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Abstract

Background: Increasing efforts toward the prevention of stress-related mental disorders have created a need for unobtrusive
real-life monitoring of stress-related symptoms. Wearable devices have emerged as a possible solution to aid in this process, but
their use in real-life stress detection has not been systematically investigated.

Objective: We aimed to determine the utility of ecological momentary assessments (EMA) and physiological arousal measured
through wearable devices in detecting ecologically relevant stress states.

Methods: Using EMA combined with wearable biosensors for ecological physiological assessments (EPA), we investigated
the impact of an ecological stressor (ie, a high-stakes examination week) on physiological arousal and affect compared to a control
week without examinations in first-year medical and biomedical science students (51/83, 61.4% female). We first used generalized
linear mixed-effects models with maximal fitting approaches to investigate the impact of examination periods on subjective stress
exposure, mood, and physiological arousal. We then used machine learning models to investigate whether we could use EMA,
wearable biosensors, or the combination of both to classify momentary data (ie, beeps) as belonging to examination or control
weeks. We tested both individualized models using a leave-one-beep-out approach and group-based models using a
leave-one-subject-out approach.

Results: During stressful high-stakes examination (versus control) weeks, participants reported increased negative affect and
decreased positive affect. Intriguingly, physiological arousal decreased on average during the examination week. Time-resolved
analyses revealed peaks in physiological arousal associated with both momentary self-reported stress exposure and self-reported
positive affect. Mediation models revealed that the decreased physiological arousal in the examination week was mediated by
lower positive affect during the same period. We then used machine learning to show that while individualized EMA outperformed
EPA in its ability to classify beeps as originating from examinations or from control weeks (1603/4793, 33.45% and 1648/4565,
36.11% error rates, respectively), a combination of EMA and EPA yields optimal classification (1363/4565, 29.87% error rate).
Finally, when comparing individualized models to group-based models, we found that the individualized models significantly
outperformed the group-based models across all 3 inputs (EMA, EPA, and the combination).

Conclusions: This study underscores the potential of wearable biosensors for stress-related mental health monitoring. However,
it emphasizes the necessity of psychological context in interpreting physiological arousal captured by these devices, as arousal
can be related to both positive and negative contexts. Moreover, our findings support a personalized approach in which momentary
stress is optimally detected when referenced against an individual’s own data.
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Introduction

Stress-related mental disorders such as major depression and
anxiety disorders have gained increased recognition in the public
eye. While a vast body of research exists regarding these
disorders, studies have mostly focused on retrospective
assessments of afflicted individuals. More recently, an increased
interest has emerged in determining what makes some
individuals more resilient to developing these disorders than
others [1-4]. Investigating resilience, however, first requires an
investigation of individual variation in stress reactivity before
the development of psychological illness [1]. Following
contemporary transactional frameworks of stress reactivity [5-7],
such an approach would require the ability to assess how
environmental or psychological stressors trigger biological and
psychological responses depending on subjective appraisals of
the degree to which an individual’s well-being is threatened. A
strong motivation for this effort is the need to establish early
warning signals for the onset of stress-related disorders. The
ability to unobtrusively detect states of stress in daily life would
enable early ecological interventions in those at risk by either
flagging risk states to health-care providers or by delivering
in-the-moment personalized interventions during these periods
[8], thereby preventing or improving negative outcomes in
patients [9], and ultimately reducing the societal and economic
burdens of psychiatric illness on society [10].

Previous studies have used ecological momentary assessments
(EMA) [11] to investigate stress reactivity in real life. These
studies use repeated questionnaires (beeps) in daily life to
investigate stress-related psychological processes [12-14]. Such
methods used in stress-related disorders have identified real-life
behavioral patterns that may explain or predict the onset of
psychiatric illness [15,16]. They have also given insight into
the effects of stress exposure on mood and its links to depression
[17]. Despite providing substantial insights, these methods are
often intrusive (ie, require active participation of patients), can
lack feasibility in psychiatric populations, and may be influenced
by careless responses or lower subjective insight into symptoms
and associated states [18]. Furthermore, the sparse sampling of
subjective states may miss time windows in which stressors
occur. More recently, the reliability of such measures has also
come into question, showing the importance of accounting for
measurement errors [19]. Additionally, within the transactional
model, the reliance on subjective assessments of stressors may
also be conflated with the outcomes of interest that are being
measured, such as mood measures that are often seen as
indicators of mental health [20]. These issues indicate a growing
need for novel and more reliable methods for passive and
ambulatory mental-health monitoring.

