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Abstract

Background: Quality patient care requires comprehensive health care data from a broad set of sources. However, missing data
in medical records and matching field selection are 2 real-world challenges in patient-record linkage.

Objective: In this study, we aimed to evaluate the extent to which incorporating the missing at random (MAR)–assumption in
the Fellegi-Sunter model and using data-driven selected fields improve patient-matching accuracy using real-world use cases.

Methods: We adapted the Fellegi-Sunter model to accommodate missing data using the MAR assumption and compared the
adaptation to the common strategy of treating missing values as disagreement with matching fields specified by experts or selected
by data-driven methods. We used 4 use cases, each containing a random sample of record pairs with match statuses ascertained
by manual reviews. Use cases included health information exchange (HIE) record deduplication, linkage of public health registry
records to HIE, linkage of Social Security Death Master File records to HIE, and deduplication of newborn screening records,
which represent real-world clinical and public health scenarios. Matching performance was evaluated using the sensitivity,
specificity, positive predictive value, negative predictive value, and F1-score.

Results: Incorporating the MAR assumption in the Fellegi-Sunter model maintained or improved F1-scores, regardless of
whether matching fields were expert-specified or selected by data-driven methods. Combining the MAR assumption and data-driven
fields optimized the F1-scores in the 4 use cases.

Conclusions: MAR is a reasonable assumption in real-world record linkage applications: it maintains or improves F1-scores
regardless of whether matching fields are expert-specified or data-driven. Data-driven selection of fields coupled with MAR
achieves the best overall performance, which can be especially useful in privacy-preserving record linkage.

(J Med Internet Res 2022;24(9):e33775) doi: 10.2196/33775
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Introduction

Quality patient care requires comprehensive health care data
from a broad set of sources. Electronic medical record (EMR)
data are increasingly distributed across many sources as the era
of digital health care is accelerated in the United States.
However, EMR data from independent databases often lack a
common patient identifier, which impedes data aggregation,
causes inefficiencies (eg, tests repeated unnecessarily), affects
patient care, and hinders research. Record linkage is a requisite
step for effective and efficient patient care and research. Without
a unique universal patient identifier, linkage of patient records
is a nontrivial task. The simplest class of approaches is the
deterministic method, which requires the strict identity of the
selected data elements of a pair of records, such as name,
birthdate, gender, and Social Security number. Although
deterministic algorithms are generally simple to implement and
achieve excellent specificity, they have low sensitivity, are not
robust to missing data, cannot quantify the uncertainty of the
matching process, and are inflexible to changing data
characteristics.

The Fellegi-Sunter (FS) [1] model is widely used for
probabilistic record linkage based on the binary agreement or
disagreement of a select set of fields of record pairs, such as
Social Security number, first name, middle name, last name,
and date of birth. The FS model is in essence a latent class model
applied to record linkage problems. The latent class variable is
the unobserved true match status, and the parameters in the
model are the match prevalence, probabilities of field
agreements among true matches (m-probabilities), and
probabilities of field agreements among nonmatches
(u-probabilities). A record pair’s matching weights are defined
as the logarithms of the m- and u-probability ratios, and the sum
of the weights is the matching score of the pair. Record pairs
were then classified into matches and nonmatches based on
their matching scores for a given threshold. The linking
algorithm based on the FS model is shown to outperform the
deterministic algorithm [2]. However, methodological gaps
exist in configuring and applying the FS model.

First, it is well known that missing data are prevalent in
real-world data in EMRs [3]. Data necessary for matching
records are often missing from clinical data for many reasons:
values may be coded as “unknown,” nonexistent (a person with
no middle name), or omitted due to privacy concerns (such as
Social Security number). Missing field values decrease the
information content in the data and consequently hinder
matching accuracy. Matching only records with full information
is undesirable because it excludes many records and thus misses
matches. One study found that mother’s date of birth was often
absent because it was not the focus of pediatricians’ attention
[4]. However, this information significantly improved the
linkage procedure when present. Therefore, effective
accommodation of missing data is needed to maximize linkage.
Common strategies in practice involve excluding records with
missing values in any of the matching fields when estimating
match weights [5] or considering the missing field’s agreement
pattern as disagreement [6] (missing as disagreement [MAD]).
The former lacks efficiency because of the loss in sample size

due to exclusion. The latter does not account for the fact that
true matches can contain missing fields and is deficient in a
theoretical justification. Another strategy is to model missing
data in a matching field as the third category, in addition to the
categories of agree and disagree [7]. However, it is well
established that including missing data by adding a category
“missing” causes serious biases, even when data are missing
completely at random [8-13]. In a model-based approach,
Enamordo et al [14] assume that data in matching fields are
missing at random (MAR) conditional on the true match status.
Their comprehensive simulation studies show that the FS model
with MAR incorporated outperforms deterministic linkage in
social science when linking voter files. How the FS model with
MAR incorporated compares with the FS model using zero-filled
data in which missing values in the original data are replaced
by 0 by MAD has not been evaluated. Furthermore, while MAR
is evaluated and applied to voting registries, its performance in
linking EMR files is not known.

Second, although there may be numerous fields (or attributes)
across record files not all of them are useful for matching. For
example, if matching 2 obstetrics and gynecology databases,
the field “gender” is not informative. In real-world data, there
are likely also dependencies among the data fields. As we have
demonstrated [15], the FS model exhibits poor matching
accuracy when the fields are highly correlated. As more fields
are used in the FS model, more dependencies may be introduced.
Ideally, the FS model should be able to use a minimally
sufficient set of fields. However, we are unaware of data-driven
methods for matching field selection. In practice, the expert
input is solicited to identify an appropriate subset matching
fields. Several iterations may be required to achieve the desired
match accuracy using a manually reviewed data set with known
match statuses among record pairs. This process is neither
scalable nor generalizable and is infeasible in privacy-preserving
record linkage [7]. We are also unaware of any work that
evaluates the effects of missing data treatment and field selection
for matching simultaneously.

