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Abstract

Background: Postpartum hemorrhage remains one of the largest causes of maternal morbidity and mortality in the United
States.

Objective: The aim of this paper is to use machine learning techniques to identify patients at risk for postpartum hemorrhage
at obstetric delivery.

Methods: Women aged 18 to 55 years delivering at a major academic center from July 2013 to October 2018 were included
for analysis (N=30,867). A total of 497 variables were collected from the electronic medical record including the following:
demographic information; obstetric, medical, surgical, and family history; vital signs; laboratory results; labor medication
exposures; and delivery outcomes. Postpartum hemorrhage was defined as a blood loss of ≥1000 mL at the time of delivery,
regardless of delivery method, with 2179 (7.1%) positive cases observed. Supervised learning with regression-, tree-, and
kernel-based machine learning methods was used to create classification models based upon training (21,606/30,867, 70%) and
validation (4630/30,867, 15%) cohorts. Models were tuned using feature selection algorithms and domain knowledge. An
independent test cohort (4631/30,867, 15%) determined final performance by assessing for accuracy, area under the receiver
operating curve (AUROC), and sensitivity for proper classification of postpartum hemorrhage. Separate models were created
using all collected data versus models limited to data available prior to the second stage of labor or at the time of decision to
proceed with cesarean delivery. Additional models examined patients by mode of delivery.

Results: Gradient boosted decision trees achieved the best discrimination in the overall model. The model including all data
mildly outperformed the second stage model (AUROC 0.979, 95% CI 0.971-0.986 vs AUROC 0.955, 95% CI 0.939-0.970).
Optimal model accuracy was 98.1% with a sensitivity of 0.763 for positive prediction of postpartum hemorrhage. The second
stage model achieved an accuracy of 98.0% with a sensitivity of 0.737. Other selected algorithms returned models that performed
with decreased discrimination. Models stratified by mode of delivery achieved good to excellent discrimination but lacked the
sensitivity necessary for clinical applicability.

Conclusions: Machine learning methods can be used to identify women at risk for postpartum hemorrhage who may benefit
from individualized preventative measures. Models limited to data available prior to delivery perform nearly as well as those
with more complete data sets, supporting their potential utility in the clinical setting. Further work is necessary to create successful
models based upon mode of delivery and to validate the findings of this study. An unbiased approach to hemorrhage risk prediction
may be superior to human risk assessment and represents an area for future research.
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Introduction

Postpartum hemorrhage is the leading cause of maternal
mortality worldwide [1]. In the United States, the rate of
postpartum hemorrhage continues to rise, complicating nearly
3% of deliveries [2]. Mothers with severe hemorrhage may
require blood transfusion, hysterectomy, or intensive care unit
admission with a select number of cases proving fatal.
Postpartum hemorrhage that leads to blood transfusion is the
leading cause of severe maternal morbidity in the United States
[3]. Stewardship of blood resources and minimizing
hemorrhage-related morbidity remain ongoing efforts as blood
transfusion is not without risk. By predicting patients at risk for
significant blood loss, prophylactic measures may be instituted
to avoid maternal morbidity and mortality.

A number of risk factors for postpartum hemorrhage have been
established, including previous postpartum hemorrhage,
multifetal gestation, pre-eclampsia, augmented labor, fetal
macrosomia, operative vaginal delivery, and complex
lacerations, as well as other factors [4]. Previous models for
prediction of postpartum hemorrhage have been developed
[5-7], but validation of these among different populations and
at different time points within the labor process has been limited.
A machine learning study using administrative data provided
poor discrimination for predicting the need for hospital
readmission due to postpartum hemorrhage in the first 12 weeks
postpartum [8]. Prediction of postpartum hemorrhage remains
a challenge for the obstetric provider, and further work is
necessary using modern modeling methods.

The field of machine learning has recently seen a rapid
development of methods that support unbiased learning from
data. Supervised learning involves processing information to
predict from examples with a known outcome, often for the
purpose of estimating risk in examples where the outcome is
not known [9]. Multiple applications for machine learning exist
within medicine; however, to date, they have not been widely
used in the field of obstetrics. By using the power of modern
predictive modeling for postpartum hemorrhage, we aim to
better identify those patients at increased risk for obstetric
hemorrhage to avoid maternal morbidity and mortality.
Identifying patients at the highest risk of postpartum hemorrhage
will enable providers to reduce the cost and morbidity associated
with postpartum hemorrhage and ultimately improve patient
outcomes.

