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Abstract

Background: Health recommender systems (HRSs) are information retrieval systems that provide users with relevant items
according to the users’ needs, which can motivate and engage users to change their behavior.

Objective: This study aimed to identify the development and evaluation of HRSs and create an evidence map.

Methods: A total of 6 databases were searched to identify HRSs reported in studies from inception up to June 30, 2022, followed
by forward citation and grey literature searches. Titles, abstracts, and full texts were screened independently by 2 reviewers, with
discrepancies resolved by a third reviewer, when necessary. Data extraction was performed by one reviewer and checked by a
second reviewer. This review was conducted in accordance with the PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews) statement.

Results: A total of 51 studies were included for data extraction. Recommender systems were used across different health
domains, such as general health promotion, lifestyle, and generic health service. A total of 23 studies had reported the use of a
combination of recommender techniques, classified as hybrid recommender systems, which are the most commonly used
recommender techniques in HRSs. In the HRS design stage, only 10 of 51 (19.6%) recommender systems considered personal
preferences of end users in the design or development of the system; a total of 29 studies reported the user interface of HRSs,
and most HRSs worked on users’ mobile interfaces, usually a mobile app. Two categories of HRS evaluations were used, and
evaluations of HRSs varied greatly; 62.7% (32/51) of the studies used the offline evaluations using computational methods (no
user), and 33.3% (17/51) of the studies included end users in their HRS evaluation.

Conclusions: Through this scoping review, nonmedical professionals and policy makers can visualize and better understand
HRSs for future studies. The health care professionals and the end users should be encouraged to participate in the future design
and development of HRSs to optimize their utility and successful implementation. Detailed evaluations of HRSs in a user-centered
approach are needed in future studies.

(J Med Internet Res 2023;25:e38184) doi: 10.2196/38184
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Introduction

Information and communication technologies provide new ways
of searching and gathering health information. Health consumers
have access to different kinds of resources that are disseminated
through the World Wide Web [1]. The emergence and

popularization of the internet have brought tremendous amounts
of information to individuals, leading to serious information
overload problems [1,2]. Meanwhile, people can obtain
numerous health promotion intervention guidelines by searching
for information, which helps them adopt a healthy lifestyle and
independently manage their health behaviors. Although these
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interventions have been shown to be effective [3], they are not
for everyone because people tend to exhibit a high degree of
variability [4]. Hence, information overload and irrelevant
information are major obstacles for drawing conclusions on
personal health status and undertaking adequate actions. To
solve these problems, it is important to develop new
technologies that can be used to solve geographical access
problems, deliver timely interventions, reduce intervention costs,
and even help users exert better control over the intervention
[5].

As technology evolves, some new ways to implement tailored
interventions are being adopted. One such promising approach
to computer-based tailored health interventions is the use of
recommender systems. In the last decade, recommender systems
have gained popularity, have been applied in several domains
(eg, e-commerce, social media, and advertising) [6], and have
proven useful in innumerable applications. Currently, these
machine-based learning and information retrieval health
recommender systems (HRSs) have the potential to predict
items that will be relevant (eg, a health message) for individuals
[7]. HRSs seem to have the potential to aid computer-tailored
interventions by enhancing the user experience, as their
recommendations for computer-tailored interventions are based
on the user’s profile, and they select the best that can be
recommended; they can be highly personalized and are most
likely to be useful.

A scoping review, as a preliminary assessment of potential size
and scope of available research on a topic, aims to identify the
nature and extent of research evidence [8]. Evidence mapping
is a useful methodology to overview available research about
broad knowledge areas. We used evidence maps to represent
the volume of work in different content areas; maps can provide
an organized and understandable presentation of a large body
of research [9]. Thus, to better understand the development and
evaluation of HRSs as well as identify and map the state of the
evidence, we conducted a systematic scoping review of existing
research and created an evidence map.

This systematic review responds to the following research
questions:

• What are the basic characteristics of the published HRSs？
• Which recommender techniques are being used in HRSs?
• What types of user interfaces are used in HRSs？
• Whether and how users were involved in the development

of HRSs?
• How many types of HRS are evaluated, and are the end

users involved in their evaluation?

