. Using this
methodology, the network input has the same shape as that
explained in the STFT section.

Convolutional Neural Networks
To classify the raw and preprocessed data, 2 types of
convolutional neural networks were used. Sequential classifiers
were used for the sequential data (ie, raw EEG and PSD),
whereas image classifiers were used for the 2D data (ie, CWT
and STFT).

1D Convolutional Neural Networks (Sequential
Classifiers)
A total of 7 classical time series deep neural networks as follows
were pre-evaluated on a portion of PSD and raw EEG data of
the training data set (n=100, randomly selected participants
from the training data set): Fully Convolutional Neural Network
(FCN), Residual Network (t-ResNet), Encoder, Multi-Scale
Convolutional Neural Network, Time Le-Net (t-LeNET),
Multi-Channel Deep Convolutional Neural Network, and Time
Convolutional Neural Network. Then, the top 4 networks with
the best performance were selected for further training and
evaluation using the entire training and test data sets. The
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network architectures of the top 4 classifiers are presented in
Multimedia Appendix 2.

2D Convolutional Neural Networks (Image Classifiers)
A total of 16 available image classifier convolutional neural
networks (ie, Xception, VGG16, NASANetLarge,
NASANetMobile, ResNet50, ResNet50V2, ResNet101V2,
ResNet152V2, DenseNet121, DenseNet169, DenseNet201,
InceptionV3, InceptionResNetV2, MobileNetV2,
EfficientNetV0, and AlexNet) were pre-evaluated using a
portion of the CWT and STFT training data set (n=100,
randomly selected participants from training data set). The top
4 models with the best performances were selected for further
evaluation using the entire training and test data sets. The
network architectures of the top 4 classifiers are presented in
Multimedia Appendix 3.

Training the Models
A 5-fold cross-validation strategy on the PSG data of 276
participants was used to compare the sleep staging performance
of different convolutional neural networks, preprocessing
methods, and channels of EEG data. Then, the best neural
network, preprocessing method, and channel of EEG data were
chosen to generate a model, which we named SleepInceptionNet.
To train and evaluate the performance of SleepInceptionNet,
the PSG data of 276 participants were divided into a test set of
82 participants (30% of the whole data set) and a training and
validation set of 194 participants (70% of the whole data set).
The test data sets were not used for any training and tuning
purposes and were only used to evaluate the performance of the
models. In addition, the trained parameters in the
cross-validation were not used in the SleepInceptionNet training.
As the distribution of sleep stages was heavily imbalanced, the
random undersampling method was used to balance the class
distribution in the training and validation set (the distribution
of wake-sleep stages before undersampling was 30.3% Wake,
9.1% N1, 39.0% N2, 8.2% N3, and 13.4% REM).
Undersampling was performed by sampling uniformly at random
from the classes with a larger number of epochs (Wake, N2,
N3, and REM) to make them the same size as the number of
epochs in class N1. Cross entropy was used as the loss function
for the classification task, the gradient descent algorithm
(learning rate=0.01, momentum=0.9, and decay=1e-6) was used
to optimize the neural networks, and the model weights were
identified based on minimum validation loss to avoid overfitting.
To prevent overfitting in 2D classifiers, data augmentation
techniques, that is, horizontal shifting (range −0.4 to 0.4),
horizontal flipping, and shearing (range −0.2 to 0.2), were used
on the training data sets. The neural networks were generated
and trained using TensorFlow (version 2.3.0) [29,30] and the
Keras library (version 2.4.0) [31] in Python (version 3.7).

