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Abstract

Background: Heart failure (HF) is a common disease and a major public health problem. HF mortality prediction is critical for
developing individualized prevention and treatment plans. However, due to their lack of interpretability, most HF mortality
prediction models have not yet reached clinical practice.

Objective: We aimed to develop an interpretable model to predict the mortality risk for patients with HF in intensive care units
(ICUs) and used the SHapley Additive exPlanation (SHAP) method to explain the extreme gradient boosting (XGBoost) model
and explore prognostic factors for HF.

Methods: In this retrospective cohort study, we achieved model development and performance comparison on the eICU
Collaborative Research Database (eICU-CRD). We extracted data during the first 24 hours of each ICU admission, and the data
set was randomly divided, with 70% used for model training and 30% used for model validation. The prediction performance of
the XGBoost model was compared with three other machine learning models by the area under the curve. We used the SHAP
method to explain the XGBoost model.

Results: A total of 2798 eligible patients with HF were included in the final cohort for this study. The observed in-hospital
mortality of patients with HF was 9.97%. Comparatively, the XGBoost model had the highest predictive performance among
four models with an area under the curve (AUC) of 0.824 (95% CI 0.7766-0.8708), whereas support vector machine had the
poorest generalization ability (AUC=0.701, 95% CI 0.6433-0.7582). The decision curve showed that the net benefit of the XGBoost
model surpassed those of other machine learning models at 10%~28% threshold probabilities. The SHAP method reveals the top
20 predictors of HF according to the importance ranking, and the average of the blood urea nitrogen was recognized as the most
important predictor variable.

Conclusions: The interpretable predictive model helps physicians more accurately predict the mortality risk in ICU patients
with HF, and therefore, provides better treatment plans and optimal resource allocation for their patients. In addition, the interpretable
framework can increase the transparency of the model and facilitate understanding the reliability of the predictive model for the
physicians.
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Introduction

Heart failure (HF), the terminal phase of many cardiovascular
disorders, is a major health care issue with an approximate
prevalence of 26 million worldwide and more than 1 million
hospital admissions annually in both the United States and
Europe [1]. Projections show that by 2030 over 8 million
Americans will have HF, leading to an increase of 46% from
2012 [2]. Each year, HF costs an estimated US $108 billion,
constituting 2% of the health care budget globally, and it is
predicted to continue to rise, yet half of it is possibly avoidable
[3]. As COVID-19 continues to spread across the world, HF, a
severe complication, is associated with poor outcome and death
from COVID-19 [4,5].

The critically ill patients in intensive care units (ICUs) demand
intensive care services and highly qualified multidisciplinary
assistance [6]. Although ICU plays an integral role in
maintaining patients’ life, this also implies the workforce
shortage, limited medical resources, and heavy economic burden
[7]. Therefore, early hospital mortality detection for patients is
necessary and may assist in delivering proper care and providing
clinical decision support [8].

In recent years, artificial intelligence has been widely used to
explore the early warning predictors of many diseases. Given
the inherent powerful feature of capturing the nonlinear
relationships with machine learning algorithms, more researchers
advocate the use of new prediction models based on machine
learning to support appropriate treatment for patients rather than
traditional illness severity classification systems such as SOFA,
APACHE II, or SAPS II [9-11]. Although a large number of
predictive models have shown promising performance in
research, the evidence for their application in clinical setting
and interpretable risk prediction models to aid disease prognosis
are still limited [12-15].

The purpose of our study is to develop an interpretable model
to predict the risk mortality for patients with HF in the ICU,
using the free and open critical care database—the eICU
Collaborative Research Database (eICU-CRD). In addition, the
SHapley Additive exPlanations (SHAP) method is used to
explain the extreme gradient boosting (ie, XGBoost) model and
explore prognostic factors for HF.

Methods

Data Source
The eICU-CRD (version 2.0) is a publicly available multicenter
database [16], containing deidentified data associated with over
200,000 admissions to ICUs at 208 hospitals of the United States
between 2014-2015. It records all patients, demographics, vital
sign measurements, diagnosis information, and treatment
information in detail [17].

Ethical Considerations
Ethical approval and individual patient consent was not
necessary because all the protected health information was
anonymized.

Study Population
All patients in the eICU-CRD database were considered. The
inclusion criteria were as follows: (1) patients were diagnosed
with HF according to the International Classification of
Diseases, ninth and tenth Revision codes (Multimedia Appendix
1); (2) the diagnosis priority label was “primary” when admitted
to the ICU in 24 hours; (3) the ICU stay was more than 1 day;
and (4) patients were aged 18 years or older. Patients who had
more than 30% missing values were excluded [18].