The emergence of widely accessible wearable biosensors has
raised the question of whether these devices can be used for
ecological physiological assessments (EPA), either as an add-on
or an alternative to EMA, in mental health monitoring. Wearable
biosensors offer continuous recording of autonomic

physiological markers such as skin conductance (SC) and heart
rate (HR). These measures have been extensively validated in
laboratory-based studies using controlled stress-induction
protocols [21], showing increased HR and SC and decreased
HR variability in response to stressors [22,23]. However, these
autonomic physiological parameters are also associated with
general arousal [24], including high-arousal states for positive
affect [23]. Thus, using EPA may be more complicated in daily
life than in the lab. While acute stress may trigger arousal,
arousal itself may not necessarily signal the presence of stress.
Both positive and negative affective states may thus be related
to arousal measures [25]. The relationship of autonomic
physiological responses to stressors in real life is not well
understood. Some studies have attempted to investigate the
physiology of daily life stress using scenarios or methods that
are restrictive or burdensome [26,27]. For instance, a study
using wearable biosensors could replicate lab findings to some
extent [28]. However, this study lacked an environmental
stressor and relied on the assumption that subjective stress
measures can be taken as the “ground truth.” Overall reports of
stressed states in this study were also relatively low when
compared to the nonstress states. Finally, it did not allow
probing the consequences of the accumulation of stress over a
prolonged period, a key aspect when considering mental health.
A recent review of the associations between subjective stress
and HR measures also reflects these limitations, showing mixed
results and inconsistency in findings [29].

To this end, we aimed to investigate the ability of active EMA
measures, passive EPA monitoring, and the combination of
these 2 methods to detect stress in real life. We investigated a
population of first-year medical and biomedical students known
to experience increased psychological distress [30]. Participants
collected EMA and EPA data once during a week culminating
in a high-stakes examination (ie, stress week) and another
without (ie, control week). In line with the transactional
framework of the stress response, this naturalistic experimental
design allowed us to objectively manipulate prolonged stressor
exposure while allowing EMA-based assessments of stress
appraisals (through measures of event, activity, and social stress;
see below) and separating these from EMA-based measures of
mood reactivity as well as EPA-based measures of physiological
reactivity to stressors. We first validated our protocol by testing
between-week differences in EMA-based subjective appraisals
of stress. We then assessed the impact of examinations and
stress weeks on mood and physiology outcomes. Finally, we
used individualized machine learning models to classify per
time point (beep) which week participants were in using either
mood, physiological, or a combination of both measures. This
was done to investigate the utility of wearables as passive
monitors of stress in ecologically relevant scenarios above
mood-related EMA measures. We predicted increased autonomic
physiological responses and negative affect and decreased
positive affect in stress weeks. We expected that both EPA and
EMA measures would successfully identify prolonged stress
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states and predicted that models combining EPA and EMA
would outperform the single models. The study time line is

shown in Figure 1.

Figure 1. Study time line. Diagram portraying the sequence of participation in the study with counterbalanced weeks. Ecological momentary assessment
(EMA) surveys included stress and affect assessments 6 times a day, in addition to sleep and evening questionnaires once a day. The wristband
continuously measured physiological arousal, temperature, and movement.

Methods

Experimental Design
We recruited 84 right-handed, first-year bachelor’s students in
the medical or biomedical science majors from Radboud Health
Academy spanning 3 academic years (2017, 2018, and 2019).
Participants were recruited through flyer distribution,
presentations in common lecture halls, and web-based
advertisements. A participant withdrew during testing, resulting
in a total sample size of 83 participants used in the analysis.
The programs were selected due to their structured examination
weeks that occur every 5th and 10th week of a semester,
allowing us to examine a period with higher stress levels during
examination weeks as an ecological prolonged stressor.
Right-handed participants were selected as participants were
instructed to wear watches on their nondominant hand to reduce
motion-related noise, with studies showing better signal from
the left wrist than the right [31]. Only participants with no
history of psychiatric illness were included in the study.
Recruitment was stopped following the COVID-19 outbreak
(March 2020).

Participants completed 2 weeks of EMA, one during an
examination period (ie, stress week) and the other occurring on
average 16 days (minimum=10; maximum=33) outside of these
periods (ie, control week, demographics in Tables 1 and 2). We
maintained at least one week between the end of one week and
the start of the other to ensure sufficient recovery time from the
stressor. Compliance rates were overall high, with 84%
(70.56/84) of surveys completed within the allocated 1-hour
window during both weeks. When accounting for missing and
poor-quality physiology (EPA) data, completion rates dropped
to between 76 and 77% (within ranges for other EMA studies)
[32]. Compliance rates did not differ significantly between the
weeks for either measure. Gender distribution was similar to
that of students enrolled at the university (13739/24104, 57%
female; according to the Radboud University website). We were
unable to fully counterbalance the order of weeks due to the
early termination of recruitment but instead controlled for it in
all statistical analyses. Participants also filled out questionnaires
and participated in magnetic resonance imaging sessions, which
are outside the scope of this study and will be reported
elsewhere.