Performance Evaluation
The sleep staging performance (5-stage classification: Wake,
N1, N2, N3, and REM) of different models, preprocessing
methods, and channels of EEG data were evaluated using 5-fold
cross-validation by Cohen κ metric. Cohen κ measures the
agreement between the algorithm and the ground truth,
accounting for the possibility of agreement by chance:

where Po is the observed agreement, and Pe is the probability
of agreement by chance. To evaluate the performance of the
SleepInceptionNet model in further detail, recall (sensitivity),
specificity, precision, F1-score, and accuracy were calculated
for each class and overall:

where TP is the true positive (number of epochs correctly scored
by the algorithm), TN is the true negative (number of epochs
correctly identified by the algorithm as not corresponding to
the specific sleep stage), FP is the false positive (number of
epochs that were incorrectly scored by the algorithm as the
specific sleep stage), and FN is the false negative (number of
epochs that were not scored as the specific sleep stage that they
should have been).

Statistical Analysis
Mixed-effect models were used to evaluate the significance
level of the effects of different preprocessing methods, EEG
channels, and convolutional neural networks. The performance
of SleepInceptionNet in scoring epochs of the first and second
halves of the PSG recording period was compared using 2-sided
paired t tests. P<.05 was considered a statistically significant
difference. Statistical analyses were performed using MATLAB
(version R2020a; MathWorks).

Results

Performance Comparison of Different EEG Channels,
Preprocessing Methods, and Convolutional Neural
Networks
Using 5-fold cross-validation strategy on 276 high-quality EEG
recordings, we evaluated the performances of 64 different
combinations of EEG channels (frontal, occipital, central, and
all 3 channels together [multichannel EEG]), preprocessing
methods (raw EEG, Welch’s PSD estimate, STFT, and CWT),
and convolutional neural networks (4 image classifiers:
ResNet50, LeNet, InceptionV3, and AlexNet; and 4 sequential
classifiers: FCN, t-ResNet, Encoder, and t-LeNet). The
performance evaluation was based on the comparison of the
resultant scores with the gold standard scores (manually scored
by a highly trained scorer team) and was quantified by Cohen
κ metric. Tables 2 and 3 present the Cohen κ agreements (with
95% CI) across 276 participants with high-quality PSG data
(using 5-fold cross-validation).

We first considered how preprocessing of the input data affected
the overall performance. Between the 2 preprocessing methods
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that developed time-frequency images, the CWT-based method
provided statistically significantly better performance than that
based on STFT (mixed-effect model, P<.001, average difference
in Cohen κ values of CWT-based vs STFT-based=0.037).
Between the 2 preprocessing methods that developed sequential
data, the PSD-based method provided statistically significantly
better performance than that based on raw EEG data
(mixed-effect model, P<.001, average difference in Cohen κ
values of PSD-based vs raw EEG−based=0.045). In addition,
the CWT-based method provided statistically significantly better
performance than the PSD-based method (mixed-effect model,
P<.001, average difference in Cohen κ values of CWT-based
vs PSD-based=0.044).

Among the 4 different image classifier algorithms, InceptionV3
and ResNet showed statistically significantly better performance
than the average performance of the image classifier algorithms
(mixed-effect model; P<.001). The performance of InceptionV3
was statistically significantly better than that of ResNet
(mixed-effect model, P=.007, average difference in Cohen κ
values of Inception V3 vs ResNet=0.009). Among the sequential
1D classifiers, Encoder and tResNet showed statistically
significantly better performances than the average performance
of the sequential classifier algorithms (mixed-effect model;
P<.001), and the performance of Encoder was statistically
significantly better than that of tResNet (mixed-effect model,
P<.001, average difference in Cohen κ values of Encoder vs
tResNet=0.027).

Table 2. Cohen κ agreements with ground truth manually scored polysomnography in 5-class sleep staging of different combinations of
electroencephalogram (EEG) channels, preprocessing methods (continuous wavelet transform [CWT] and short-time Fourier transform [STFT]), and
2D convolutional neural networks (5-fold cross-validation on 276 participants with higher-quality polysomnography).