Predictor Variables
The prediction outcome of the study is the probability of
in-hospital mortality, defined as patient’s condition upon leaving
the hospital. Based on previous studies [19-22] and experts’
opinion (a total of 6 independent medical professionals and
cardiologists in West China Hospital of Sichuan University),
demographics, comorbidities, vital signs, and laboratory findings
(Multimedia Appendix 2) were extracted from the eICU-CRD,
using Structured Query Language (MySQL) queries (version
5.7.33; Oracle Corporation). The following tables from
eICU-CRD were used: “diagnosis,” “intakeoutput,” “lab,”
“patient,” and “nursecharting.” Except for the demographic
characteristics, other variables were collected during the first
24 hours of each ICU admission. Furthermore, to avoid
overfitting, Least Absolute Shrinkage and Selection Operator
(LASSO) is used to select and filter the variables [23,24].

Missing Data Handling
Variables with missing data are a common occurrence in
eICU-CRD. However, analyses that ignore missing data have
the potential to produce biased results. Therefore, we used
multiple imputation for missing data [25]. All selected variables
contained <30% missing values. Data were assumed missing
at random and were imputed using fully conditional specification
with the “mice” package (version 3.13.0) for R (version 4.1.0;
R Core Team).

Machine Learning Explainable Tool
The interpretation of the prediction model is performed by
SHAP, which is a unified approach to calculate the contribution
and influence of each feature toward the final predictions
precisely [26]. The SHAP values can show how much each
predictor contributes, either positively or negatively, to the
target variable. Besides, each observation in the data set could
be interpreted by the particular set of SHAP values.

Statistical Analysis
All statistical analysis and calculations were performed using
R software and Python (version 3.8.0; Python Software
Foundation). The categorical variables are expressed as total
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numbers and percentages, and the χ2 test or Fisher exact test
(expected frequency <10) is used to compare the differences
between groups. The continuous variables are expressed as
median and IQR, and the Wilcoxon rank sum test is used when
comparing the two groups.

Four machine learning models—XGBoost, logistic regression
(LR), random forest (RF), and support vector machine (SVM)—
were used to develop the predictive models. The prediction
performance of each model was evaluated by the area under the
receiver operating characteristic curve. Moreover, we calculated
the accuracy, sensitivity, positive predictive values, negative
predictive values, and F1 score when the prediction specificity
was fixed at 85%. Additionally, to assess the utility of models
for decision-making by quantifying the net benefit at different
threshold probabilities, decision curve analysis (DCA) was
conducted [27].

Results

Patient Characteristics
Among 17,029 patients with HF in eICU-CRD, a total of 2798
adult patients diagnosed with primary HF were included in the
final cohort for this study. The patient screening process is
shown in Figure 1. The data set was randomly divided into 2
parts: 70% (n=1958) of the data were used for model training,
and 30% (n=840) of the data were used for model validation.
The LASSO regularization process resulted in 24 potential
predictors on the basis of 1958 patients in the training data set,
which were used for model developing. Patients in the
nonsurvivor group were older than the ones in the survivor
group (P<.001). The hospital mortality rate was 9.96%
(195/1958) in the training data set and 10% (84/840) in the
testing data set (Multimedia Appendix 3). Table 1 shows the
comparisons of predictor variables between survivors and
nonsurvivors during hospitalization.

Figure 1. Flowchart of patient selection. ICD: International Classification of Diseases; ICU: intensive care unit.
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Table 1. All predictor variables for patients with heart failure (N=2798).

P valueNonsurvivors (n=279)Survivors (n=2519)

<.00176 (66-82)71 (60-80)Age (years), median (IQR)

.02170 (60.9)1338 (53.1)Gender (male), n (%)

Comorbidities, n (%)

<.00146 (16.5)654 (26)Hypertension

<.00178 (28.0)441 (17.5)Acute renal failure

Vital signs, median (IQR)

<.00174 (62-86)70 (61-80)Heartrate_mina

<.00121.8 (19.0-26.0)20.1 (17.8-23.0)Respiratory rate_avgb

<.00132 (26-38)27 (24-32)Respiratory rate_maxc

<.001109.0 (100.1-121.4)120.0 (107.1-134.8)Nibpd_systolic_avg

<.00184 (72-97)95 (83-110)Nibp_systolic_min

<.00145 (35-52.5)49 (41-57)Nibp_diastolic_min

.0337 (37-38)37 (37-37)Temperature_max

.00736 (36-37)36 (36-37)Temperature_min

Laboratory variables, median (IQR)