We will evaluate the effects of incorporating missing data
treatment and matching field selection into the FS algorithm on
linkage performance using 4 real-world use cases in our local
operational data aggregation system—a health information
exchange (HIE) environment, into which different data sources
are integrated. The 4 use cases included health information
exchange record deduplication (labeled as Indiana Network for
Patient Care [INPC]), linkage of a public health registry Marion
County Health Department records to HIE (labeled as MCHD),
linkage of Social Security Death Master File records of the
Social Security Administration to HIE (labeled as SSA), and
deduplication of newborn screening records (labeled as NBS).
We hypothesize that proper treatment of missing data and
data-driven matching field selection will enhance linkage
performance.

Methods

Blocking
Records need to be compared in record linkage to ascertain
whether they belong to the same entity. Forming record pairs
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by Cartesian product from the 2 files (or to a file itself in the
case of deduplication) results in an enormously large number
of pairs. For example, the data set from the INPC (the INPC
use case) has 47,334,986 records (Table 1) and will form 2.24
quadrillion record pairs by the Cartesian product. A common
strategy is “blocking on” certain fields (blocking variables) to
reduce the number of record pairs; that is, retaining only those
record pairs with exact agreement in blocking variables.
Blocking helps to enrich matches by restricting the search space.
We applied 5 blocking schemes to each use case. In the INPC
use case, the five blocking schemes are the Social Security
number (SSN); first name and telephone number (FN-TEL);

day, month, and year of birth and zip code (DB-MB-YB-ZIP);
first name, last name, and year of birth (FN-LN-YB); and day,
month, and year of birth and last name (DB-LN-MB-YB). These
five blocking schemes contained 613 million record pairs, with
the number of pairs in each block listed in Table 1. Within each
block, record pairs are compared field by field for a collection
of matching fields, yielding a vector of comparison results for
each pair. For example, if only 3 matching fields are compared
by exact comparison (for agreement or disagreement), the

vectors will have 23 possible patterns when there are no missing
data. In general, if K matching fields are compared, there will

be 2K total agreement patterns.
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Table 1. Summary of four use cases, Indiana Network for Patient Care (INPC), newborn screening (NBS), Social Security Administration (SSA), and
Marion County Health Department (MCHD), with information on the number of records in each use case, blocking schemes, and the numbers of record
pairs in blocking schemes.

PairsBlock

INPC (47,334,986 records)

53,054,690SSNa

41,729,402FN-TELb

133,553,036DB-MB-YB-ZIPc

193,865,283FN-LN-YBd

191,181,498DB-LN-MB-YBe

NBS (765,813 records)

4,147,098MRNf

2,644,454TELg

8,083,396MB-DB-ZIP

3,005,368LN-FNh

1,217,736NK_LN-NK_FNi

SSA (89,556,520 records)

805,331SSN

18,103FN-LN-ZIP

1,395,395FN-LN-MI-YB

547,376FN-LN-MI-DB-MB

722,167FN-LN-DB-MB-YB

MCHD (471,298 records)

869,454SSN

28,238TEL

5,083,429DB-MB-YB-zip

3,378,017FN-LN-YB

3,701,460DB-LN-MB-YB

aSSN: Social Security number.
bFN-TEL: first name and telephone number.
cDB-MB-YB-ZIP: day, month, and year of birth and zip code.
dFN-LN-YB: first name, last name, and year of birth.
eDB-LN-MB-YB: day, month, and year of birth and last name.
fMRN: medical record number.
gTEL: telephone no.
hLN-FN: last name, first name.
iNK_LN, NK_FN: next of kin last name and first name.

The FS Model
Formally, for the ith pair of records, let δi denote the unobserved
true match status (a latent binary class variable) with a value of
1 indicating a match and 0 indicating a nonmatch (ie, the class
label for match and nonmatch classes), Yi=(Yi1, … ,YiK) be the
vector of agreements in K fields, and yi=(yi1, … ,yiK) be the
observed agreements. In addition, let n be the total number of
pairs and ρ=P(δ=1), the match prevalence in the total n pairs

of records. Assuming independent observations (yi, δi), i=1,...,n,
we express its complete data likelihood and the marginal
distribution of yi, i=1,...,n as follows:

and . For a given i, the posterior

probability of δi=1 is . If the true match status
δi’s are known, then the MLE of ρ for the complete data

likelihood is . When δi’s are unknown, this problem is
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known as the latent class modeling because the model
parameters are estimated without the class label being observed.

A popular algorithm, named after Fellegi and Sunter [1] in the

probabilistic record linkage literature, further assumes ;
that is, the assumption of conditional independence of Yi1, ...
,YiK within each latent class. The FS model greatly simplifies
the estimation process, producing estimates for field-specific
probability of agreement given that a pair is a match,
mk=P(Yik=1|δi=1), and the field-specific probability of
agreement given that a pair is a nonmatch, uk=P(Yik=1|δi=0).
Model estimates can be obtained by using the
Expectation-Maximization (EM) algorithm [16] on the complete
data likelihood or by using standard optimization routines on
the marginal likelihood. The FS approach allows the model
parameters to be estimated based on the observed agreements
of pairs without the use of a training set, qualifying it as an
unsupervised learning algorithm.