2D convolutional neural networks (image classifiers), mean (95% CI)Input data and EEG channel

AlexNetInceptionV3LeNetResNet50

CWT

0.690 (0.675-0.705)0.712 (0.701-0.723)0.655 (0.639-0.671)0.705 (0.695-0.714)Frontal

0.692 (0.675-0.709)0.700 (0.684-0.717)0.665 (0.642-0.688)0.691 (0.679-0.702)Occipital

0.709 (0.696-0.722)0.733 (0.718-0.749)0.689 (0.673-0.705)0.715 (0.704-0.727)Central

0.755 (0.740-0.769)0.770 (0.750-0.790)0.713 (0.696-0.729)0.766 (0.757-0.775)Multichannel

STFT

0.628 (0.595-0.661)0.676 (0.648-0.703)0.597 (0.586-0.608)0.668 (0.649-0.687)Frontal

0.624 (0.600-0.647)0.668 (0.649-0.686)0.629 (0.602-0.656)0.659 (0.628-0.690)Occipital

0.670 (0.638-0.702)0.707 (0.680-0.735)0.647 (0.628-0.666)0.702 (0.670-0.733)Central

0.714 (0.693-0.734)0.751 (0.731-0.772)0.693 (0.676-0.709)0.738 (0.718-0.758)Multichannel

Table 3. Cohen κ agreements with ground truth manually scored polysomnography in 5-class sleep staging of 64 different combinations of
electroencephalogram channels, preprocessing methods (raw electroencephalogram [EEG] signal and Welch power spectral density [PSD]), and 1D
convolutional neural networks (5-fold cross-validation on 276 participants with higher-quality polysomnography).

1D convolutional neural networks (sequential classifiers), mean (95% CI)Input data and EEG channel

FCNaEncodert-LeNett-ResNet

Raw EEG signal

0.510 (0.491-0.528)0.681 (0.665-0.697)0.487 (0.457-0.516)0.628 (0.588-0.668)Frontal

0.555 (0.519-0.590)0.669 (0.663-0.675)0.547 (0.530-0.563)0.662 (0.630-0.694)Occipital

0.601 (0.565-0.637)0.707 (0.678-0.737)0.515 (0.495-0.535)0.692 (0.682-0.701)Central

0.644 (0.625-0.662)0.750 (0.737-0.763)0.567 (0.533-0.601)0.717 (0.692-0.743)Multichannel

PSD

0.571 (0.541-0.601)0.658 (0.637-0.679)0.612 (0.596-0.629)0.626 (0.609-0.643)Frontal

0.630 (0.614-0.645)0.681 (0.668-0.694)0.654 (0.643-0.665)0.645 (0.628-0.663)Occipital

0.644 (0.610-0.679)0.706 (0.693-0.718)0.688 (0.675-0.701)0.681 (0.659-0.704)Central

0.676 (0.652-0.701)0.751 (0.732-0.770)0.698 (0.679-0.717)0.736 (0.719-0.754)Multichannel

aFCN: Fully Convolutional Neural Network.

Next, we considered the differences in performance using
different EEG channels. Among all the single-channel results,

the central EEG channel (C4-M1) provided statistically
significantly better results than those based on the other single
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channels (mixed-effect model, 0.024 higher Cohen κ values
than the average of the results from 3 single-channel results,
0.044 higher Cohen κ values than the frontal EEG channel, and
0.027 higher Cohen κ values than the occipital EEG channel;
P<.001 for all the comparisons). The multichannel EEG
provided statistically significantly better results than the central
EEG channel (mixed-effect model, P<.001, average difference
in Cohen κ values of multichannel vs central EEG
channel=0.040).

Overall, among the single-channel EEG algorithms, the
InceptionV3 algorithm using time-frequency images based on
the CWT of the central channel EEG data provided the best
performance in terms of agreement with the ground truth
manually scored PSG. We call this model SleepInceptionNet.

