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Abstract

Background: HIV self-testing (HIVST) has been rapidly scaled up and additional strategies further expand testing uptake.
Secondary distribution involves people (defined as “indexes”) applying for multiple kits and subsequently sharing them with
people (defined as “alters”) in their social networks. However, identifying key influencers is difficult.

Objective: This study aimed to develop an innovative ensemble machine learning approach to identify key influencers among
Chinese men who have sex with men (MSM) for secondary distribution of HIVST kits.

Methods: We defined three types of key influencers: (1) key distributors who can distribute more kits, (2) key promoters who
can contribute to finding first-time testing alters, and (3) key detectors who can help to find positive alters. Four machine learning
models (logistic regression, support vector machine, decision tree, and random forest) were trained to identify key influencers.
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An ensemble learning algorithm was adopted to combine these 4 models. For comparison with our machine learning models,
self-evaluated leadership scales were used as the human identification approach. Four metrics for performance evaluation, including
accuracy, precision, recall, and F1-score, were used to evaluate the machine learning models and the human identification approach.
Simulation experiments were carried out to validate our approach.

Results: We included 309 indexes (our sample size) who were eligible and applied for multiple test kits; they distributed these
kits to 269 alters. We compared the performance of the machine learning classification and ensemble learning models with that
of the human identification approach based on leadership self-evaluated scales in terms of the 2 nearest cutoffs. Our approach
outperformed human identification (based on the cutoff of the self-reported scales), exceeding by an average accuracy of 11.0%,
could distribute 18.2% (95% CI 9.9%-26.5%) more kits, and find 13.6% (95% CI 1.9%-25.3%) more first-time testing alters and
12.0% (95% CI –14.7% to 38.7%) more positive-testing alters. Our approach could also increase the simulated intervention’s
efficiency by 17.7% (95% CI –3.5% to 38.8%) compared to that of human identification.

Conclusions: We built machine learning models to identify key influencers among Chinese MSM who were more likely to
engage in secondary distribution of HIVST kits.

Trial Registration: Chinese Clinical Trial Registry (ChiCTR) ChiCTR1900025433;
https://www.chictr.org.cn/showproj.html?proj=42001

(J Med Internet Res 2023;25:e37719) doi: 10.2196/37719
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Introduction

Men who have sex with men (MSM) have a higher burden of
HIV [1]. In China, HIV prevalence among MSM is 6.3% in
2019 [2]. However, over 40% of Chinese MSM have never been
tested [3], and over 30% of MSM living with HIV do not know
their serostatus [4]. More efficient case-finding for undiagnosed
people living with HIV and starting treatment is essential for
HIV control [5]. To increase the coverage of HIV testing, HIV
self-testing (HIVST) has been recommended by the World
Health Organization (WHO) [6], which has high acceptability
among MSM [7].

Secondary distribution is one of the novel ways to increase the
use of HIVST [8]. Within this service delivery model,
individuals, commonly referred to as “indexes,” take the
initiative to request and receive multiple HIVST kits.
Subsequently, they play a crucial role in distributing these
HIVST kits to individuals within their social network. These
network members, specifically sexual partners and close
associates within the MSM community, are designated as
“alters” [9,10]. In essence, indexes serve as the primary
recipients and distributors of the HIVST kits, while alters
represent the recipients of these kits within the social circle.
Such a strategy could significantly improve HIV testing
coverage by reaching people who have limited access to HIV
testing and potentially detect more undiagnosed people with
HIV [10]. To further expand the use of this strategy and enhance
the efficiency of distribution, it could be useful to identify
influential indexes who are more likely to distribute kits to more
alters (eg, ≥2 alters), people living with HIV who are
undiagnosed, or first-time testers.

However, existing methods for identifying MSM key influencers
are limited in the following 2 respects. First, some studies

selected key influential people based on human intuition and
then trained them as opinion leaders [11,12]. This selection
process of key influencers lacks a scientific basis and is not
reliable or generalizable [13]. Second, other studies used
self-reported leadership scales, such as those among drug users
[14]. This method is more scientific because of self-reported
leadership scales, but it is still relatively subjective. Even if all
self-reported leadership items were reliable and valid, these
identified leaders in the community might not be key influencers
for secondary distribution of HIVST kits.