Methods

The conduct of this scoping review was based on the framework
and principles reported by Arksey and O’Malley [10] and guided
by the PRISMA-ScR (Preferred Reporting Items for Systematic
reviews and Meta-Analyses extension for Scoping Reviews)
guidelines [11]. A scoping review provides a literature overview
by mapping key concepts in the evidence base of the research
field, which can be used to inform needs and identify knowledge
gaps [12]. The review included the following 5 key phases [10]:

• Stage 1: identifying the research questions
• Stage 2: identifying relevant studies
• Stage 3: study selection
• Stage 4: charting the data
• Stage 5: collating, summarizing, and reporting the results

Data Sources
A comprehensive search strategy was developed by information
and health specialists using a combination of Medical Subject
Headings terms and free-text terms. The 6 databases of PubMed,
Web of Science, Embase, Association for Computing
Machinery, IEEE Xplore, and ScienceDirect were searched
from the earliest record up to June 30, 2022. Electronic searches
were conducted using the following keywords: (“recommender
systems”) OR (“recommender system”) OR (“recommendation
systems”) OR (“recommendation system”) AND (health OR
patient OR patients). In addition, relevant studies were obtained
by manual search of reference lists of all available records and
conference proceedings in the initial search. The example of
the search process can be found in Multimedia Appendix 1.

Inclusion and Exclusion Criteria
Inclusion criteria for eligible studies were as follows: (1) studies
that described or implemented HRSs whose primary focus was
to improve health; (2) studies reporting on the targeted user;
(3) studies published in English or Chinese; and (4)
peer-reviewed publications. Studies with the following criteria
were excluded from this review: (1) not detailed or not clearly
reported the recommendations of HRS; (2) the full text was
unavailable; (3) duplicate publications or secondary analysis of
the same study; (4) technical reports and reviews; and (5) studies
in other domains of knowledge.

Study Selection Process
We imported the retrieved records into EndNote X9 (Clarivate)
for management. Based on the preestablished inclusion and
exclusion criteria, 2 reviewers initially screened the titles and
abstracts. The full texts of the articles included were
independently assessed. If the 2 reviewers did not reach
consensus, a third reviewer decided whether the study should
be included. We used consensus to resolve disagreements
concerning selection and inclusion.

Data Extraction
A data extraction form was developed to facilitate electronic
comparison of entry, and we randomly selected 10 studies to
test and refine it. The data extraction form included the
following details: author name, year of publication, study origin
(ie, country), target population, and HRS details (eg,
recommended items, recommender techniques, user interface,
and evaluation approach). Two reviewers reviewed all studies
that met the inclusion criteria and extracted relevant data.
Disagreements were resolved by discussion among the
reviewers. The interrater agreement between 2 raters for full-text
selection was evaluated and quantified with Cohen κ. Cohen κ
was interpreted according to Altman’s definition, as follows:
κ<2 as poor, 0.2<κ<0.4 as fair, 0.41<κ<0.60 as moderate,
0.61<κ<0.80 as good, and 0.81<κ<1.00 as excellent.
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Data Analysis (Mapping the Evidence)
Data extracted from primary studies were mapped to visually
summarize outcome measures identified and coded by domain
using the taxonomy proposed by Hors-Fraile et al [13]. We

grouped studies by the type of HRSs being tested in Table 1.
We summarized the results using a narrative descriptive
synthesizing approach and presented them in tables and figures.
For documenting the evidence characteristics, we used evidence
maps to present outcome measures of HRSs.

Table 1. Taxonomy of health interventions using health recommender systems.

Description of all the extracted dataCharacteristics

Basic information

The target respective health domainsTherapeutic area

Description of the userTarget population

Year when the study was conductedPublication year

Country or region where the study was conductedCountry

Health domains

Yes or noGeneral health promotion

Yes or noLifestyle

Yes or noGeneric health service

Yes or noOther

Recommender techniques

Yes or noCollaborative filteringa

Yes or noContent-based filteringb

Yes or noKnowledge-based filteringc

Yes or noHybrid recommender systemd

Yes or noComparison between techniques

Yes or noOther

User interface

Yes or noMobile

Yes or noWeb

Yes or noOther

Evaluation approach

Metrics can be technical (eg, precision, accuracy, performance, recall,

mean absolute error, NDCGe, simulation, root mean square error, F1-score,
effectiveness, robustness, sensitivity, mean average, precision, and cosine
similarity)

Used metrics to assess performance (no user)

Safety; clinical effectiveness; patient perspectives; economic aspects; or-
ganizational aspects; sociocultural, ethical, and legal aspects

Evaluations involving end userf

aCollaborative filtering recommendation system is designed to provide item recommendations to users based on users’ past behavior, by means of the
ratings the user scored to the items he or she consumed.
bContent-based recommendation system obtains the user’s interest preference according to the user’s historical behavior and recommends items that
are similar to other items preferred by the specific user.
cKnowledge-based filtering is another technique that incorporates knowledge by logic inference; it uses explicit knowledge about an item, user preferences,
and other recommendation criteria.
dThe hybrid recommendation systems were proposed to optimize the algorithms and address the limitations by combining 2 or more recommendation
algorithms or introducing other algorithms.
eNDCG: normalized discounted cumulative gain.
fThe domains are classified based on Model for Assessment of Telemedicine applications.
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Results