Performance of the SleepInceptionNet Algorithm
Using the test data set of high-quality PSG recordings (n=82),
we further evaluated the performance of SleepInceptionNet for
each specific wake or sleep stage more carefully. Multimedia
Appendix 4 shows the confusion matrix, and Table 4 and
Multimedia Appendix 5 present the average with 95% CI across

participants (ie, the metric was calculated for each participant
and then averaged across participants) and the overall (ie, all
the epochs of all the participants were put together and then the
metric was calculated) performance indexes. The
SleepInceptionNet model showed 0.705 (SD 0.077) Cohen κ
agreement with manually scored PSG. The worst performance
of SleepInceptionNet was in detecting stage N1, and the best
performance was in detecting Wake epochs. For these incorrect
classifications, Wake epochs were occasionally detected as stage
N1 (approximately 6%) and REM (approximately 3%), rarely
as stage N2 (approximately 1%), and almost never as stage N3
(<0.01%); stage N1 was most often detected as stage N2
(approximately 19%), REM (approximately 18%), and Wake
(approximately 9%) and almost never as stage N3; stage N2
was occasionally detected as stage N3 (approximately 11%),
N1 (10%), and REM (5%) and rarely as Wake (approximately
1%); stage N3 was most often confused with stage N2
(approximately 15%) and almost never with other stages
(<0.5%), and REM epochs were occasionally scored as stage
N1 (approximately 8%) and N2 (approximately 5%) and rarely
as Wake (approximately 2%).

Table 4. Per class performance (averaged across participants) of SleepInceptionNet using central electroencephalogram channel (C4-M1) data (in a
test set of 82 participants with higher-quality polysomnography preprocessed with continuous wavelet transform method).

F1-score, mean (95%
CI)

Accuracy, mean (95%
CI)

Specificity, mean (95%
CI)

Recall (sensitivity),
mean (95% CI)

Precision, mean (95%
CI)

0.909 (0.896-0.923)0.954 (0.948-0.960)0.977 (0.971-0.983)0.886 (0.866-0.906)0.942 (0.928-0.955)Wake

0.452 (0.432-0.473)0.883 (0.873-0.894)0.921 (0.911-0.931)0.523 (0.496-0.551)0.422 (0.396-0.449)N1

0.783 (0.765-0.801)0.856 (0.847-0.865)0.936 (0.927-0.944)0.724 (0.704-0.744)0.865 (0.842-0.888)N2

0.636 (0.617-0.656)0.943 (0.936-0.950)0.953 (0.945-0.961)0.842 (0.828-0.856)0.560 (0.490-0.630)N3

0.764 (0.740-0.788)0.933 (0.926-0.940)0.946 (0.938-0.954)0.851 (0.822-0.880)0.723 (0.692-0.754)REM

0.797 (0.792-0.801)0.902 (0.895-0.908)0.948 (0.943-0.952)0.786 (0.782-0.791)0.832 (0.822-0.842)Weighted average of
all stages

We also evaluated the performance of SleepInceptionNet for
those transitional epochs (ie, the manually scored sleep stage
before or after the epoch was different from the current epoch)
using the same 82 high-quality recordings. Multimedia
Appendix 6 shows the confusion matrix, and Multimedia
Appendices 7 and 8 present the overall and average (with 95%
CI) across participants’ performance. The average Cohen κ
agreement across participants for the transition epochs was
0.486 (SD 0.095), statistically significantly lower than that for
all epochs (paired t test; difference=0.219, SD 0.074; P<.001).

To explore whether the performance of SleepInceptionNet
changed across the overnight period, we compared the results
obtained from the first and second halves of the overnight period
using the same 82 high-quality EEG recordings (Multimedia
Appendices 9 and 10). Paired t tests showed that the
performance for the first half of the recording period was
statistically significantly better than that for the second half, as
consistently indicated by higher precision (first half: 0.807, SD
0.066; second half: 0.780, SD 0.090; P=.01), higher sensitivity
(first half: 0.713, SD 0.084; second half: 0.665, SD 0.110;
P=.001), higher specificity (first half: 0.932, SD 0.036; second
half: 0.909, SD 0.056; P<.001), higher accuracy (first half:

0.867, SD 0.051; second half: 0.834, SD 0.066; P<.001), and
higher F1-score (first half: 0.728, SD 0.081; second half: 0.692,
SD 0.102; P=.009) in the first half period.