Table 1. Descriptive statistics showing sex and program distributions, and week ordering.

Students, n (%)Demographic items

Sex, n (%)

51 (61.4)Female

32 (38.6)Male

Course program, n (%)

61 (73.5)Medicine

22 (26.5)Biomedical sciences

First week, n (%)

27 (32.5)Examination week

56 (67.5)Control week
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Table 2. Completion rates for each of the examination and control weeks for both ecological momentary assessment (EMA) and ecological physiological
assessment (EPA) measures.

Control weekExamination weekCompliance Rates

Third quantile, n (%)aMean (%)First quantile, n (%)aThird quantile, n (%)aMean (%)First quantile, n (%)a

40 (95)35.89 (85)34 (81)39 (93)35.51 (85)34 (81)EMA

37 (88)32.36 (77.05)29 (69)37 (88)32.15 (76.55)29 (69)EMA with EPA

aFirst and third quantiles indicating 50% of participants had completion rates in the given range.

Assessing Daily-Life Stress Through EMA and EPA
The comparison of the stress week (examination week) versus
the control week allowed us to determine individualized patterns
of stress reactivity. During these weeks, participants received
6 surveys a day at fixed intervals through SMS text message
links. Participants were given a 1-hour window to fill out the
surveys (like previous studies [33]). Individual surveys are
referred to as beeps in the EMA literature. Surveys assessed
different psychological aspects related to stress, including event,
activity, social, and physical stress, as well as positive affect
(PA) and negative affect (NA) outcomes. The first questionnaire
of the day contained a sleep quality assessment, and the last
included a self-reflection questionnaire. Participants were
instructed to wear an Empatica E4 wristband (Empatica)
recording ambulatory EPA data throughout both weeks
(collected passively, continuously, and in the background).
Participants were instructed to charge and synchronize the watch
to researcher-specific accounts once a day for 1 hour. A detailed
explanation was given to participants on the E4 operation with
a practice session during the intake interview. The E4 devices
collected blood pulse volume, electrodermal activity, 3-axis
movement, and body temperature.

EMA surveys consisted of questions regarding subjective stress
used for validating our experimental paradigm and mood
questions (PA and NA) relating to our subjective outcome
measures filled in on a 7-point Likert scale. Questions in the
validation set probed four types of stress, as follows: (1)
event-related stress assessed the most prominent event that
occurred in between EMA beeps; (2) activity-related stress
questions probed the activity participants were engaged in upon
receiving the beep; (3) social-related stress addressed stress that
may arise from the social context participants were present in
(either being alone or with someone); and (4) physical-related
stress was used as a control measure to account for
environmental and physical demands. Mood outcome questions
consisted of 4 items assessing positive mood and 5 items
assessing negative mood based on the positive and negative
affect schedule (PANAS), as validated in previous work [34].
EMA items on a reversed scale were first inverted. Items for
each scale were summed to create a single score for each of the
scales (ie, a single measure for event, activity, social, and
physical stress). Total item scores were then rescaled, and a
participant-centered measure was derived. Surveys that were
not filled out within the assigned time window were excluded
from further analyses. The same was done for outcome measure
items relating to PA and NA.

EPA data cleaning was performed using Python (version 3.6.1;
Python Software Foundation) [35]. Additional packages used
for preprocessing included NumPy (version 1.18.1; Travis
Oliphant) [36] and pandas (version 1.0.3; Wes McKinney) [37].
Time stamps for each survey instance were used to classify
surveys as belonging to a stress or control week. Ten-minute
time windows before each survey were selected for the
extraction of physiology features acquired from the E4.
Preprocessed interbeat interval (IBI) data were deemed too
sparse to offer meaningful temporal domain analysis, with an
average of 27% of IBIs successfully detected in our selected
time window. This is within the margins of the manufacturer’s
signal loss estimates for daily use. We instead selected average
HR features from the resulting processed files from Empatica.
The devices use a strict proprietary detection algorithm for the
detection of IBIs, so these files can be used with minimal
processing to derive global HR features. These features included
the mean, minimum, and maximum HR. Raw SC was processed
for offline use with the PyPhysio package (version 2.1; Andrea
Bizzego) [38]. A minimum threshold of 0.01 µsiemens was set
for the SC levels deemed of acceptable quality based on previous
recommendations of a threshold between 0.01 and 0.05 µsiemens
[39]. Data were first despiked to remove artifacts due to sudden
hand motions using standard settings in the library. Data were
then denoised to remove remaining artifacts through windowed
filtering of changes in the signal greater than 0.02 µsiemens
between subsequent samples. Additionally, an elliptic filter with
a cut-off frequency set between 0.8 and 1.1 was applied to the
data. SC data were subsequently deconvolved using a Bateman
impulse response function into phasic and tonic components
from which specific features were extracted (mean tonic activity,
magnitude, area under the curve, and the number of phasic
responses). The raw temperature measures were used to calculate
the mean skin temperature as well as the slope as a function of
change in skin temperature within the acquired time window.
A total of 2 participants had a watch with faulty temperature
sensors. These measures were substituted from the population
mean and SD to avoid the loss of participants’ data due to
missing data points in statistical models. The other sensors on
this device were tested, and no errors were detected in other
recordings. Finally, the root mean squared displacement in each
time window was calculated from the accelerometer data. The
extracted features were collected into a single data frame used
for statistical analysis.