<.001875 (140-1900)1550 (599-2750)Urineoutput

<.00190 (84.5-94)92 (88-95)SpO2
e_min

.0496.5 (94.5-97.9)96.6 (95.1-98.0)SpO2_avg

<.00112.0 (10.0-15.0)11.0 (9.0-14.0)Anion_gap_max

.0011.70 (1.19-2.50)1.45 (1.01-2.30)Creatinine_min

<.00142.0 (28.0-58.5)30.0 (21.0-47.6)Blood_urea_nitrogen_avg

.0058.5 (7.9-8.9)8.6 (8.1-9.0)Calcium_min

.0199 (95-104)101 (97-104)Chloride_min

.008180 (140-235.5)193 (149-249)Platelets×1000_min

<.00110.9 (7.6-15.7)9.1 (6.8-12.1)White_blood_cell×1000_min

<.00116.4 (15.0-18.2)15.7 (14.4-17.3)RDWf_min

.05910.4 (8.95-12.0)10.6 (9.2-12.3)Hemoglobin_max

aMin: minimum.
bAvg: average.
cMax: maximum.
dNibp: noninvasive blood pressure.
eSpO2: O2 saturation.
fRDW: red blood cell distribution width.

Model Building and Evaluation
Within the training data set, the XGBoost, LR, RF, and SVM
models were established, and the testing data set obtained AUCs
of 0.824, 0.800, 0.779, and 0.701, respectively (Table 2 and
Figure 2). Comparatively, XGBoost had the highest predictive
performance among the four models (AUC=0.824, 95% CI
0.7766-0.8708), whereas SVM had the poorest generalization
ability (AUC=0.701, 95% CI 0.6433-0.7582). DCA was
performed for four machine learning models in the testing data
set to compare the net benefit of the best model and alternative

approaches for clinical decision-making. Clinical net benefit is
defined as the minimum probability of disease, when further
intervention would be warranted [28]. The plot measures the
net benefit at different threshold probabilities. The orange line
in Figure 3 represents the assumption that all patients received
intervention, whereas the yellow line represents that none of
the patients received intervention. Due to the heterogeneous
profile of the study population, treatment strategies informed
by any of the four machine learning–based models are superior
to the default strategies of treating all or no patient. The net
benefit of the XGBoost model surpassed those of the other

J Med Internet Res 2022 | vol. 24 | iss. 8 | e38082 | p. 4https://www.jmir.org/2022/8/e38082
(page number not for citation purposes)

Li et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


machine learning models at 10%~28% threshold probabilities (Figure 3).

Table 2. Performance of each model for prediction.

NPVcPPVbAccuracy (%)F1 scoreSensitivity (%)AUCa (%)Model

0.9500.3070.8260.4070.5950.824XGBoost

0.9510.3110.8270.4130.6070.800LRd

0.9470.2980.8230.3920.5710.779RFe

0.9210.2040.8010.2580.3450.701SVMf

aAUC: area under the curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dLR: logistic regression.
eRF: random forest.
fSVM: support vector machine.

Figure 2. The receiver operating characteristic curve among the four models for patients with heart failure. SVM: support vector machine.
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Figure 3. Decision curve analysis of four models plotting the net benefit at different threshold probabilities. SVM: support vector machine.

Explanation of XGBoost Model With the SHAP
Method
The SHAP algorithm was used to obtain the importance of each
predictor variable to the outcome predicted by the XGBoost
model. The variable importance plot lists the most significant
variables in a descending order (Figure 4). The average of blood
urea nitrogen (BUN) had the strongest predictive value for all
prediction horizons, followed quite closely by the age factor,
the average of noninvasive systolic blood pressure, urine output,
and the maximum of respiratory rate. Furthermore, to detect

the positive and negative relationships of the predictors with
the target result, SHAP values were applied to uncover the
mortality risk factors. As presented in Figure 5, the horizontal
location shows whether the effect of that value is associated
with a higher or lower prediction and the color shows whether
that variable is high (in red) or low (in blue) for that observation;
we can see that increases in the average BUN has a positive
impact and push the prediction toward mortality, whereas
increases in urine output has a negative impact and push the
prediction toward survival.
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Figure 4. The weights of variables importance. Avg: average; BUN: blood urea nitrogen; max: maximum; min: minimum; NIBP: noninvasive blood
pressure; RDW: red blood cell distribution width; SHAP: SHapley Additive exPlanation; SpO2: O2 saturation; WBC: white blood cell.
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Figure 5. The SHapley Additive exPlanation (SHAP) values. Avg: average; BUN: blood urea nitrogen; max: maximum; min: minimum; NIBP:
noninvasive blood pressure; RDW: red blood cell distribution width; SpO2: O2 saturation; WBC: white blood cell.