Classification of Record Pairs
Match scores are defined as the logarithm of likelihood ratios,

. Under the conditional independence assumption,
the match score for the ith pair is the sum of the logarithms of

the field-specific likelihood ratios, .
Match scores are computed using the estimated mk and uk from
the FS model and are in turn used to rank all record pairs, with
a high score indicating a higher likelihood of a record pair to
be a match. In our study, we used the estimated match
prevalence ρ to set the threshold as the upper ρ-th quantile of
the scores. A record pair is then declared as a match if its score
is greater than the threshold; otherwise, it is declared as a
nonmatch.

Treatment of Missing Data
Formally describing the missing data mechanism is important
for devising an approach to account for missing data. Missing
data are generally classified into 3 types [17]. First, the most
restrictive type of missing data is missing completely at random
(MCAR), which assumes that the missingness in a variable is
independent of all observed or unobserved variables. In this
situation, the parameter estimates are unbiased when record
pairs with any missing data are excluded. However, omitting
missing data may lower the precision of estimated parameters
due to the smaller sample size. In addition, MCAR is a strong
assumption that cannot be verified with the data at hand. Second,
MAR is a less-restrictive yet more realistic missing data model
that assumes that the missingness in a variable is independent
of unobserved data, although it can depend on other observed
variables. Finally, missing not at random (MNAR) asserts that
the missingness of a variable is related to the unobserved
variable itself. To handle MNAR, knowledge of the missing
mechanism is required to model the missing process in the
estimation of the parameters and matching scores.

In record linkage applications, missing values in matching fields
are typically handled by excluding records with missing values
on one of the matching fields when estimating match weights
[5] or considering the field’s agreement pattern as a

disagreement [6]. Excluding records with missing values is
justifiable only when the data are MCAR. Thus, excluding
records when the MCAR assumption does not hold leads to
inaccurate results due to bias and low precision; the bias arises
from the wrong model assumption and the low precision from
the reduced sample size. Alternatively, treating missing data as
disagreement (MAD) is implicitly invoking the assumption of
MNAR, which may yield inaccurate results when the MAD
assumption that all missing data represent disagreement is
incorrect. This strong assumption is likely false for data to be
linked. For example, if the middle name is absent because it
does not exist, a missing value from both records of the record
pair can provide information that the 2 records belong to the
same person. On the other hand, the assumption of MAR is the
least restrictive among the 3 types of missing mechanisms, and
we hypothesize that it will yield superior match performance.
Assuming MAR, the missing data are handled using the full
information likelihood approach that uses all available data
(ignoring the matching fields with missing values) in the FS
model under the assumption of conditional independence of the
matching fields.

The predictive results are obtained the same way for the FS
model with MAR and MAD. The difference lies in the manner
in which missing data are treated. When MAD is used, fields
with missing data are set to “disagreement” (coded as 0), and
the FS algorithm as is can proceed on the data with missing
values replaced by zeros. When MAR is used, the FS algorithm
is used on nonmissing data. In either cases, parameters mk,uk

and the match prevalence are estimated, and match scores are
calculated for all pairs. The threshold for a pair to be a match
is set to be the upper -th quantile of the scores. A record pair is
then declared as a match if its score is greater than the threshold;
otherwise, it is declared a nonmatch.

Selection of Matching Fields
Fields missing 100% within a blocking scheme contain no
information and will not be considered further. We examined
2 approaches selecting matching fields: the standard practice
of subject matter expert-guided field selection and a data-driven
approach. In the data-driven approach, all fields were considered
to be putative matching fields. A necessary condition for a field
to be useful in matching is that it should exhibit variability. For
example, if the value of a field is fixed (no variation), it cannot
separate matches from nonmatches. Thus, a blocking variable
can no longer be used as a matching field in a block formed
using the blocking variable. When running an FS model, we
started with the largest possible set of fields; more fields may
be dropped from the model, starting with fields with the least
variations, until the FS algorithm converges.

Data Sets of 4 Use Cases and Gold Standards
We evaluated the matching performance of the missing data
treatment (MAD and MAR) and matching field selection
(expert-specified fields vs data-driven fields) by conducting a
2-by-2 factorial design using 4 real-world use cases in our local
HIE environment. The 4 use cases contain data that were
generated as part of clinical or public health processes.
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The 4 use cases included deduplicating clinical records in a
state-level HIE, linking a public health registration file to clinical
data in the HIE, linking death records to clinical data in the HIE,
and deduplication of the Health Level Seven International (HL7)
messages for newborns less than 1 month of age from the HIE.
For each use case, blocking was performed to confine the total
number of record pairs to be compared with a subspace of record
pairs enriched with true matches [18]. Five blocking schemes
were selected for each use case based on expert input from our
laboratory. The total number of records for each use case and
the number of record pairs per blocking scheme are listed in
Table 1. To assess the matching performance, we selected record
pairs for human review by performing proportional sampling

from the union of record pairs with strata defined by the five
blocking schemes. To compare the sensitivity of the algorithms,
a total of 5884 true matches were necessary to test a 2% absolute
difference in discordant rates of the 2 algorithms among the
true matches with an 80% power at a 2-sided significance level
of .05. The same number of true nonmatches was required to
test the 2% difference in specificity. We sampled record pairs
until we reached at least 5884 pairs in the class of true matches
and the class of true nonmatches. Each record pair was reviewed
by 2 reviewers; in the case of a disagreement in the classification
of the pair, a third reviewer adjudicated the pair. Table 2
summarizes the manually reviewed sets for the 4 use cases.

Table 2. Manual review results for the 4 use cases.

Match prevalencebNumber of pairs deemed as nonmatchesNumber of pairs deemed as matchesNumber of pairsaUse case

0.5237160784015,000INPCc

0.36110,550595016,500SSAd

0.5317033796715,000NBSe

0.3829573592715,500MCHDf

aNumber of pairs is the total number of pairs sampled for manual review, which determines the pairs as either matches or nonmatches.
bMatch prevalence is the ratio of the number of pairs deemed as matches and the total number of pairs for manual review for each use case.
cINPC: Indiana Network for Patient Care.
dSSA: Social Security Administration.
eNBS: newborn screening.
fMCHD: Marion County Health Department.