Statistical Analysis
All statistical analyses were conducted in R (version 3.6.1, Ross
Ihaka and Robert Gentleman) using generalized linear mixed
effects models and random forest models (lmer and
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randomforest packages) [40,41]. Initial analyses examined
overall differences in subjective stress between the 2 weeks to
establish the validity of the experimental manipulation. We then
tested for the effect of an examination week on affect and
physiology. We additionally tried replicating previous findings
associating momentary stress with physiology and mood.
Mediation analysis was then used to explain the apparent
differences in the relationships between the week type and
momentary analyses. Additional covariates were added to all
models. Covariates were selected to control for potential
population differences and behavioral differences that may arise
from being in an examination period. These covariates can be
divided into subject-level, day-level, and beep-level covariates.
Subject-level covariates modeled as fixed effects included sex,
study program, and order of the weeks (ie, stress or control week
first). Day-level covariates included the days relative to start
(ie, day 1, day 2, day 3, etc), beep number, self-reported sleep
duration, and the previous night’s alcohol consumption.
Beep-level covariates modeled included hunger, caffeine intake,
exercise, and sexual activity. Additionally, ambient temperature
and accelerometer-derived movement were modeled for the
EPA models. For further details regarding the surveys, code,
and statistical modelling approaches see Multimedia Appendix
1 [42]

Machine Learning Models
One of our goals was to assess the usability of ambulatory,
nonintrusive measures to determine whether someone is
currently in a stressed state. To this end, random forest models
were used to determine the ability to classify whether
participants’ beeps were in the stress or control week using the
collected EMA mood and ambulatory EPA outcome data. Due
to the subjective nature of mood items, participant-centered
mood was used in all models. We conceptualized mood and
physiology as outcomes of stressed states based on previous
findings [17,43]. Individualized models were estimated using
a Leave-One-Beep-Out (LOBO) approach at a single-participant
level, where models were trained on individuals’ n-1 beep data
and tested on the removed beep, repeating until all beeps had
been removed. This is similar to the Leave-One-Trial-Out
method used in other fields [44]. A total of 3 models were tested,
as follows: Model 1 tested the ability to classify week type from
(momentary) PA and NA, Model 2 from EPA data, and Model
3 from the combination of both. Models were tested against a
bootstrap error distribution (n=10,000), with group effects tested
using 2-tailed paired sample t tests against the mean
subject-level bootstrap error. We tested the generalizability of
the random forest models to a population level using a
Leave-One-Subject-Out (LOSO) analysis in which models were
trained on N-1 participants data set and tested on the removed
participant, repeating until each participant had been removed
once from the data set. Model predictions using the LOBO were
then compared to those of the LOSO method to estimate the
generalizability of machine learning models based on the data.

Ethical Considerations
All procedures carried out were approved by the regional
medical ethical review board (METC Oost-Nederland, protocol
ID 2014-288). Written informed consent was obtained from all
participants in Dutch following an intake interview where a
detailed explanation of the procedures was carried out.
Participants were given unique identifiers to maintain anonymity
for all data acquired, with encrypted key files maintained by
selected study personnel. In order to ensure the anonymity of
the wearable data, participants were also provided with a
study-specific account for data synchronization instead of
personal accounts. Participants who completed all parts of the
study were awarded 150 euros (US $158). The authors assert
that all procedures contributing to this work comply with the
ethical standards of the relevant national and institutional
committees on human experimentation and with the Helsinki
Declaration of 1975, as revised in 2008.