Search Results of Included Studies
In this review, 1321 titles were retrieved, and after
deduplication, 1181 abstracts were reviewed by 2 independent
reviewers. A total of 108 articles were selected for full-text
review, and 51 studies were included in this review (Multimedia
Appendix 2 [14-65]). Interrater agreement between the 2 authors
was excellent (κ=0.81) for the full-text selection. The detailed
screening process is illustrated in Figure 1.

Regarding geographical distribution (Figure 2 and Multimedia
Appendix 3), the included studies originated from 16 different
countries, with major contributors being China (n=14, 27.5%),
United States (n=10, 19.6%), Spain (n=4, 7.8%), and United
Kingdom (n=3, 5.9%). Over the 13-year period that spanned
from the oldest to the most recent study included in this review,
there was a rising trend of relevant publications, with 1 discrete
peak year or period—2017 (8 studies, 15.7%). Notably, more
than half of the studies were published over the last 5 years.

Figure 1. Flow diagram. HRS: health recommender system.

Figure 2. Distribution of the included articles in geographical map. A total of 51 studies were conducted in16 different countries, including China,
United States, Spain, United Kingdom, Thailand, Italy, Japan, Korea, Malaysia, Netherlands, Pakistan, Singapore, Spain, Brazil, Australia, and Canada.
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Recommended Items and User Interface
In all 51 eligible studies, the health domains included general
health promotion, lifestyle, generic health service, and some
other domains. Most of the studies focused on lifestyle (n=17,
33.3%) or general health promotion (n=20, 39.2%). Other HRSs
are used to treat generic health services (n=13, 25.5%; Figure

3). A large proportion of user interfaces were mobile, including
mobile apps or web interfaces to show the recommended items
(n=17, 33.3%); 12 (23.5%) studies were websites; and 22
(43.1%) studies did not report the interface used (Figure 3 and
Multimedia Appendix 3). In 22 (43.1%) studies, the HRSs
reported that they considered the user’s characteristics or
preferences, and they recommended tailored messages.

Figure 3. Effect of health recommender systems by year of publication and health domains.

Recommender Techniques
The frequency of recommender techniques used in HRS types
is presented in Figure 4. A total of 23 (45.1%) studies reported
the use of hybrid recommendation systems, which are the most
commonly used recommender type in HRSs. A group of 10

(19.6%) studies used knowledge-based filtering HRSs. Although
collaborative filtering and content filtering are popular
techniques, they were not used frequently in the HRS domain
(n=5, 9.8%). Only 2 HRSs (n=2, 3.9%) relied on content-based
filtering, and 3 studies (n=3, 5.9%) reported comparing different
HRSs techniques to find the best algorithm.

Figure 4. The number of recommender techniques used in health recommender systems.

Users Involved in the Development of HRSs
Of all 51 eligible studies, 19.6% (10/51) recruited users in the
development of HRSs. End users were recruited in the design
phase of HRSs in 7 (13.7%) studies. In 5.9% (3/51) of the
studies, the HRSs reported that end users participated in the test
phase of HRSs (Multimedia Appendix 3).

Evaluation Approach
In this study, we found 2 types of HRS evaluation approaches:
(1) offline evaluations using computational methods and (2)
evaluations involving an end user.
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Offline Evaluations Using Computational Methods
In our study, 62.7% (32/51) of included studies used the metrics
to assess performance. Precision (13/32, 40.7%), accuracy
(12/32, 37.5%), performance (7/32, 21.9%), and recall (8/32,
25%) were the most used metrics among offline evaluation

metrics. Other popular offline evaluation metrics are
accuracy-related measurements, such as the mean absolute
(percentage) error (5/32, 15.6%), root mean square error (3/32,
9.4%), normalized discounted cumulative gain (3/32, 9.3%),
and F1-score (2/32, 6.2%). The details are illustrated in Figure
5.

Figure 5. Overview of offline evaluations using computational methods in the studies. NDCG: normalized discounted cumulative gain
[14,15,18,19,21,22,25,27-32,34,36,39,40,42,45,48-52,56-58,60-63,65].