Methods

Ethics Approval
Institutional Review Board approval was obtained from New
York University Langone Health (approval number s18-01798).

Study Population
This was a retrospective cohort study conducted at a single
tertiary care center. Women aged 18 to 55 years delivering at
New York University Langone Health Tisch Hospital from July

1, 2013, to October 31, 2018, were included for analysis.
Patients not meeting age parameters as well as those cases in
which a blood loss value was either not available or not recorded
were excluded. All patients not meeting exclusion criteria were
included in the study.

Study Design and Model Development
A total of 497 variables were collected from unique sources
within the electronic medical record including the following:
demographic information; obstetric, medical, surgical, and
family history; vital signs; laboratory results; labor exposures;
and delivery outcomes (Multimedia Appendix 1). Postpartum
hemorrhage was defined as a blood loss of ≥1000 mL at the
time of delivery, as recommended by the American College of
Obstetricians and Gynecologists revitalize program [10].

The delivery cohort was randomly split into training
(21,606/30,867, 70% of total cohort) and validation
(4630/30,867, 15%) sets for model creation. Using the R
software (version 3.5.1; R Foundation for Statistical
Computing), supervised learning with regression-, tree-, and
kernel-based machine learning methods was used to create
classification models, using each method for every model
assessed. The models were tuned using recursive feature
selection, selection by filtering, observing feature importance,
and domain knowledge. The model parameters were customized
and examined to produce optimal results. An independent test
cohort (4631/30,867, 15%) determined the final performance
by assessing for accuracy, area under the receiver operating
curve (AUROC), and sensitivity for the proper classification of
postpartum hemorrhage.

The initial model included variables that contained information
that would be feasible to obtain prior to delivery (ie, relevant
historical information, objective data present within the inpatient
and outpatient chart, and diagnoses associated with the patient’s
delivery encounter entered within 24 hours following delivery).
A secondary model was created limited to data strictly expected
to be available prior to the second stage of labor or at the time
of decision to proceed with cesarean delivery, as this was likely
the more clinically useful tool. Additional models were created
for patients undergoing cesarean and vaginal delivery.

The selection of appropriate variables for inclusion was made
by a single obstetric provider with experience and knowledge
of the electronic medical record. The number of initial variables
in each model differed according to clinical applicability. The
variables were processed according to the provider’s assessment
of the clinical scenario noted for each patient.

Results

A total of 30,867 patients met the inclusion criteria, and 2179
(7.1%) cases met the criteria for postpartum hemorrhage. Patient
characteristics are detailed in Table 1. Cesarean delivery was
noted in 27.6% (n=8534) of the patients, and unknown mode
of delivery in 0.1% (n=19), with the remainder (n=22,314,
72.3%) undergoing vaginal delivery. The rate of postpartum
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hemorrhage by mode of delivery was 20.8% (1776/8534) for
cesarean delivery, 21.1% (4/19) for unknown mode of delivery,
and 1.8% (399/22,314) for vaginal delivery. The average
gestational age was 274.6 (range 107-303) days, and the average

patient age was 32.7 (range 18-55) years. The delivery cohort
was split into training, validation, and test cohorts for initial
model creation containing 21,606 (70%), 4630 (15%), and 4631
(15%) patients, respectively.

Table 1. Patient cohort characteristics.

ValueVariable

PPHa (n=2179)Overall (N=30,867)

34.3 (18-54, 5.4)32.7 (18-55, 5.3)Age (years), mean (range, SD)

272.2274.6Gestation (days)

30.028.5BMI (kg/m2)

399 (18.3)22,314 (72.3)Vaginal delivery, n (%)

1776 (81.5)8534 (27.6)Cesarean delivery, n (%)

4 (0.2)19 (0.1)Unknown mode of delivery, n (%)

51 (2.3)1502 (4.9)Operative vaginal delivery, n (%)

24 (1.1)1019 (3.3)Vaginal birth after cesarean, n (%)

35 (1.6)143 (0.5)Multiple gestation, n (%)

10 (0.5)142 (0.5)Current tobacco use, n (%)

172 (7.9)1544 (5.0)Maternal diabetes, n (%)

65 (3.0)508 (1.6)Maternal pre-eclampsia or eclampsia, n (%)

11 (0.5)111 (0.4)IUFDb, n (%)

927 (42.5)16,962 (55.0)Labor induced, n (%)

1404 (64.4)16,858 (54.6)Primiparous, n (%)

1564 (88.1)7070 (82.8)Primary cesarean delivery, n (%)

880 (49.5)4801 (56.3)Cesarean performed prior to labor or rupture, n (%)

aPPH: postpartum hemorrhage.
bIUFD: intrauterine fetal demise.