Results

Examination Periods are Associated With Increased
Self-Reported Stress
We found a significant increase in prominent stressful events
(ie, event-related stress, β=.30; 95% CI 0.18-0.42; P<.001) and
current reports of stress (ie, activity-related stress, β=.51; 95%
CI 0.30-0.71; P<.001) in the examination stress versus control
week. Social stress was not significantly different between the
2 weeks. The control items measuring physical stress also did
not differ significantly between the weeks, showing that
increases in subjective stress were likely due to our experimental
manipulation instead of environmental or physical changes
(Figure 2A, Table S1 in Multimedia Appendix 1). As
anticipated, not all beeps in stress weeks were subjectively
reported as stressful, while some beeps during the control week
were subjectively rated as stressful. To quantify this, subjective
stress variables for event, social, and activity stress were
aggregated across both weeks. A median split was then used to
estimate the percentage of incongruent self-report beeps (ie,
false positives in stress weeks and false negatives in control
weeks). On average, across participants, 45% (2157/4794) of
the beeps yielded self-reported stress incongruent with the week
type. Machine learning models using self-reported stress
assessments in a LOBO approach to classify week types
achieved similar error rates, with 43% (2016/4794) of beeps
being classified as the wrong week type.

In accordance with our expectations, we also saw an increase
in NA (β=.12; 95% CI 0.08-0.17; Pfdr<.001), and a decrease in
PA (β=–.08; 95% CI –0.11 to –0.05; Pfdr<.001) during the stress
week (Figure 2B). Unexpectedly, we found a decrease in
physiology arousal-related measures during the examination
week, including the number of SC responses (log-mean –0.27;
95% CI –0.42 to –0.12; Pfdr<.001), and maximum HR (β=–.10,
95% CI –0.16 to –0.03; Pfdr=.003). Figure 2B, Table S2 in
Multimedia Appendix 1.
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Figure 2. Fixed effects estimates of the between-week difference. (A) Event-related stress (pertaining to the most prominent event since the last survey)
and activity-related stress (relating to the current activity participants are engaged in) are significantly higher in the stress week compared to the control
week. (B) This is accompanied by increased negative affect, decreased positive affect, and decreases in averages of multiple arousal-related physiological
measures. Error bars represent 95% CI. AUC: area under the curve; HR: heart rate; SC: skin conductance.

Momentary Subjective Stress is Associated With Mood
and Physiology
To explore the dynamics underlying the unexpected average
decrease in measures of physiological arousal during the stress
week, we investigated the link between in-the-moment
fluctuations in subjective stress and outcome measures (ie,
within the same beep mood and physiological arousal). We
found a positive association between NA and activity-related
(β=.06; 95% CI 0.01-0.12; Pfdr=.05), social (β=.22; 95% CI
0.18-0.27; Pfdr<.001), and physical stress (β=.15; 95% CI
0.12-0.18; Pfdr<.001). The opposite was true for PA for
event-related (β=–.12; 95% CI –0.19 to –0.06; Pfdr<.001),

activity-related (β=–.17; 95% CI –0.25 to –0.09; Pfdr<.001),
social (β=–.28; 95% CI –0.34 to –0.22; Pfdr<.001), and physical
stress (β=–.23; 95% CI –0.27 to –0.18; Pfdr <.001). The
magnitude of SC responses was associated with activity (β=.08;
95% CI 0.02-0.15; Pfdr=.02), event (β=.07; 95% CI 0.02-0.13;
Pfdr=.02) and physical stress (β=.03; 95% CI 0.00-0.06;
Pfdr=.04). For HR measures, mean (β=–.04; 95% CI 0.08 to
–0.01; Pfdr=.04) and minimum (β=–.02; 95% CI –0.03 to –0.00;
Pfdr=.01) HR were negatively associated with social stress. Thus,
within-beep fluctuations in subjective stress are associated with
expected mood changes and increases in physiological arousal
(Figure 3, Table S3 in Multimedia Appendix 1).
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Figure 3. Effect estimates for the associations between within-beep fluctuations in subjective stress and measures of mood and physiology. (A)
Event-related, (B) activity-related, (C) social-related, and (D) physical-related stress are generally associated with a decrease in positive affect, an
increase in negative affect, and increases in some of the measures of physiological arousal. P values are corrected for multiple comparisons using false
discovery rate corrections. Error bars represent 95% CIs. AUC: area under the curve; HR: heart rate; SC: skin conductance.