Deduplicating HIE (INPC)
This data set reflected demographic records from geographically
proximal hospital systems that participate in HIE. Blocking is
as described earlier. The data contained a subset of 15,000
sampled gold standard pairs with 7840 (52.3%) true positives
and 7160 (47.7%) true negatives. Patients from hospitals in
close proximity cross over to nearby institutions, creating the
need to identify common records. New value-based purchasing
models such as Accountable Care Organizations dramatically
increased the need to identify and capture information on
patients seeking care from other institutions.

HIE and Vital Records for Ascertaining Death Status
(SSA)
These data reflect a combination of the Social Security Death
Master File and HIE data. We applied five blocking schemes
(Table 1): SSN; first name, last name, and zip code
(FN-LN-ZIP); first name, last name, middle initial, and year of
birth (FN-LN-MI-YB); first name, last name, middle initial,
and day and month of birth (FN-LN-MI-DB-MB); and first
name, last name, and day, month, and year of birth
(FN-LN-DB-MB-YB). This data set contained a subset of
16,500 sampled gold standard pairs with 5950 (36.1%) true
positives and 10,550 (63.9%) true negatives. Accurately and
comprehensively updating health records with patients’accurate
death status is critical for robust clinical quality measurement,
public health reporting requirements, and high-quality clinical
research.

Deduplicating Newborn Registration Data (NBS)
This data set included demographic data for newborns derived
from multiple hospitals, clinics, and within the HIE. These data
were limited to patients aged <2 months. We applied five
blocking schemes (Table 1): medical record number (MRN),
telephone number (TEL), month, day of birth, zip code
(MB-DB-ZIP), last name and first name (LN-FN), and next of
kin’s last name and first name (NK_LN-NK_FN). This data set
contained a subset of 15,000 sampled gold standard pairs, with
7967 (53.1%) true positives and 7033 (46.9%) true negatives.
Matching in this cohort is important because not all infants
receive appropriate screening for harmful or potentially fatal
disorders that are otherwise unapparent at birth [4]. Public health
screening tests must be linked to patient records to avoid harmful
delays in diagnosis.

Public Health Registry Linked to Clinical Registrations
(MCHD)
This data set comes from the MCHD, Indiana’s largest public
health department. The registry contains a master list of
demographic information for clients who receive public health
services such as immunization; Women, Infants, and Children’s
nutrition support; and laboratory testing [19,20]. The registry
also tracks population health trends and supports other public
health activities. Duplicate patient records are often
unintentionally added. We applied five blocking schemes (Table
1): SSN; telephone number (TEL); day, month, and year of birth
and zip code (DB-MB-YB-ZIP); first name, last name, and year

J Med Internet Res 2022 | vol. 24 | iss. 9 | e33775 | p. 6https://www.jmir.org/2022/9/e33775
(page number not for citation purposes)

Li et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


of birth (FN-LN-YB); and day, month, and year of birth and
last name (DB-LN-MB-YB). This data set contained a subset
of 15,500 sampled gold standard pairs with 5927 (38.2%) true
positives and 9573 (61.8%) true negatives. We linked the
complete patient registry to patient records in the
aforementioned HIE.

The 4 data sets contained subsets of the following fields: MRN,
SSN, last name (LN), first name (FN), middle initial (MI),
nickname (NICK_SET), ethnicity (ETH_IMP), sex, month of
birth (MB), day of birth (DB), YB, street address (ADR), city,
state (ST), zip code (ZIP), telephone number (TEL), email, last
name of next of kin (NK_LN), first name of next of kin
(NK_FN), last name of treating physician (DR_FN), and first
name of treating physician (DR_LN). The last 4 fields were
used only in the NBS use case.

Analyses of Use Cases
For each use case, blocking was performed first, and five blocks
of record pairs were generated. The blocking schemes are listed
in Table 1. The FS model is applied 4 times in each block based
on the 2-by-2 factorial design, where missing data are either
treated using MAD or MAR, and matching fields are either
expert-specified or selected by the data-driven method. The
parameters of the FS model can be estimated using the Newton
Raphson approach or the EM algorithm, both of which maximize
the likelihood function of the model. The exact agreement on
the following fields (when available for a use case) was
considered in the matching in INPC, MCHD, and SSA use
cases: street address, city (in address), DB, MB, YB, EMAIL,
ethnicity, FN, LN, MI, MRN, nickname, sex, state, ZIP, and
TEL. MCHD and SSA do not have MRN; all 4 use cases include
the nickname and ethnicity as derived fields. The fields used in
the NBS use case were slightly different. The exact agreement
on the following fields was considered in the matching in the
NBS use case: street address, city, DB, MB, YB, physician’s
FN, physician’s LN, email address, ethnicity, FN, LN, MI, nick
name, MRN, NK_FN, NK_LN, sex, SSN, state, TEL, and ZIP.
The fields of exact agreement available for matching and their
percentages of missing values are summarized in Multimedia
Appendices 1-4 for the 4 use cases.

Within each run of the FS model, the estimate of block-specific
prevalence under each missing treatment was used to classify
record pairs as matches and nonmatches (see Classification of
Record Pairs); the union of matches from all 5 blocks is the set
of matches obtained.

Evaluation of Record Linking Performance
To evaluate the accuracy of these matching models, we
calculated the following metrics: sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), and
F1-score, as well as their respective 95% CIs based on 999
bootstrap samples. The abovementioned metrics were estimated
from gold standard sets for which manual reviews established
the true match status. Our primary evaluation metric was the
F1-score.