Generalizability of the SleepInceptionNet on
Lower-Quality Data
We further evaluated the performance of SleepInceptionNet in
sleep classification of those lower-quality PSG recordings (see
the confusion matrix in Multimedia Appendix 11). Table 5 and
Multimedia Appendix 12 present the average (with 95% CI)
across participants and the overall performance of
SleepInceptionNet on lower-quality PSG data (n=607). Using
this data set, SleepInceptionNet showed a Cohen κ agreement
of 0.673 (SD 0.114) with the ground truth manually scored PSG.

Consistent with the results of 82 high-quality EEG recordings,
the performance of SleepInceptionNet in these EEG recordings
of lower-quality was also reduced statistically significantly for
the transitional epochs, ie, the average Cohen κ agreement across
participants was 0.464 (SD 0.091; paired t test; reduction=0.209,
SD 0.072; P<.001; see details in Multimedia Appendices 13-15).
Similarly, the performance for the first half of the overnight
period was statistically significantly better than that for the
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second half as indicated by higher values of weighted average
precision, sensitivity, specificity, accuracy, and F1-score in the
first half (0.848, SD 0.061; 0.792, SD 0.085; 0.946, SD 0.045;

0.900, SD 0.054; and 0.807, SD 0.072) than those in the second
half (0.810, SD 0.062; 0.740, SD 0.111; 0.926, SD 0.041; 0.870,
SD 0.060; and 0.765, SD 0.083; all P<.001; Multimedia
Appendices 16 and 17).

Table 5. Per class performance (averaged across participants) of SleepInceptionNet using central electroencephalogram channel (C4-M1) data (from
607 participants with lower-quality polysomnography, preprocessed with continuous wavelet transform method).

F1-score, mean (95%
CI)

Accuracy, mean (95%
CI)

Specificity, mean (95%
CI)

Recall (sensitivity),
mean (95% CI)

Precision, mean (95%
CI)

0.891 (0.883-0.898)0.938 (0.932-0.944)0.962 (0.954-0.969)0.875 (0.868-0.883)0.924 (0.914-0.933)Wake

0.429 (0.420-0.438)0.883 (0.879-0.887)0.921 (0.917-0.924)0.502 (0.490-0.513)0.396 (0.385-0.406)N1

0.769 (0.762-0.776)0.843 (0.839-0.848)0.928 (0.924-0.932)0.704 (0.694-0.714)0.859 (0.851-0.867)N2

0.593 (0.572-0.613)0.938 (0.935-0.941)0.947 (0.943-0.951)0.819 (0.801-0.836)0.545 (0.521-0.569)N3

0.725 (0.713-0.738)0.930 (0.927-0.933)0.948 (0.945-0.951)0.797 (0.781-0.813)0.696 (0.681-0.711)REM

0.781 (0.775-0.786)0.889 (0.885-0.893)0.940 (0.937-0.943)0.766 (0.760-0.773)0.821 (0.816-0.826)Weighted average of
all stages

Discussion

Main Contribution of This Study
This study evaluated the performance of different methods for
automated sleep stage scoring, including single-channel EEG
data compared with ground truth manually scored PSG. The
main contributions of this study are (1) identifying the best
method for preprocessing EEG signals for sleep staging
purposes, (2) identifying the best channel of EEG signals for
automatic sleep staging, (3) evaluating the performance of
different available convolutional neural networks in scoring
sleep stages, and (4) introducing and evaluating the algorithm
that we identified as best performing (SleepInceptionNet).