Positive Mood is Related to Increased Arousal and
Mediates Week Changes
To investigate whether the observed decreases in physiological
arousal during stress weeks could instead be linked to reduced
PA, we tested the within-beep association between affect and
physiological arousal. Increased PA was related to increase in

the number of SC responses (β=.08; 95% CI 0.02-0.06;
Pfdr=.04), and mean (β=.01; 95% CI 0.001-0.02; Pfdr =.01),
minimum (β=.01; 95% CI 0.001-0.02; Pfdr=.03), and maximum
HR (β=.01; 95% CI 0.001-0.02; Pfdr=.03; Figure 4, Table S4 in
Multimedia Appendix 1). Thus, in addition to subjective stress,
PA is also positively associated with momentary physiological
arousal.
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Figure 4. Relationship between momentary affect and physiology. Arousal-related physiological measures (magnitude of skin conductance responses
and mean and minimum heart rate) were linked to positive affect but not to negative affect. P values are corrected for multiple comparisons using false
discovery rate correction. Error bars represent 95% CI. AUC: area under the curve; HR: heart rate; SC: skin conductance.

Next, to confirm that the observed average decrease in
physiological arousal observed during the stress weeks is due
to the decrease in PA, we assessed whether PA statistically
mediated the effects of week type on reductions in physiological
arousal. We specifically focused on the arousal measures linked
to subjective stress and PA: the number of SC responses and
their magnitudes. Results indicated that PA significantly
mediated the relationship between SC magnitude and week type
(7.3%, mediating estimate=–0.013; 95% CI –0.03 to 0.00;
P=.03) but not fully (direct estimate=–0.166; 95% CI –0.23 to
–0.10; P<.001), indicating potential additional mechanisms are
at play. The effect of week type on the number of SC responses
was not mediated by PA.

Machine Learning Classification of Beeps Using Mood
and Physiology
We next examined to what extent prolonged stress (ie, stress
vs control week) can be classified from individual beeps using
machine learning based on affect, physiological arousal, or a
combination of both using individualized LOBO models. The
mean subject-level error was 33.45% (SD 2.21%) for Model 1

(based on affect), 36.11% (SD 2.72%) for Model 2 (based on
physiology), and 29.87% (SD 3.45%) for Model 3 (based on
affect and physiology combined). Hence, the combined model
outperformed the single-variable models. All models performed
significantly above chance on an individual level for all but one
subject (Figure 5, Multimedia Appendix 1). Group-level effects
were further tested with 2-tailed paired-samples t tests with
FDR correction comparing the LOBO models to the mean
bootstrapped error. Model 1 (affect, meandiff –16.29; t80=–64.06;
Pfdr<.001), Model 2 (physiology, meandiff –13.87; t78=–50.38;
Pfdr<.001), and Model 3 (combination, meandiff –19.45;
t78=–48.94; Pfdr<.001) all performed above chance.
Paired-samples, 2-tailed t tests comparing the within-participant
error rates between the LOBO models showed that Model 3 (ie,
combined EMA and EPA) outperformed Model 1 using mood
alone (meandiff 3.64; t78=19.20; P<.001), which in turn
outperformed Model 2 using EPA alone (meandiff 2.60;
t78=14.65; P<.001). While overall the EMA mood models
performed better, for some participants, models 1 and 2 had
almost equivalent performance.
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Figure 5. Random-forest classification error estimates. Average error estimates and error bars (representing the SE of the mean) for each of the random
forest models. Combinations of mood and physiology yield superior classification, and individually trained and tested models (Leave-One-Beep-Out
[LOBO]) perform better than models trained on group-level data (Leave-One-Subject-Out [LOSO]). Chance levels estimated from the permutation test
and 95% CI are shown in blue. Significance levels between bars indicate between model comparisons, and above bars indicate model comparisons to
chance levels. P values are corrected for multiple comparisons using false discovery rate.

Individualized Models Offer Better Predictions Than
Group-Based Models
We next investigated the generalizability of these models from
an individualized approach to a population-level one (using
group-level classification) through LOSO cross-validation. M1
using affect (45.85%, SD 9.50%), M2 using physiology
(48.42%, SD 8.05%), and M3 using the combination (42.44%,
SD 9.00%) were again tested against their bootstrapped
counterparts.

For some individual participants, LOSO models performed
significantly above chance level (Model 1-affect n=45, 54.1%;
Model 2-physiology n=30, 37.9%; and Model 3-combination
n=55, 69.6%) in classifying week type (Multimedia Appendix
1). Group-level analysis using a 2-tailed paired sample t test

showed that only model 1 (affect, meandiff –3.53; t80=–3.59;
Pfdr=.005), and model 3 (combination, meandiff –6.55; t78=–6.81;
Pfdr<.001) performed better than chance. Model 2 did not
perform above chance (physiology, meandiff –1.34; t78=–1.54;
Pfdr>.99).