Ethics Approval
This study was reviewed and approved by the Indiana University
Institutional Review Board (IRB#: 1703755361).

Results

The 4 use cases contained missing data to various extents.
Notably, 45.8% of the 47,334,986 records in the INPC use case
had no SSN, making it necessary to add other blocking schemes
that do not rely on the SSN. For the NBS use case, the SSN is
typically missing because infants do not receive an SSN for at
least 2 to 6 weeks after birth and often later if parents do not
initially request the identifier. When linking the other 2 use
cases SSA and MCHD to INPC, due to the INPC data set
missing SSN in 45.8% of its records, blocking on SSN alone
yielded only 4547 out of 5950 (76%) and 1531 out of 5927
(26%) of true matches in SSA and MCHD, respectively, based
on the manually reviewed subsets (Multimedia Appendices 5
and 6).

Additional blocking schemes are essential to increase match
sensitivity. As the FS algorithm is performed using paired data
per blocking scheme, its performance is directly affected by the
extent of missing values in the agreement vectors obtained by
comparing pairs of records within each block. We summarized
the proportions of missing data in the 5 blocking schemes of
each use case in Multimedia Appendices 1-4. The proportion
of missing values per block ranges from 0% to 100%. Fields
that were missing 100% within a blocking scheme contained
no information and, therefore, were not considered further. The
extent of missing values in a matching field does not necessarily
negatively correlate with the discriminating power of the field.

Matching fields with even substantial missing values nonetheless
proved to be useful in discriminating matches from nonmatches.
For example, the agreement status of email address comparison
is missing for 99% of record pairs in the DB-LN-MB-YB
blocking scheme of the INPC use case; the m- and
u-probabilities were estimated to be 0.01147 and 0.000204
under MAD and 0.3830 and 0.02553 under MAR, respectively.
The large ratios of the m-probability over the u-probability in
either case indicate the utility of email address in linkage. As
another example, the agreement status of zip code comparison
is also missing for 99% of record pairs in the FN-LN-MI-YB
block of the SSA use case, and the m- and u-probabilities were

estimated to be 0.02073 and 8.49×10−7 under MAD and 0.7538
and 0.000137 under MAR, respectively. In both examples, the
estimates of m- and u-probabilities are much larger under MAR
than under MAD, suggesting that a downward bias might be
incurred by artificially setting missing values to disagreement
in the MAD approach.

The fields used by the final FS models, either expert-specified
or data-driven per block per use case, are summarized in Table
3. Except for the SSA use case, where the number of fields that
could be used for matching is limited, the number of data-driven
fields is greater than the number of expert-specified fields for
the remaining 3 use cases.
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Table 3. Summary of modeling information by data use case and by blocking scheme.