Evaluations Involving an End User
Of the total studies, 35.3% (18/51) included participants in their
HRS evaluation. Clinical effectiveness (10/18, 55.6%) and

patient perspectives (7/18, 38.9%) were the most commonly
evaluated domains. Only 1 (2.2%) study used randomized
controlled trial to evaluate organizational aspects. The details
are illustrated in Figure 6.

Figure 6. Overview of the user-involved evaluation used in the studies [14,20,23-25,29,31,35,37,38,40,42,47,48,53,54,59,61].

Discussion

Principal Findings
Our study is the first to conduct a systematic scoping review
and create an evidence map to give an overview of the state of
the evidence on development and evaluation of HRSs. A total
of 51 studies of HRSs were included in our systematic review,
and the health domains included general health promotion,
lifestyle, generic health service, and some other domains.

The main goals of HRSs are to retrieve trusted health
information from the internet, to analyze what is suitable for
the user profile and to select the best that can be recommended.
Recent trends in health information seeking and developments
in the fields of personal health records motivate our proposed
approach for HRSs [13]. HRSs’ tailoring information to
individual needs can better support patients in their search and
retrieval efforts for securing appropriate information [66]. In
our review, we found that only 10 studies recruited users and
asked them to be involved in HRS development. For example,
in the study conducted by Bravo-Torres [16], the design was
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developed following recommendations given by 25 end users.
Moreover, to verify the operation and use of the application,
several tests were carried out on a total of 25 older adults. The
preferences and tastes of the participants were collected, and
the information was stored in a database [67]. The authors aimed
to influence their users’ health by improving the quality of the
system, leading to better health outcomes, so the end user is
always involved in both the design and evaluation processes.
In our review, only 2 studies tested their HRSs by experts
[25,41]. Experts such as clinicians, technicians, nurses,
pharmacists, and therapists possess the right sets of knowledge
and skills, and they interact with consumers regularly and are
better aware of their concerns [68]. Thus, another way to
improve the quality of HRSs is to consider expert reviews of
HRSs and include their assessment data in the design and
evaluation phases.

Our systematic review explored how many techniques were
used for building recommendation systems. The most popular
ones are hybrid recommender systems [69], collaborative
filtering [70,71], and knowledge-based systems [72]. The
so-called hybrid recommender systems are usually based on the
main types of recommender systems. Most of the identified
HRSs were hybrid types, mostly combining content-based
filtering with collaborative filtering [73]. They can make more
accurate predictions, as they are better for solving the issues
where there is an abundance of data. For example, Agapito et
al [14] proposed a web-based HRS (DIET Organizer System)
that automatically provides users with health profiles including
chronic kidney disease, diabetes, and hypertension status. In
addition, based on the user’s health profile, this HRS provided
individualized nutritional recommendations, with attention to
food geographical origin [14]. Collaborative filtering is called
the most mature and the most commonly implemented in other
domains. Simply put, the basic task of collaborative filtering
analyzes big groups of people and aims at finding much smaller
sets of users who share their preferences with the user of interest.
Maybe due to abundance of data in the health field, it is not
commonly used in the health field, and only 5 studies showed
relevance in the items recommended using collaborative
filtering. Li et al [60] used collaborative filtering to provide
patients with drug recommendations. By creating a patient file,
this file can be compared with other patient files with similar
characteristics to achieve recommendations [60]. However, in
3 studies, the researchers compared different recommender
techniques [42,74,75]. They aimed to find the best algorithm
for a specific data set or end users.

With the increasing popularity of mobile devices and the
development of wireless communication network technologies,
an increasing number of studies integrate mobile devices and
context-aware technology to develop HRSs. A total of 29 studies
reported the user interface of HRSs; most HRSs worked on
users’ mobile interfaces, usually a mobile app. Owing to the
penetration, processing, connectivity capabilities, and
accessibility of mobile devices [76,77], they have grown in the
medical field [77]. It has been shown that mobile apps have
potential effects on health behavior change [78] and chronic
disease management. Through a wide variety of smart mobile
devices (eg, iPhone, Android, Blackberry, and iPad), users can

browse large quantities of health information anytime anywhere
to assist self-health management. In addition, web technology
is popular for these HRSs. Web technology has advantages in
cross platform specificity, which leads to the use of multiple
clients with different hardware and operating systems. EI-Gayar
et al [46] found that mobile-based apps are preferred to
computer-based applications in patients with diabetes, and as
this system was designed as a mobile app, it managed to attract
nutritionists’ attention.