SHAP Individual Force Plots
Figure 6 shows the individual force plots for patients who (A)
did not survive and (B) survived. The SHAP values indicate
the prediction-related feature of individual patients and the
contribution of each feature to the mortality prediction. The
bold-faced numbers are the probabilistic predicted values (f(x)),

whereas the base values are the values predicted without giving
input to the model. The f(x) is the log odds ratio of each
observation. The red features (on the left) indicate features that
increase the mortality risk, and the blue features indicate features
that decrease the mortality risk. The length of the arrows helps
visualize the magnitude of the effect on the prediction. The
longer the arrow, the larger the effect.
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Figure 6. SHapley Additive exPlanation (SHAP) force plot for two selected patients.

Discussion

Principal Findings
In this retrospective cohort study of a large-scale public ICU
database, we developed and validated four machine learning
algorithms to predict the mortality of patients with HF. The
XGBoost model outperforms the performance of LR, RF, and
SVM. The SHAP method is used to explain the XGBoost model,
which ensures the model performance and clinical
interpretability. This will help physicians better understand the
decision-making process of the model and facilitates the use of
prediction results. Besides, to avoid ineffective clinical
interventions, the relevant threshold probability range of DCA
that we focused on was between 15% and 25%, during which
XGBoost performed better. In critical care research, XGBoost
has been widely used to predict the in-hospital mortality of
patients and may assist clinicians in decision-making [29-31].
However, the mortality of patients with HF included in the final
cohort is just 9.97%. Although DCA shows that the XGBoost
model is better than the two default strategies, the positive
predictive value is just 0.307 when the prediction specificity is
fixed at 85%. Therefore, the XGBoost model may not be fully
acceptable to provide decision-making support for clinicians.
Evaluation of the benefits of earlier prediction of mortality and
its additional cost is necessary in clinical practice.

Using SHAP to explain the XGBoost model, we identified some
important variables associated with in-hospital mortality of
patients with HF. In this study, the average BUN was recognized
as the most important predictor variable. As a renal function
marker to measure the amount of nitrogen in blood that comes
from protein metabolism, previous studies also showed that
BUN was the key predictor of HF mortality prediction with
machine learning algorithms [32,33]. Kazory [34] concludes
that BUN may be a biomarker of neurohormonal activation in
patients with HF. From the perspective of pathophysiology, the

activity of sympathetic nervous systems and the
renin-angiotensin-aldosterone system increases with the
aggravation of HF, which causes the vasoconstriction of the
afferent arterioles. A reduction in renal perfusion further leads
to water and sodium retention and promotes urea reabsorption,
ultimately resulting in an increased BUN. However, further
research is needed to explore the applicability of this SHAP
method, due to the lack of an external validation cohort.

Limitations
This study had some limitations. First, our data were extracted
from a publicly available database, and some variables were
missing. For example, we intended to include more predictor
variables that may affect in-hospital mortality such as
prothrombin time as well as brain natriuretic peptide and lactate;
however, the missing values were over 70%. Second, all data
were derived from the ICU patients from the United States, so
the applicability of our model remained unclear in other
populations. Third, our mortality prediction models were based
on data available within 24 hours of each ICU admission, which
may neglect the subsequent events that change the prognosis
and cause confounders to some extent. Fourth, due to lack of
an external validation cohort, the applicability of the developed
XGBoost model may not be very efficient in clinical practice.
Currently, we are trying to collect data of patients with HF in
ICUs from West China Hospital of Sichuan University.
Although we have obtained some preliminary data, it is not
feasible for the external prospective validation because of the
limited sample size.

Conclusions
We developed the interpretable XGBoost prediction model that
has the best performance in estimating the mortality risk in
patients with HF. In addition, the interpretable machine learning
approach can be applied to accurately explore the risk factors
of patients with HF and enhance physicians’ trust in prediction
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models. This will help physicians identify patients with HF who
have a high mortality risk so as to timely apply appropriate

treatments for them.
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