Data-driven fieldsaExpert-specified fieldsaData and block

INPC

MRN FN SEX TEL ADR ZIP SSN CITY EMAIL ETH MI NICK STjMRNc FNd SEXe TELf ADRg ZIPh

SSNi
DB-LN-MB-YBb

MRN LN FN SEX TEL ADR SSN CITY EMAIL ETH MI NICK STMRN LN FN SEX TEL ADR SSNDB-MB-YB-ZIP

MRN SEX DB MB TEL ADR ZIP SSN CITY EMAIL MI ST ETH NICKMRN SEX DB MB TEL ADR ZIP
SSN

FN-LN-YB

MRN LN SEX DB MB YB ADR ZIP SSN CITY EMAIL ETH MI NICK STMRN LN SEX DB MB YB ADR ZIP
SSN

FN-TEL

MRN LN FN SEX DB MB YB TEL ADR ZIP CITY EMAIL ETH MI NICK STMRN LN FN SEX DB MB YB TEL
ADR ZIP

SSN

SSAk

SSN MI ZIPSSN MI ZIPFN-LN-DB-MB-YB

ZIP YB SSNZIP YB SSNFN-LN-MI-DB-MB

DB MB ZIP SSNDB MB ZIP SSNFN-LN-MI-YB

MI DB MB YB SSNMI DB MB YB SSNFN-LN-ZIP

LN FN MI DB MB YB ZIPLN FN MI DB MB YB ZIPSSN

NBSl

MRN SEXm DB MB YBm TEL ADR ZIP CITY DR_FN DR_LN MI NK_FN
NK_LN

MRN SEX DB MB YB TEL ADR ZIPLN-FN

MRN LN FN SEX YB TEL ADR CITY DR_FN DR_LN ETH MI NK_FN NK_LN
NICK

MRN LN FN SEX YB TEL ADRMB-DB-ZIP

LN FN SEXm DB MB YB TELm ADR ZIP CITY DR_FN DR_LN ETH MI NK_FN
NK_LN ST

LN FN SEX DB MB YB TEL ADR
ZIP

MRN

MRN LNm FN SEX DB MB YB TEL ADR ZIP CITY DR_FN DR_LN ETH LN
MI NICK ST

MRN LN FN SEX DB MB YB TEL
ADR ZIP

NK_LN-NK_FN

MRN LN FN SEX DB MB YBm ADR ZIP CITY DR_FN DR_LN ETH MI NK_FN
NK_LN ST

MRN LN FN SEX DB MB YB ADR
ZIP

TEL

MCHDn

MRN SEXm DB MB YBm TEL ADR ZIP CITY DR_FN DR_LN MI NK_FN
NK_LN

MRN SEX DB MB YB TEL ADR ZIPLN-FN

MRN LN FN SEX YB TEL ADR CITY DR_FN DR_LN ETH MI NK_FN NK_LN
NICK

MRN LN FN SEX YB TEL ADRMB-DB-ZIP

LN FN SEXm DB MB YB TELm ADR ZIP CITY DR_FN DR_LN ETH MI NK_FN
NK_LN ST

LN FN SEX DB MB YB TEL ADR
ZIP

MRN

MRN LNm FN SEX DB MB YB TEL ADR ZIP CITY DR_FN DR_LN ETH LN
MI NICK ST

MRN LN FN SEX DB MB YB TEL
ADR ZIP

NK_LN-NK_FN

MRN LN FN SEX DB MB YBm ADR ZIP CITY DR_FN DR_LN ETH MI NK_FN
NK_LN ST

MRN LN FN SEX DB MB YB ADR
ZIP

TEL

aColumns “Expert-specified fields” and “Data-driven fields” display the fields used in the Fellegi-Sunter (FS) model.
bDB-LN-MB-YB: day, month, and year of birth and last name.
cMRN: medical record number.
dFN: first name.
eSEX: sex.
fTEL: telephone number.
gADR: address.
hZIP: zip code.
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iSSN: Social Security number.
jFields (italicized) selected only by data-driven methods.
kSSA: Social Security Administration.
lNBS: newborn screening.
mFields not selected by the data-driven method but specified by experts.
nMCHD: Marion County Health Department.

The matching metrics of the 4 use cases evaluated on their
respective ground truth sets of randomly selected and manually
reviewed record pairs are displayed in Table 4. Multimedia
Appendices 5-7. From Table 4, we observe the following:

1. MAR improves the F1-score in general, whether matching
fields are expert-specified or data-driven; the improvement
in the F1-score comes from improved sensitivity with
comparable or better PPV. The largest improvement in the
F1-score occurred in the NBS use case, 0.874 with MAR
using data-driven fields compared with 0.837 with MAD
using expert-specified fields.

2. MAD using expert-specified fields had higher F1-scores
than F1-scores using data-driven fields (except for NBS).
As the number of data-driven fields is usually greater than
the number of expert-specified fields in a block, we
hypothesized that the artificial correlations among the large
number of data-driven fields induced by MAD adversely
affect the match performance.

3. MAR coupled with data-driven fields yielded F1-scores
comparable to or larger than those of MAR with
expert-specified fields and larger than the F1-scores of
MAD with both methods of field selection.

In the SSA use case, the F1-scores of both methods were similar,
0.873 for MAD and 0.875 for MAR, with either expert-specified
matching fields or data-driven matching fields, because both
field-selection approaches selected the same set of matching
fields. We examined the classification results within the classes
of true matches and true nonmatches in the ground truth set, on
whether the classified matches and nonmatches were similar or
whether the 2 methods made different mistakes. From the
diagonals in Table 5, we can see that the 2 methods produce
roughly congruent classification results in the classes of true
matches and true nonmatches. FS under MAR is slightly more

sensitive than FS under MAD: 26 true matches that are
misclassified as nonmatches by MAD are recovered as matches
by MAR; only 3 nonmatches are misclassified as matches by
MAR, but 1 nonmatch that is misclassified as a match by MAD
is correctly classified as a nonmatch by MAR. In summary, the
classification results are similar in the SSA use case; FS under
MAR is slightly more sensitive than FS under MAD, while
maintaining PPV, NPV, and specificity (Table 4).

The algorithms performed differently, partly because of the
different data quality of the use cases. The F1-score was 0.979
for INPC but only 0.874 for NBS (Table 4). First, INPC and
NBS use cases have very different patterns of missing data
across matching fields; for example, SSN is missing from 52.6%
to 69.7% of record pairs (except for the SSN block, which by
definition has no missing SSN) across the 5 blocks in INPC,
whereas SSN is missing in more than 98% of record pairs in
NBS (Multimedia Appendices 1 and 3). Second, the
discriminating powers of the same fields were different in the
2 use cases. A field has high discriminating power if its
agreement rate is high among matches and low among
nonmatches; otherwise, the data quality is indicated as low. For
example, the probabilities of agreement in the fields of the LN
and FN in the same DB-MB-YB and ZIP blocking scheme for
INPC and NBS show differential data quality: 94.45% of
matches of INPC agree on the LN, while only 89% of matches
of NBS do; on the other hand, only 0.45% of nonmatches of
INPC agree on the LN but 2.70% of nonmatches of NBS do;
94.36% of matches of INPC agree on the FN, while only 66.99%
of matches of NBS do; only 0.40% of nonmatches of INPC
agree on the FN but 3.45% of nonmatches of NBS do
(Multimedia Appendix 8). As the matching score is a summation
of the ratios of the agreement probabilities of the matches versus
the nonmatches on the log-scale across all matching fields, data
quality directly affects matching performance.
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Table 4. Matching results of the four use cases evaluated on their respective ground truth sets of random-selected and manually reviewed record pairs.

F1-score (95% CI)
Negative predictive
value (95% CI)

Positive predictive
value (95% CI)Specificity (95% CI)Sensitivity (95% CI)Value, NData

Expert-specified fields

INPCa

0.976 (0.974-0.978)0.960 (0.955-0.964)0.990 (0.988-0.992)0.990 (0.987-0.992)0.962 (0.958-0.967)15,000MADb

0.980 (0.977-0.982)0.968 (0.964-0.972)0.989 (0.987-0.991)0.988 (0.986-0.991)0.970 (0.966-0.974)15,000MARc