Effect of EEG Data Preprocessing on Sleep Staging
Performance
To identify the best method for preprocessing the EEG signal,
we applied 4 different methods (PSD, STFT, and CWT methods
in addition to raw EEG signals) to develop the input of the
neural networks. PSD provides the distribution of power in the
frequency components comprising the EEG signal for a specific
period. STFT is a time-frequency decomposition method that
performs a Fourier transform within a moving window along
the time series with some overlap to generate a spectrogram for
each epoch of time series data [32]. Unlike the STFT method,
the wavelet analyses use a different time window length for
each frequency, that is, longer windows applied to lower
frequencies and shorter windows applied to higher frequencies
[32,33]; therefore, CWT is an effective method for nonstationary
signals such as EEG [33]. The use of PSD data slightly improved
the performance of the models compared with raw EEG data,
and the time-frequency domain data, that is, CWT and STFT,
further improved the performance with better results using CWT
compared with STFT.

Effect of Convolutional Neural Network Structure on
Sleep Staging Performance
Regarding the structure of the convolutional neural networks,
we initially evaluated 16 available image classifiers and 7
available sequential classifiers on a part of the training data set.

Then, the top 4 models of each type of classifier (a total of 8
models) were chosen for further evaluation. Finally, these top
convolutional neural network structures were trained on the
entire training data set without using the available pretrained
weights and evaluated on the test data set. Among the image
classifier models, ResNet50 and InceptionV3 had better
performance than the others, and between the sequential
classifiers, tResNet and Encoder performed better than the
others.

Effect of Brain Regions on Sleep Staging Performance
The American Academy of Sleep Medicine manual on PSG
recommends the use of 3 EEG derivations as follows for sleep
staging: central EEG (C4-M1, with backup electrodes of C3 for
C4 and M2 for M1), occipital EEG (O2-M1 or CZ-OZ; with
backup electrodes of O1 for O2, M2 for M1, C3 for CZ, and O1

for OZ), and frontal EEG (F4-M1 or FZ-CZ; with backup
electrodes of F3 for F4, M2 for M1, FPZ for FZ, and C3 for CZ).
We used each of these EEG derivations separately, that is,
single-channel EEG and their combination, that is, multichannel
EEG, as inputs to the neural networks for sleep stage
classification. In 15 out of the total 16 different preprocessing
methods or convolutional neural networks, the central EEG
channel provided the best results compared with frontal and
occipital EEG in terms of agreement with the gold standard
PSG. The better performance of data from a single central lead
compared with an occipital or frontal lead may be related to
differences in EEG features across channels relevant to
distinguishing stages. Alternatively, the ground truth manually
scored PSG data were generated by scorers trained to focus
predominantly on the central electrode.

SleepInceptionNet
The model with the highest agreement with the ground truth
manually scored PSG (“SleepInceptionNet”) used the
InceptionV3 algorithm, with time-frequency images developed
by the CWT method from central channel EEG data as input.
The lowest sensitivity in detecting different stages by
SleepInceptionNet was related to stage N1, a stage for which
interhuman agreement is also low, with intraclass correlation
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in the range of 0.30 to 0.86 [34]. However, in this data set, N1
interscorer reliability was 0.86. This finding is consistent with
other automated sleep staging models that use single-channel
EEG data [17,23] or multisignal PSG data [21]. A possible
explanation is that stage N1 comprises a relatively small
proportion of epochs and occurs in the transition from
wakefulness to other sleep stages [35]; therefore, there is the
possibility of confusion with Wake. In addition, stages N1 and
N2 have similar background activity and are distinguished by
the presence of K complexes, sleep spindles, or both, and it is
impossible to differentiate between stages N1 and N2 based
only on background activity [35]. Furthermore, according to
the PSG scoring rules, an epoch with low voltage and mixed
frequency EEG that could otherwise be identical to N1 should
be scored as N2 if the preceding stage is N2 [21]. Finally, REM
and N1 share similar background activity; the only difference
is the presence of sharp vertex waves in N1 [35].

The distribution of different sleep stages is highly imbalanced
in any PSG study owing to the nature of our sleep, that is, fewer
N1 and N3 episodes [21,23,34] compared with other sleep
stages. To account for class imbalances, we down-sampled
classes with a higher frequency in the training set. Using this
approach, SleepInceptionNet achieved one of the highest
accuracies reported in the literature for detecting stage N1
[12,14-17,20,21,23,36-38]. Note that this down-sampling
technique might improve the sensitivity in detecting stages with
lower frequencies, but it may lower the sensitivity in detecting
the more frequent stages.