Artificial intelligence (AI), including machine learning (ML)
approaches, is a promising method to identify key influencers
[15,16]. In the area of HIV intervention, ML models also
performed well in different kinds of key population classification
tasks, such as identifying people at a relatively higher risk of
HIV [17] and identifying suitable candidates for pre-exposure
prophylaxis (PrEP) [18]. Thus, ML approaches have potential
to be used for identifying key influencers for secondary
distribution of HIVST kits.

Using data collected from previous studies [19], we propose a
novel ensemble ML approach (Figure 1) to identify key
influencers for secondary distribution of HIVST kits where
indexes applied for testing kits for distribution, while alters
were those individuals who received these kits. Specifically,
our ML models were trained to obey 3 rules to identify key
influencers: key-distribution influencers (ie, key distributors)
who are more likely to distribute kits to as many alters as
possible (eg, no fewer than 2 kits in 10 months), key-promotion
influencers (ie, key promoters) who contribute to promoting
first-time testing among alters, and key-detection influencers
(ie, key detectors) who distribute kits to alters who are
undiagnosed people living with HIV.
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Figure 1. Framework of our study.

Methods

Data Processing
The data set was derived from a 3-arm randomized controlled
trial of secondary distribution of HIVST kits in Zhuhai, China
[19]. This trial was registered with the Chinese Clinical Trial
Registry (ChiCTR1900025433). All participants gave digital
written informed consent by providing electronic signatures
before the taking the web-based baseline survey. Between
October 21, 2019, and September 14, 2020, a 3-arm randomized
controlled, single-blinded trial was conducted on the web among
309 individuals (defined as “index participants”) who were
assigned male at birth, aged 18 years or older, ever had
male-to-male sex, willing to order HIVST kits on the internet,
and consented to take surveys on the web. In this trial, 309 MSM
were randomly assigned to the control group (standard
secondary distribution [SD] arm; SD group), the intervention I
group (SD with monetary incentives [SD-M] arm; SD-M group),
or the intervention II group (SD-M and peer referral [SD-M-PR]
arm; SD-M-PR group). Monetary incentives implies that the
index participants in the SD-M and SD-M-PR groups could
receive a fixed incentive of US $3 on the web for a verified test
result uploaded to the digital platform by each unique alter.
Monetary incentives and peer referral implies that the index
participants in the SD-M-PR group could additionally have a
personalized peer referral link for alters to order kits on the web
as an intervention strategy. Of 309 indexes, 60 were key
distributors who passed the kits to at least 2 alters. Additionally,
there were 73 key promoters, leading to 103 alters who were
first-time testers; and 23 key detectors, leading to 25 alters who
were undiagnosed people living with HIV, as defined above.
The trial profile infographic with more details can be found in
Zhou et al [20].

ML Modeling
We formulated a strategy to identify key influencers as a binary
classification problem, and 4 ML models were constructed,
including logistic regression, support vector machine, decision
tree, and random forest [21,22]. Each model has its pros and
cons (Multimedia Appendix 1) in performing the classification
task; hence, we comprehensively combined the predictions of
all 4 models to mitigate overfitting and model biases by adopting
an ensemble learning approach [23], which could synthesize
the strengths from each ML model. Specifically, we used the
voting classifier in soft mode as the ensemble method,
considering the probabilities yielded by each ML model, and
these probabilities would be weighted and averaged;
consequently, the winning class would be the one with the
highest weighted and averaged probability.