The initial model included a total of 280 variables. Logistic
regression, random forest, gradient boosted decision trees), and
support vector machine models were generated to create a
representative sample of different methods. Gradient boosted
decision trees achieved the best discrimination among the initial

models, performing with an AUROC of 0.979 (95% CI
0.971-0.986) and an accuracy of 98.1%. Sensitivity for this
model was 0.763 (95% CI 0.712-0.809, Table 2). Other models
performed less successfully. The optimal model included 212
features (Multimedia Appendix 2).

Table 2. Optimal performance of all models using gradient boosted decision trees.

SensitivityAUROCaAccuracyModel

0.7630.9790.981Initial

0.7370.9550.980Second stage

0.3200.7370.818Cesarean delivery

0.2540.8370.982Vaginal delivery (1 hourb)

0.2540.8460.983Vaginal delivery (second stage)

aAUROC: area under the receiver operating curve.
bWithin 1 hour of presumed admission for vaginal delivery.

The data set was then trimmed to include only those variables
(123 in total) available prior to the second stage of labor or at
the time of decision to proceed with cesarean delivery. A similar
representative sample of modeling methods was used, with

gradient boosted decision trees again achieving the best
discrimination, noting an AUROC of 0.955 (95% CI
0.939-0.970) and an accuracy of 98.0%. Sensitivity for this
model was 0.737 (95% CI 0.684-0.785; Table 2). This model
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included a total of 28 features (Textbox 1). The most important
features included body mass index, admission hematocrit,

cesarean delivery prior to labor or rupture, scheduling status of
cesarean delivery, and admission platelet count.

Textbox 1. Features included in the optimal second stage model.

Laboratory components

• Eosinophils (absolute)

• Hematocrit

• Hemoglobin

• Lymphocytes (absolute)

• Lymphocytes (percent)

• Mean corpuscular hemoglobin

• Mean corpuscular hemoglobin concentration

• Mean corpuscular volume

• Mean platelet volume

• Monocytes (percent)

• Neutrophils (absolute)

• Neutrophils (percent)

• Platelet count

• Red cell distribution width (standard deviation)

• Red blood cell count

• White blood cell count

Nonlaboratory components

• Patient age

• Gestational age

• Systolic blood pressure

• Diastolic blood pressure

• BMI

• Pulse oximetry

• Temperature

• Live birth count

• Baseline fetal heart rate

• Amniotic fluid color

• Cesarean delivery prior to labor or rupture

• Cesarean delivery scheduling status

Additional models focused on classifying patients by mode of
delivery. A model examining those patients ultimately delivered
by cesarean delivery (n=8534) was created using information
available at the time of decision to proceed with cesarean
delivery (ie, within 1 hour after presentation for scheduled
procedure or following attempted vaginal delivery prior to
proceeding to the operating room). A total of 173 variables were
included. Using gradient boosted decision trees, the highest
performing model contained 76 variables (Multimedia Appendix
3) and achieved an AUROC of 0.737 (95% CI 0.703-0.772).
Accuracy of 81.8% and a lower sensitivity of 0.320 were noted
(95% CI 0.266-0.377; Table 2).

Two models using data of those patients who underwent vaginal
delivery (n=22,333) were also created. The first focused on
information available within 1 hour of admission for presumed
vaginal delivery and examined 127 variables. The model
achieved excellent discrimination, noting an AUROC of 0.837
(95% CI 0.782-0.893) and accuracy of 98.2%; however,
sensitivity remained low at 0.254 (95% CI 0.155-0.375). The
optimal model included 7 variables (Multimedia Appendix 4).
The second model used information available prior to the second
stage of labor; thus, it comprised variables related to the patient’s
labor course, including medication exposure and induction
method, if applicable. A total of 176 features were included,
resulting in an optimal model with an AUROC of 0.846 (95%
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CI 0.790-0.902) and accuracy of 98.3%. Sensitivity was again
0.254 (95% CI 0.153-0.379), and the final model included 92
features (Table 2; Multimedia Appendix 5). Both of these
models were achieved using gradient boosted decision trees.
Third trimester and admission hemoglobin or hematocrit were
among the most important features in both vaginal delivery
models.