We additionally directly compared the classification errors
between the individualized and group models for each
participant using a paired-sample t test with FDR correction.
All individualized LOBO models performed better than the
group-level LOSO models. LOSO Model 1 (mood) performed
significantly worse than the equivalent LOBO model (meandiff

11.43; t80=12.17; Pfdr<.001). LOSO Model 2 (physiology) was
also significantly worse than the LOBO counterpart (meandiff
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8.11; t78=8.61; Pfdr<.001). LOSO Model 3 (combination)
similarly performed worse than the LOBO model counterpart
(meandiff 12.61; t78=11.74; Pfdr<.001). In sum, individual models
vastly outperformed group-based models.

Discussion

This study investigated physiological and psychological
responses to ecological stressors in daily life (ie, examination
weeks in students) to determine the usability of passive
monitoring technologies for detecting prolonged stress. We
used EMA and EPA to track subjective stress, mood, and
arousal-related physiology. Our findings confirmed an overall
increase in subjective stress during examination weeks. As
hypothesized during the stress week, NA increased and PA
decreased. Contrary to what was expected, lower SC and HR
arousal measures were recorded during the stress week. At a
beep-to-beep time scale, increased subjective stress was
associated with increased NA, decreased PA, and increased SC
responses. Interestingly, PA was also associated with increased
SC responses and partially mediated the between-week
differences in SC we found. Thus, the observed decreases in
physiological arousal measures were (at least partially) due to
a reduction in PA. Using a machine learning approach, we
showed that the combination of individual mood and physiology
was best able to detect whether individual beeps stemmed from
stress or control weeks. We conclude that passive monitoring
with wearable biosensors can detect prolonged stress,
highlighting the importance of mood measures to dissociate
positive and negative arousal.

In line with previous work, the stress week resulted in increases
in self-reported stress, validating our paradigm [45]. We
observed expected changes in mood, with increased NA and
decreased PA. However, arousal measures were surprisingly
reduced during the stress week. The observed overall decrease
in physiological arousal during stress weeks appears at odds
with the positive association between within-beep subjective
stress and increased arousal in our analysis and previous works
[22,26,28]. This finding reveals a dissociation between
prolonged and acute stress. While prolonged stress leads to
increased within-beep peaks in self-reported acute stress, it also
results more generally in decreased PA and decreased overall
average arousal. Our results suggest that reduced arousal may
be linked to reduced PA seen in the stress weeks (irrespective
of peaks in subjective stress). Our mediation analysis
corroborates this mechanistic link, confirming that PA partially
mediates the effect of week type on reduced arousal. While this
may seem counterintuitive, SC and HR measures are known to
respond to both positive and negative events, showing that
physiological arousal is not valence specific [23,46]. This fits
with a recent review observing the most consistent link between
high-arousal subjective states and increased HR measures [29].
Within a theoretical framework of affect dynamics, these
findings also align with the circumplex theory of emotion and
valence, linking the 2 on a grid-like schema of valence and
arousal [47]. Thus, the net effect of prolonged stress exposure
stems from a reduction in overall arousal driven by reductions

in positive mood that persist outside of peak moments of acute
stress.

We subsequently tested the ability of machine learning models
to classify individual beeps as stemming from stress or control
weeks with physiology, mood, or a combination of both.
Physiology models could classify beeps almost as well as mood
models (3.85% difference on average). However, and more
importantly, combination models showed the highest accuracy.
Hence, the addition of mood questions to physiological arousal
provides valuable information for prolonged stress detection.
This converges with the mixed models and mediation results:
accounting for valence through mood is necessary to distinguish
stress-induced from PA-induced arousal. Our findings provide
a mechanistic explanation for why previous studies using SC
trigger-based EMA to detect stress captured positive arousal
instead [46]. In addition to demonstrating that affect and arousal
offer better than chance classification levels, we also show that
they achieve higher accuracy in classifying week type than
classification based on a median split across explicit subjective
stress measures. Using a combination of EPA and mood EMA
may also reduce issues related to measurement errors seen within
EMA. Additionally, assessing mood and physiological arousal
may offer a more nuanced measure of stress states that is not
dependent on activities or events that occurred since the previous
beep. This approach is also common in laboratory research on
stress, where mood questionnaires and physiological arousal
measures are often used to quantify stress [48]. In sum,
combining a wearable biosensor with minimally invasive mood
assessment might offer the best approach to detecting stress in
both healthy and clinical populations, offering a more feasible
approach than full EMA batteries.