To evaluate ML models for such classification tasks, we used
4 metrics for performance evaluation: accuracy, precision, recall,
and F1-score (Multimedia Appendix 2). Accuracy is defined as
a ratio of correctly predicted observations to the total number
of observations. The F1-score takes both the precision and the
recall into consideration and is defined as the harmonic mean
of precision and recall:

We used 5-fold cross-validation [24] to ensure the robustness
of the models and compared the average values of each metric.
Specifically, we randomly sampled 80% of the data for training
and 20% for testing. Experiments for each metric were repeated
5 times as every time 1 fold (ie, 20% of the data) would
constitute the testing set and the remaining 4 folds (ie, 80% of
the data) would be trained for model construction and parameter
learning. The final average values of each metric are the average
performance of the 5 folds’ testing set.
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Selection of Predictors
First, we incorporated original predictors (ie, input variables
from the survey) into our classification models using the
aforementioned 4 ML models. Then, we obtained a predictor
ranking list of each ML model ordered by the importance of
every variable (Multimedia Appendix 3). The 4 ML models
voted for the final selected predictors, which ranked at the top
in all 4 importance ranking lists.

Specifically, the logistic regression model provided us with the
coefficient of each predictor, while the other 3 models (support
vector machine, decision tree, and random forest) provided the
importance level. Specifically, in logistic regression, we ranked
the importance of each characteristic in accordance with the
absolute value of the standardized coefficient. For the support
vector machine model, we adopted the Recursive Feature
Elimination algorithm to generate a weighted vector when
training, and then in each iteration, we eliminated a least
important feature through the above-weighted vector. For
decision tree and random forest models, the Gini index in the
Classification and Regression Tree algorithm determined the
importance of every variable.

Identification System
After determining the top predictors by importance ranking, we
ran the same 4 ML models based on these selected variables to
check and obtain the classification performance. Then, we used
ensemble learning to combine the findings from all ML models.
The whole process, including ML modeling, predictor selection,
and modeling based on selected important variables (ensemble
learning), represents a novel intelligent identification system
(illustrated in Figure 1), which can be adopted in the
implementation program in the secondary distribution of HIVST
kits in the future to identify key influencers among MSM.

We ran all ML experiments in Python (version 3.7; Python
Software Foundation), and the code is available upon request
from the corresponding author.

Human Identification Approach
For comparison with our findings using ML models, we used
2 self-reported scales as the human identification approach.
According to existing literature, self-evaluated leadership scales
are commonly used to identify key influencers [11,12,14]. These
self-reported leadership scales asked indexes to evaluate the
likelihood of 6 social influence–related scenarios on a scale of
0 to 4, and the total points ranged from 0 to 24. Based on the
previous literature, indexes (around 20% out of a total of 309
indexes) who distributed at least 2 kits were defined as key
distributors on the ground truth. Hence, we set a cutoff of the
top 60 indexes (which was also around 20%) by rank order in
our 6-question self-reported scales (Figure 1) as the
human-identified key influencers. However, 49 indexes received
at least 11 points in the self-reported scales, while 81 indexes
received at least 10 points. In other words, since the 49th to the
80th indexes received the same points in these self-reported
scales, we were unable to determine exactly which of these
indexes ranked in the top 60. As a result, we regarded these 2
scale cutoffs as human identification baselines together, recorded
as cutoffs A and B, respectively.

Simulation
Finally, we further conducted a simulation model to mimic the
secondary distribution process on the MSM’s social network
and to compare the intervention efficiency of identification of
the key influencers by the ML models and by conventional
human identification approaches. Here, intervention efficiency
is defined as the number of individuals who have self-tested at
the end of the simulation. Specifically, simulation technologies
[25,26] on HIV-related networks [27,28] can also model
distribution network characteristics.

We simulated the secondary distribution process on each test
set of the 5-fold cross-validation. Given indexes in each test
set, we constructed a network containing both indexes and alters
who received self-testing kits from these indexes. There would
be an edge between an index and an alter if the alter received a
kit with the corresponding confirmation code of the index.
Self-testing kits would be distributed through edges on the
network. Specifically, we summarized and interpreted the
secondary distribution process observed from our empirical
studies [20,29] into a simplified diffusion model. We used a
Poisson distribution to mimic the distribution behavior. Only 1
parameter is needed in the Poisson distribution: the mean
number of HIVST kits an individual wants to distribute at each
time step. We set it as the number of received HIVST kits. The
number of HIVST kits allocated to indexes is set at 4, as the
number of HIVST kits an index can order in our empirical
experiments is generally no more than 5 [20]. The code for
simulations is available upon request from the corresponding
author.