SSAd

0.873 (0.866-0.879)0.890 (0.884-0.895)0.989 (0.986-0.992)0.995 (0.994-0.996)0.781 (0.770-0.792)16,500MAD

0.875 (0.869-0.882)0.892 (0.886-0.897)0.989 (0.985-0.991)0.995 (0.993-0.996)0.785 (0.775-0.796)16,500MAR

NBSe

0.837 (0.830-0.843)0.791 (0.782-0.801)0.883 (0.876-0.891)0.881 (0.874-0.889)0.795 (0.786-0.804)15,000MAD

0.872 (0.866-0.878)0.846 (0.838-0.855)0.885 (0.877-0.892)0.873 (0.865-0.881)0.860 (0.852-0.868)15,000MAR

MCHDf

0.963 (0.959-0.966)0.966 (0.962-0.969)0.982 (0.979-0.986)0.989 (0.987-0.991)0.944 (0.937-0.949)15,500MAD

0.963 (0.959-0.966)0.967 (0.964-0.971)0.980 (0.976-0.983)0.988 (0.986-0.990)0.946 (0.940-0.952)15,500MAR

Data-driven fields

INPC

0.729 (0.719-0.737)0.682 (0.672-0.690)0.982 (0.978-0.985)0.988 (0.986-0.991)0.579 (0.568-0.590)15,000MAD

0.979 (0.976-0.981)0.968 (0.964-0.972)0.988 (0.985-0.990)0.987 (0.984-0.989)0.970 (0.966-0.974)15,000MAR

SSA

0.873 (0.866-0.879)0.890 (0.884-0.895)0.989 (0.986-0.992)0.995 (0.994-0.996)0.781 (0.770-0.792)16,500MAD

0.875 (0.869-0.882)0.892 (0.886-0.897)0.989 (0.985-0.991)0.995 (0.993-0.996)0.785 (0.775-0.796)16,500MAR

NBS

0.845 (0.839-0.852)0.805 (0.796-0.814)0.880 (0.873-0.888)0.875 (0.867-0.883)0.813 (0.805-0.822)15,000MAD

0.874 (0.868-0.880)0.851 (0.842-0.859)0.883 (0.876-0.890)0.870 (0.863-0.878)0.865 (0.858-0.873)15,000MAR

MCHD

0.754 (0.745-0.764)0.811 (0.804-0.818)0.929 (0.921-0.937)0.970 (0.967-0.974)0.635 (0.622-0.648)15,500MAD

0.967 (0.963-0.970)0.972 (0.968-0.975)0.979 (0.976-0.983)0.988 (0.985-0.990)0.954 (0.948-0.959)15,500MAR

aINPC: Indiana Network for Patient Care.
bMAD: missing as disagreement.
cMAR: missing at random.
dSSA: Social Security Administration.
eNBS: newborn screening.
fMCHD: Marion County Health Department.
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Table 5. Cross-tabulation of ground truth and classification results by the Fellegi-Sunter model under missing as disagreement (MAD) and missing at
random (MAR) for the Social Security Administration use case.

Values, NMARMAD

MatchNonmatch

Man_Rev_Status: matches

1303261277Nonmatch

464746470Match

595046731277Value, N

Man_Rev_Status: nonmatches

10,498310,495Nonmatch

52511Match

10,5505410,496Value, N

Discussion

The US health care system will likely not have a unique and
universal patient ID in the near future, so innovations such as
incorporating missing data under MAR and data-driven field
selection in the linkage algorithms are necessary to optimize
existing methods to ensure accurate patient identity and support
patient safety. Our findings are important because they
demonstrate improvements in linkage performance among 4
different but representative use cases. Our HIE-based
patient-matching laboratory has experience matching clinical
data from heterogeneous sources, including hospitals (inpatient
and emergency departments) [21,22], ambulatory care settings
[23], public health syndrome as captured by surveillance systems
[24], electronic laboratory reporting in case detection systems
[25], and NBS data [26]. Thus, we can specifically measure
variations in patient-matching performance across different use
cases for the same patient-matching approaches. Through this
work, we have shown that the performance of the 2
enhancements in patient-matching algorithms may have additive
values across different clinical use cases.

Although the assumption of missing at random is not verifiable,
the success of the FS algorithm coupled with MAR in our four
different use cases indicates that missing at random is a
reasonable assumption. As MCAR is a special case of MAR,
our algorithm works when data are MCAR. These results will
inform future research and development in patient-matching
spaces.

Furthermore, the superior performance observed with MAR
using data-driven fields over other combinations in the 2×2
design and four use cases suggests its potential value for
incorporation into privacy-preserving record linkage (PPRL)
methods. In PPRL, to preserve privacy, fields can be tokenized
(eg, using bigrams) into smaller parts and compared [27]. As
the tokens do not reveal the actual nature and content of the
field, an expert cannot specify matching fields as they can with
fields such as names, DB, SSN, etc. PPRL is a scenario in which
data-driven field selection coupled with MAR in the FS model
appears useful.

Finally, many data-driven fields may lead to model overfitting,
which is a prominent cause of the poor performance of machine

learning algorithms. In many applications in medical research
using latent class models, many covariates are available, and
the number of covariates overwhelms the number of
observations. This is the main motivation for most of the
variable selection literature to identify a subset of variables to
(1) estimate the association between the covariates and the
response variable and (2) obtain a parsimonious model that
describes the covariates and the response variable [28].
However, in record linkage, the primary concern is not
estimation but rather the prediction of the unknown response
variable—the class label of match or nonmatch, model
parsimony is irrelevant. Sample sizes in record linkage are
generally large: in our four use cases, even the sample size of
the smaller class of our smallest use case, MCHD, is
approximately 180,035 (Tables 1 and 2). Hence, the number of
matching fields used relative to the overall samples and the
within-class sample sizes were small, without concern for
overfitting. The FS model for record linkage is an unsupervised
algorithm in that the response variable indicates whether a pair
of records belonging to the same entity is unknown and is to be
inferred. As such, the veracity of any unsupervised classification
algorithm applied to a set of record pairs is tested on a
representative ground truth set in which the class labels are
obtained through manual reviews. As described in the Methods
section, we created a gold standard set of randomly selected
record pairs for each of the 4 use cases. Most importantly, the
match status of those record pairs in the gold standard sets was
not used in the FS model fitting process (including field
selection). As the data-driven fields used in the FS model under
MAR uniformly perform the best for all four use cases,
overfitting is not a concern because overfitting tends to hurt
performance.