Besides demonstrating the utility of physiological monitoring,
our results highlight the importance of individualized approaches
in stress detection. Classification models trained and tested on
individuals’ own data (LOBO) performed significantly better
than those trained on group data (LOSO). Our individualized
approach offers drastic improvements in the classification of
stress states in comparison with group approaches [28]. This
supports findings in previous work, where large
between-participant differences in dynamic ranges of responses
limited applications of machine learning at the population level,
pointing toward the need for individualization [28]. Intuitively,
the same experience can generate different physiological and
psychological responses in different individuals based on a
multitude of factors, such as sex, appraisal, or clinical traits.
For example, patients with anxiety may display a very different
physiological response to stress than those with depression
(hyper- vs hypoactivation) [49]. This is a key strength of the
current approach, fully aligned with recent developments in
personalized psychiatry: individualized models allow for greater
prediction accuracy than a one-size-fits-all approach.

Worth noting is that classification accuracy of our machine
learning models was relatively low in this study compared to
many other ML studies. Previous studies found limited
applicability of such algorithms due to variance in ranges of
physiological responses between participants [28]. However,
by using a within-participant design, we circumvent such issues.
Importantly, lower accuracy stems from the ecological design:
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our models did not classify weeks but rather individual beeps
within the weeks (approximately 70% of beeps were correctly
assigned to the weeks in the best models). Through the median
split of our data based on self-reported stress, we clearly
demonstrate that even during a stress week, participants are not
stressed 100% of the time. This was an intentional design choice:
the goal was to test the ability of physiology and mood measures
combined to detect momentary stress states during heightened
periods of stress, which may be required, for example, for
detecting warning signals. Furthermore, the accuracy achieved
with our real-life models is also on par with more recent
laboratory studies classifying affect from wearables and infrared
cameras [50]. Hence, the classification accuracy found in this
study represents what might occur in the general population
during real-life stress periods (including stressful moments in
regular weeks and regular moments in stressful weeks) and
supersedes directly asking about stress.

This study provides early evidence for the successful detection
of prolonged periods of stress in individuals. However, some
limitations warrant discussion. This study was purely
cross-sectional, meaning that we are unable to make connections
in how our findings can be used for predicting mental health
outcomes and resilience in the long term. Prospective and
longitudinal designs with explicit measures of resilience are
needed for this. This is also important within the context of
promoting resilience, as prospective detection of vulnerability
is the next step in this line of research, with the aim of
identifying early warning signals [51]. More research (some of
which is currently underway [52]) will be needed to extend
these results into prospective stress detection algorithms [49].
Additionally, it is important to consider the reliability and
validity of the devices used in this study. Previous research has
shown that these devices offer reliable measures of SC for stress
detection [53,54], but this may not extend to daily life scenarios,
which are inherently noisier [55]. While we cannot eliminate
noise from our data, preprocessing steps such as despiking and
filtering allowed us to derive a cleaner signal. Additionally, the
inclusion of an accelerometer-derived motion component in our

models can also partially explain variance related to wrist
displacement. Furthermore, we refrain from including HR
variability metrics in our analysis for this specific reason, and
such measures, while more specific to sympathetic nervous
system activity, are also more susceptible to noise.

It may also be argued that the uncontrolled nature of the study
is a detriment to the findings and has an impact on the reliability
of the proposed measure. However, the ecological validity of
this study is rather a strength in providing a necessary translation
of laboratory measures to a real-life setting [56]. Additionally,
we controlled for several potential confounds that may impact
the reliability of our measures, such as those differences in
behavior across weeks (ie, alcohol intake, sleep, caffeine, and
exercise). Finally, and worth noting, this study focused on a
relatively smaller sample of students, which may limit
generalizability to other contexts. However, we also note that
an examination stressor may resemble many real-life stressors
and daily hassles, such as work deadlines. Yet, these results
may not generalize to more severe, traumatic, and stressful life
events. Acute stressful events may lead to very different arousal
responses, and future research is needed to address this topic.
However, having to rely on the occurrence of such events in a
study may prove difficult and would require longer periods of
assessment in the hopes of capturing these types of acutely
stressful moments. Indeed, this is an issue that has already been
addressed by previous attempts at classifying stress from such
devices [28].

In conclusion, this study shows that EPA may be used for
monitoring stress-related mental health but highlights the
importance of affect ratings to dissociate changes in arousal due
to stress versus PA. A combination of physiology and mood
measures is optimal for detecting prolonged stress, and
personalized approaches to modeling these variables are
necessary. If successfully implemented at a wider scale, our
findings may have implications for disease prevention,
potentially helping to reduce the overall disease burden of
stress-related disorders through personalized early-warning
systems and treatment strategies.
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EMA: ecological momentary assessment
EPA: ecological physiological assessment
HR: heart rate
IBI: interbeat interval
LOBO: Leave-One-Beep-Out
LOSO: Leave-One-Subject-Out
NA: negative affect
PA: positive affect
PANAS: positive and negative affect schedule
SC: skin conductance
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