Ethical Considerations
Ethics approval of this trial was obtained through the Zhuhai
Center for Disease Control and Prevention
(ZhuhaiCDC-201901) [19]. All participants provided written
informed consent.

Results

Modeling Results
We compared the performance of ML classification and
ensemble learning with that of the human identification approach
based on leadership self-evaluated scales in terms of the 2
nearest cutoffs. In our survey data, 60 (19.4%; ie, around 20%)
indexes who distributed at least 2 kits were key distributors on
the ground truth. In addition, these key distributors reached
more than 70% of alters in total. Additionally, there were 73
key promoters who helped us promote first-time testing to 103
alters and 23 key detectors who helped us detect 25 positive
alters.

Table 1 shows that ML classification significantly outperformed
human identification cutoffs irrespective of the type (ie, key
distributors, key promoters, and key detectors) adopted to define
the key influencers (technical details provided in Multimedia
Appendix 1). The model using ensemble learning also
outperformed the human identification approach and nearly
achieved the highest value among all models in terms of the
performance metrics. Specifically, for 3 classification training
rules (ie, 3 types of key influencers), the classification
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performance of ensemble learning obtained an accuracy of 90%,
93%, and 82% for key distributors, key promoters, and key
detectors, respectively, all exceeding human identification (the
cutoffs of the self-reported scales). Therefore, the ensemble

learning approach combining 4 ML models could better capture
key influencers, compared with the other approaches studied,
with an 11.0% higher accuracy on average than human
identification approaches.

Table 1. Machine learning classification results using 5-fold cross-validation.

Key promoters; new-tester alters≥1Key detectors; positive alters≥1Key distributors; number of alters≥2Metrics

F1-scoreAccuracyF1-scoreAccuracyF1-scoreAccuracy

0.890.830.950.920.930.89LRa

0.890.820.960.930.940.90SVMb

0.880.800.950.910.940.91DTc

0.870.780.960.930.930.88RFd

0.890.820.960.930.940.90Ensemblee

0.780.680.880.850.820.72Cutoff Af

0.830.730.910.880.870.79Cutoff Bg

aLR: logistic regression.
bSVM: support vector machine.
cDT: decision tree.
dRF: random forest.
eEnsemble: ensemble learning.
fCutoff A: lower cutoff of the self-reported scales.
gCutoff B: higher cutoff of the self-reported scales.

Table 2 compares the number of distributed kits from key
influencers identified using the ensemble learning model and
the human identification approach. Both the ensemble learning
model and the human identification approach classified 49 key
influencers each, but those identified using the ensemble
learning approach distributed 146 kits, equating to 54%
(146/269) of alters. In contrast, the 49 key influencers identified
using the human identification approach only distributed 97

kits. In addition, the same 49 key influencers identified by the
ensemble learning model identified 3 more people living with
HIV and 14 more first-time testers than those identified using
the human identification approach. In summary, our new
approach could identify the distribution of 18.2% (95% CI
9.9%-26.5%) more kits, 13.6% (95% CI 1.9%-25.3%) more
first-time testing alters, and 12.0% (95% CI –14.7% to 38.7%)
more undiagnosed people living with HIV.

Table 2. Comparison among key influencers identified through ensemble learninga.

First-time testing altersPositive alters (ie, people living with HIV)Successfully distributed kits

3311146Machine learning identification, n

19897Self-reported scales, n

10325269Total (original), n

13.612.018.2Increased percentage, %

aThe table shows the results obtained using the ensemble learning model for identifying key distributors, and this model happened to classify 49 key
influencers (in 5-fold testing sets), sharing the same number with a certain scale’s cutoff. Therefore, our comparisons are rational. Such percentages
and CIs are calculated on the basis of the total number (eg, if the total number of distributed kits is 269, the increased percentage of successfully
distributed kits is calculated as [146–97]/269 rather than [146–97]/146).