While we strive to generate results that are applicable to the
broadest possible audience using a health informatics research
laboratory that captures a diverse set of data elements with
varying data characteristics, we cannot assure generalizability
with complete certainty. If our data are not representative of
other health systems, then our linkage results may not be
applicable. If the missing data mechanism is not MAR or MCAR
(eg, if the missingness of a data element is related to its value),
our algorithm will likely not work. Before applying our methods
to a data environment with missing data, we recommend creating
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a ground truth set of randomly selected record pairs whose
match status is manually reviewed to determine whether our
methods are applicable to a specific data environment.

Finally, our results suggest that accommodating missingness in
patient-matching algorithms can improve accuracy. While the
FS model is widely used, different FS implementations and
completely different models (eg, decision trees or boosting
algorithms) may exhibit a greater or lesser effect. We will
explore the potential of these machine learning tools in our
future work.

In summary, the combination of data-driven matching field
selection and MAR methods produced the best overall

performance for four real-world matching use cases. The MAR
method maintained or improved F1-scores regardless of whether
matching fields were expert-specified or data-driven, suggesting
that MAR is a reasonable assumption for patient-record linkage
in real-world settings. As the implementation of MAR requires
minimal effort and improves or maintains linkage accuracy, we
advocate using this approach over MAD in record linkage,
provided that adequate evaluation using manually reviewed
data is performed to ensure method generalizability to a specific
data environment. These methods can be useful for PPRL, where
expert field selection may not be possible.
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Multimedia Appendix 1
Table S1 Proportion of missing values by matching field in the Indiana Network for Patient Care (INPC) use case. For each
blocking scheme (column) the unshaded fields are used for matching in the final Fellegi-Sunter (FS) model for that block in the
data-driven approach.
[DOCX File , 38 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Table S2 Proportion of missing values by field in the Social Security Administration (SSA) use case. For each blocking scheme
(column) the unshaded fields are used for matching in the final Fellegi-Sunter (FS) model for that block in the data-driven
approach.
[DOCX File , 39 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Table S3 Proportion of missing values by field in the newborn screening (NBS) use case. For each blocking scheme (column)
the unshaded fields are used for matching in the final Fellegi-Sunter (FS) model for that block in the data-driven approach.
[DOCX File , 39 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Table S4 Proportion of missing values by field in the Marion County Health Department (MCHD) use case. For each blocking
scheme (column) the unshaded fields are used for matching in the final Fellegi-Sunter (FS) model for that block in the data-driven
approach.
[DOCX File , 39 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Table S5 Matching results of the SSA use case evaluated on a set of 16,500 randomly selected and manually reviewed record
pairs. The first two rows are the overall results combined from all blocks on the manually reviewed sample, with the first row
for MAD (missing as disagreement) and the second row for MAR (missing at random). Every subsequent two rows pertain to a
specific block, with the first containing the results of MAD and the 2nd row the results of MAR. Columns N, SEN, SPE, PPV,
NPV and F1 are the total number of manually reviewed record pairs, sensitivity, specificity, positive predictive value, negative
predictive value and F-score.
[DOCX File , 42 KB-Multimedia Appendix 5]
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Multimedia Appendix 6
Table S6 Matching results of the newborn screening (NBS) use case evaluated on a set of 15,000 randomly selected and manually
reviewed record pairs. The first two rows are the overall results combined from all blocks on the manually reviewed sample, with
the first row for MAD (missing as disagreement) and the second row for MAR (missing at random). Every subsequent two rows
pertain to a specific block, with the first containing the results of MAD and the 2nd row the results of MAR. Columns N, SEN,
SPE, PPV, NPV, and F1 are the total number of manually reviewed record pairs, sensitivity, specificity, positive predictive value,
negative predictive value and F-score.
[DOCX File , 42 KB-Multimedia Appendix 6]

Multimedia Appendix 7
Table S7 Matching results of the Marion County Health Department (MCHD) use case evaluated on a set of 15,500 randomly
selected and manually reviewed record pairs. The first two rows are the overall results combined from all blocks on the manually
reviewed sample, with the first row for MAD (missing as disagreement) and the second row for MAR (missing at random). Every
subsequent two rows pertain to a specific block, with the first containing the results of MAD and the 2nd row the results of MAR.
Columns N, SEN, SPE, PPV, NPV, and F1 are the total number of manually reviewed record pairs, sensitivity, specificity, positive
predictive value, negative predictive value and F-score.
[DOCX File , 42 KB-Multimedia Appendix 7]

Multimedia Appendix 8
Table S8 Data quality of fields of last name and first name in the DOB-ZIP block of the Indiana Network for Patient Care (INPC)
and newborn screening (NBS) use cases.
[DOCX File , 36 KB-Multimedia Appendix 8]
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FS: Fellegi-Sunter
HIE: health information exchange
HL7: Health Level Seven International
INPC: Indiana Network for Patient Care
LN: last name
LN-FN: last name and first name
MAR: missing at random
MB: month of birth
MCAR: missing completely at random
MCHD: Marion County Health Department
MI: middle initial
MNAR: missing not at random
MRN: medical record number
NBS: newborn screening
NPV: negative predictive value
PPRL: privacy-preserving record linkage
PPV: positive predictive value
SSA: Social Security Administration
SSN: Social Security number
YB: year of birth
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