On the basis of the papers included in our study, it seems that
there are 2 distinct phases of development and hence evaluation
at these distinct phases. In the first approach, the authors use
metrics to assess performance (no user). We found that there
are large disparities in accuracy, testing, analysis, and unified
evaluation types used in previous studies. For example, Casino
et al [18] reported that they measure robustness but do not
outline what they measure as robustness. Consequently, it is
difficult for new researchers to fully comprehend or take
advantage of the benefits of the methods presented in other
HRSs. Technology-related metrics (ie, F1-score, precision, and
accuracy) may be sufficient to justify use in real-world settings.
In this sense, it is necessary to continue reporting results on the
evolution of HRSs research using computational methods. Some
studies [79-81] have investigated the problem of a lack of
evaluation in many articles. A greater focus on technical aspects,
such as using the correct terminology and describing the system
comprehensively, will benefit other researchers and policy
makers willing to build on the previous successful experiences.
In addition to accuracy, a variety of other metrics should be
taken into account when evaluating recommender systems, and
many HRSs need to be tested to demonstrate any proposed
evaluation approach [71].

In the second approach, only 33.3% (n=17) of studies reported
the evaluations involving an end user. Most HRSs aim to
influence their users’health. Thus, end users should be involved
in the test processes and implementation evaluation of an HRS.
For example, Bidargaddi et al [47] reported on findings from a
randomized controlled trial that was designed to test the efficacy
of a guided recommendation service for readily available mobile
mental health apps for young people aged 16-25 years.
Reporting the health promotion and behavior change will make
it easier to understand the robustness and fidelity of the HRS
study. Researchers have noticed this lack of user participation
before, and it has been identified as the main challenge in this
field [13]. Therefore, we recommend that researchers evaluate
their HRSs with actual end users. The Model for Assessment
of Telemedicine applications provides a structure for the
multidisciplinary assessment of telemedicine applications by
decision makers to choose the most efficient and cost-effective
technologies with regard to the characteristics of the application,
safety, clinical effectiveness, patient perspectives, as well as
economic, organizational, sociocultural, ethical, and legal
aspects [82]. Although there is immense potential in the use of
HRS in health interventions, there is little information
specifically on the effectiveness and organizational aspects of
it thus far, indicating the need for further studies to address
other domains. There are general frameworks that cover health
information technology, such as the user-centric framework
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proposed by Knijnenburg et al [83]. However, future HRS
studies should cover at least all aspects proposed in their
taxonomy when disseminating their results. Moreover, the
challenge is to add appropriate health or human behavior
parameters into HRS frameworks or evaluation rules.

Considerations for Future Research
First, although machine learning algorithms are difficult to
explain for medical professionals, it is necessary to report or
disclose this detailed information to validate the results and
facilitate future research [5]. Second, end users and health care
professionals should be encouraged to participate in the design
and test phases of the HRSs. In addition, there is a need for
further studies to evaluate these domains, including clinical
effectiveness, patient perspectives, as well as economic,
organizational, sociocultural, ethical, and legal aspects. Third,
there is a lack of papers that include both clinical trials and
simulations in the experimentation process, even though this
would be beneficial. Researchers may focus on individual
domains in articles depending on the research question and the
word count limitations set by specific journals. It is
recommended that the proposed model or framework for
assessment of HRSs are applied as a complete framework, which
will help researchers in choosing the most efficient and
cost-effective technologies. Last, although the use of
recommender systems has the potential to contribute to tailored
health interventions, it is still sparse in the health domain.
Researchers are encouraged to propose and support studies
pertaining to HRSs in therapeutic areas other than generic health
services and lifestyle.

Strengths and Limitations
This is the first systematic scoping review and evidence map
existing research in HRSs. As such, the study offers some
important insights into the condition of recommender systems
in the health field with a focus on technical aspects. Moreover,
our findings can be useful in prioritizing areas of further
implementation research in HRSs. This review also has some
limitations. First, although we searched most health care
information journals, we only included studies in English and
Chinese languages, and some grey literature may have been
excluded. The restriction to the search string and language may
impact the included results. However, as this is a scoping review
without synthesis of the evidence, we present the outcomes as
reported by the authors of primary studies, and therefore, do
not make determinations or recommendations as to the
appropriateness or utility of outcomes. Second, some research
may have implicitly reported computer-generated health advice
in their studies. However, in these studies, they did not mention
recommendation systems and were excluded from this review.

Conclusions
HRSs have been increasingly used in recent years and may have
significant potential to improve population health. There is a
lack of scientific evidence in user-centered evaluation
approaches, and some other metric parameters are ambiguous
in HRS evaluation. The end users and professionals should be
encouraged to participate in the design and development of
HRSs to optimize their utility and successful implementation.
This review can help nonmedical professionals and policy
makers visualize and better understand HRSs in future studies.
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