Simulation Results
We simulated the secondary distribution process on each test
set of 5-fold cross-validation. The simulation results (Table 3)
show that our ensemble ML approach could always obtain a
higher intervention efficiency in each fold than the conventional

human identification approach. Specifically, the average
intervention efficiency of the ensemble ML model increased
by 17.7% (95% CI –3.5% to 38.8%) compared to that of the
self-reported scales cutoff method, which indicates a higher
intervention efficiency of our novel method to identify key
influencers.
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Table 3. Simulation results of intervention efficiency after identification of key influencers.

AverageFold 5Fold 4Fold 3Fold 2Fold 1Efficiency

72.279.675.065.068.572.7Ensemble machine learning, %

54.561.936.851.358.064.6Human identification approacha, %

aSelf-reported scales cutoff.

As shown in Table 3, we observed a higher distribution
efficiency for ML models than for conventional human
identification approaches. More technical details of this
simulation are shown in Multimedia Appendix 1.

Discussion

Short Summary
Identifying key influencers for secondary distribution of HIVST
kits among Chinese MSM is important. Identification of key

influencers who may be more active in the secondary
distribution of HIVST kits can potentially expand testing
coverage, reach more naïve testers, and help identify
undiagnosed people living with HIV. We found that using an
ML approach, specifically ensemble learning, was superior to
human identification of key influencers (Figure 2).

Figure 2. Infographic.

J Med Internet Res 2023 | vol. 25 | e37719 | p. 6https://www.jmir.org/2023/1/e37719
(page number not for citation purposes)

Jing et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Main Findings and Comparison to Prior Work
We found that all 4 ML models outperformed human
identification. Our results are consistent with those of other
reports that ML models have performed better in other
HIV-related identification tasks such as identifying populations
at a high risk of HIV [17], identifying HIV-related social media
data [30], and identifying people eligible for PrEP [18,31]. This
adds to the evidence demonstrating that ML can efficiently
identify key influencers within networks compared to other
methods.

In addition, we found that key influencers identified by our
ensemble learning approach could distribute 18.2% more kits,
identify 13.6% more first-time testing alters, and detect 12.0%
more undiagnosed people living with HIV than the conventional
human identification approach. Regarding why our ensemble
learning approach outperformed the human identification
approach [14], we believe this may be because the ML
algorithms included variables related to 2 key drivers of
identification: men's HIV testing and kit application.
Self-reported leadership scales are not specifically designed to
consider such important predictors. Our data suggest that ML
could enhance the accuracy of social evaluation scales for
identifying key influencers. Using an ML approach could
significantly improve the public health impact of secondary
distribution.

Our method offers a potential means to prioritize indexes
identified as key influencers in the secondary distribution of
HIVST kits using ML. Our novel ensemble ML approach for
identifying key influencers in the secondary distribution of

HIVST kits can accurately and rapidly classify which indexes
are crucial for distributing more kits, promoting testing among
novice testers, or detecting more undiagnosed people living
with HIV. This is especially significant for low- and
middle-income countries where resources for HIV testing
services may be limited.

Limitations
Our study also has several limitations. First, our study had a
retrospective modeling design, and we are currently conducting
a prospective trial to compare ML and the conventional method
[29]. Second, due to the survey content, we only compared our
ML approach with 1 type of human identification, namely,
self-reported leadership scale cutoffs. Future studies should
explore comparisons of the ML approach with other methods
of human identification. Third, the sample size (ie, 309 indexes)
was relatively small for ML modeling, which could be
considered another significant limitation of this study.

Conclusions and Future Directions
In conclusion, we found that ML using ensemble learning
achieved the highest accuracy in identifying key influencers
who are more effective at secondary distribution of HIVST kits
in China (Figure 2). Therefore, with regard to our future research
plans, we are currently implementing this approach in a program
involving the distribution of 2000 HIVST kits through a
quasi-experimental trial comparing ML identification to
scales-based human identification [29]. Our ensemble learning
approach can also be generalized to identify key influencers for
other HIV prevention and treatment programs.
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