Discussion

Principal Findings
Our study successfully produced a model for predicting
postpartum hemorrhage in patients undergoing obstetric
delivery. When using only the data available prior to the second
stage of labor or at the time to proceed with cesarean delivery,
we achieved nearly equal discrimination and sensitivity
compared to our more robust initial model, successfully
predicting nearly 3 out of every 4 patients who had a postpartum
hemorrhage.

Many previously identified risk factors for postpartum
hemorrhage were not included in the final model, including
multiple gestation, operative vaginal delivery, and history of
postpartum hemorrhage, among others. This indicates that many
of these factors may not be as contributory to postpartum
hemorrhage risk as previously believed, but further work is
necessary.

Prior Results
Postpartum hemorrhage is a known cause of significant maternal
morbidity and mortality in the United States and remains
difficult to predict. Few existing studies have used machine
learning methods to identify patients at risk for postpartum
hemorrhage with minimal success [5-8]. A recently published
model used a large cohort from the US Consortium for Safe
Labor and achieved excellent discrimination, although its utility
in the clinical setting is limited given its retrospective nature
without prospective validation [11]. This study used 55 predictor
variables, indicating a less robust data set than what was curated
for our model. Our study represents the largest cohort to date
to generate a predictive risk model using data directly abstracted
from the electronic medical record that is applicable in a targeted
population.

When stratified by delivery method, our models noted a
decreased sensitivity. While this may appear in contradiction
to the expected results, it is understandable because the majority
of postpartum hemorrhages occurred in those patients who
underwent cesarean delivery. This is further reflected by
examining the most important features in our final second-stage
model.

Clinical Implications
The ability to predict patients at risk for postpartum hemorrhage
using readily available information represents an area of
substantial clinical opportunity. Integrating a model such as
ours into clinical practice will give providers the real-time
capability to assess a patient’s risk of hemorrhage. Targeted
intervention, such as prophylactic administration of uterotonic
medication, availability of blood products, and even potentially

transferring patients to a center offering a higher level of
maternal care [12] is a consideration for those deemed at risk.

Strengths and Limitations
The strengths of this study include the use of modern supervised
machine learning techniques in a clinical condition that has not
been extensively explored with this approach. This data set
represents the largest directly derived cohort to use these
techniques. Additionally, the inclusion of nearly 500 variables
in the data set provides a robust cohort from which to create the
model, and this size has not been previously seen in the
literature. As machine learning methods are centered upon
improving performance with increasing inputs, this lends to a
superior model. Since having a large number of overfitting
variables is a concern, this must be considered when determining
the optimal model. A slight decrease in accuracy may be
necessary to select a model with less concern for overfitting.
The use of independent validation and test cohorts also supports
the strength and lack of bias in our model.

Limitations include the retrospective nature of this study as well
as the use of a population from a single tertiary center. Given
regional variations in patient populations, our results may not
be generalizable to the US population at large, and we do note
a higher rate of postpartum hemorrhage in our cohort than
previously described. It is unclear why the rate was higher in
our population, but it may be partially explained by the referral
nature of our tertiary center, leading to care of a larger number
of patients at high risk at baseline. Further validation with an
outside cohort and prospective validation among our patient
population is necessary.

The use of the electronic medical record is an additional
limitation to our study. Differences or duplications in both
location and format of inputs have the potential to impair the
accuracy of our abstracted data. We are unable to assess the
performance or bias of this model across race as this is a variable
inputted by the clinical staff; thus, we are unable to validate its
accuracy. The variables related to diagnosis codes are entirely
dependent upon provider input, and all applicable conditions
may not have been entered. However, with a large data set,
machine learning algorithms should be able to overcome this
deficit as features with a high level of contribution to the
outcome should persist when feature selection is implemented.

The class imbalance of positive or negative cases for postpartum
hemorrhage in the data set is inevitable given the relatively low
incidence of this condition in clinical practice. This was
particularly evident in the support vector machine models where
every patient was predicted not to be at risk for postpartum
hemorrhage. The use of a weighted loss could be considered to
compensate for this imbalance.

Conclusions
In conclusion, machine learning methods are a less used
approach in obstetrics and can be used to identify women at
risk for postpartum hemorrhage who may benefit from
individualized preventative measures. Models limited to data
available prior to delivery perform nearly as well as those with
more complete data sets, identifying nearly three-quarters of
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patients at risk, supporting their potential utility in the clinical setting.
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