SleepInceptionNet performed better in scoring the epochs of
the first half of the PSG recording period compared with the
second half. This could be explained by different distributions
of sleep stages and different numbers of sleep stage transitions
between the first and second halves of the PSG recording.
Specifically, there were more Wake epochs (with high detection
accuracy) in the first half of the PSG recording (approximately
61% of total Wake epochs) than those in the second half; there
were fewer N1 epochs (with low detection accuracy [39]) in
the first half of the PSG recording (approximately 37% of total
N1 epochs) than those in the second half, and there were fewer
sleep stage transition epochs (with the lowest detection
accuracy) in the first half of the PSG recording (approximately
45% of the total transition epochs) than those in the second half.

SleepInceptionNet has several strengths compared with other
sleep staging systems. First, many previous systems used
multisignal or multichannel PSG data [1,21,36,40-48]. Although
additional signals might improve the classification performance
of the models, our goal was to minimize the number of input
signals to the model (and therefore the number of sensors) to
be able to use the system in free-living conditions with minimum
interruption in regular sleep pattern of patients owing to
instrumentation. We were able to show that central
single-channel EEG performs almost identically to multichannel
EEG. Second, most previous models require a sequence of
epochs, eg, a number of epochs before and after the epoch to
be scored [20-25]. Although such an approach can also improve

the model’s performance, especially in transition epochs, it may
not be ideal for real-time sleep stage classification, as it can
only analyze the data at the end of a respective sleep period. A
strength of SleepInceptionNet is its capability for real-time
scoring, which could be very useful when there is a need to
apply a specific intervention or treatment during a specific sleep
stage. Third, the training and test sets were not independent in
several of these studies, that is, the data of each participant were
used in both the training and test sets [12,13,18,19]. This
approach would cause bias in the findings, and the model might
not show the same performance when evaluating it on new
patients. Therefore, we did not include any epochs of test
participants in our training or validation set. Finally, several
previous studies used the unbalanced Physionet Sleep-EDF data
set to evaluate their models [12-17,19,39,49]. This data set
contains a vast number of Wake epochs from hours before and
after the actual sleep. This unbalanced number of Wake epochs
could cause bias in the overall performance evaluation, because
most models performed well in detecting Wake epochs. In this
study, we removed data from the beginning and end of PSG
records if they were not associated with the actual sleep study.

Strengths and Limitations
Strengths of our study are (1) use of PSG obtained in home
settings (and thus generalizable to future uses of single EEG
monitoring), scored by an established sleep reading center with
well-defined practices for training and monitoring reliability;
(2) availability of information on the signal quality of each PSG
study to assess whether the signal quality influenced the
performance; (3) relatively large size of the data set; and (4)
evaluating the generalizability of the model to lower-quality
PSG data. However, limitations of our study should be noted,
and they include the following: (1) the relatively old age of
participants (mean age of approximately 69 years), thus not
covering all age ranges; however, SleepInceptionNet performed
well both in higher- and lower-quality data among this older
adult population that is more likely to have sleep problems,
suggesting the ability of this algorithm to perform well even in
other age ranges with fewer sleep problems, and (2) lack of
information on the exact start and end time of studies, and
therefore, reliance on pulse oximetry signal quality was used
as an indicator of start and end time. Additional research on
different data sets entailing different age ranges and sleep
problems is needed to further evaluate the performance of
SleepInceptionNet. In future studies, investigators should
explore the performance of different neural networks such as
recurrent neural networks or long short-term memory in sleep
stage classification.

Conclusions
This study demonstrated the benefits of using deep neural
networks for automatic sleep stage classification. We also found
that the time-frequency domain features of EEG enabled better
sleep staging classification than raw EEG. The proposed model,
SleepInceptionNet, may allow real-time automated sleep staging
in free-living conditions.
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