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Abstract

Background: Phenotype information in electronic health records (EHRs) is mainly recorded in unstructured free text, which
cannot be directly used for clinical research. EHR-based deep-phenotyping methods can structure phenotype information in EHRs
with high fidelity, making it the focus of medical informatics. However, developing a deep-phenotyping method for non-English
EHRs (ie, Chinese EHRs) is challenging. Although numerous EHR resources exist in China, fine-grained annotation data that
are suitable for developing deep-phenotyping methods are limited. It is challenging to develop a deep-phenotyping method for
Chinese EHRs in such a low-resource scenario.

Objective: In this study, we aimed to develop a deep-phenotyping method with good generalization ability for Chinese EHRs
based on limited fine-grained annotation data.

Methods: The core of the methodology was to identify linguistic patterns of phenotype descriptions in Chinese EHRs with a
sequence motif discovery tool and perform deep phenotyping of Chinese EHRs by recognizing linguistic patterns in free text.
Specifically, 1000 Chinese EHRs were manually annotated based on a fine-grained information model, PhenoSSU (Semantic
Structured Unit of Phenotypes). The annotation data set was randomly divided into a training set (n=700, 70%) and a testing set
(n=300, 30%). The process for mining linguistic patterns was divided into three steps. First, free text in the training set was
encoded as single-letter sequences (P: phenotype, A: attribute). Second, a biological sequence analysis tool—MEME (Multiple
Expectation Maximums for Motif Elicitation)—was used to identify motifs in the single-letter sequences. Finally, the identified
motifs were reduced to a series of regular expressions representing linguistic patterns of PhenoSSU instances in Chinese EHRs.
Based on the discovered linguistic patterns, we developed a deep-phenotyping method for Chinese EHRs, including a deep
learning–based method for named entity recognition and a pattern recognition–based method for attribute prediction.

Results: In total, 51 sequence motifs with statistical significance were mined from 700 Chinese EHRs in the training set and
were combined into six regular expressions. It was found that these six regular expressions could be learned from a mean of 134
(SD 9.7) annotated EHRs in the training set. The deep-phenotyping algorithm for Chinese EHRs could recognize PhenoSSU
instances with an overall accuracy of 0.844 on the test set. For the subtask of entity recognition, the algorithm achieved an F1
score of 0.898 with the Bidirectional Encoder Representations from Transformers–bidirectional long short-term memory and
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conditional random field model; for the subtask of attribute prediction, the algorithm achieved a weighted accuracy of 0.940 with
the linguistic pattern–based method.

Conclusions: We developed a simple but effective strategy to perform deep phenotyping of Chinese EHRs with limited
fine-grained annotation data. Our work will promote the second use of Chinese EHRs and give inspiration to other
non–English-speaking countries.

(J Med Internet Res 2022;24(6):e37213) doi: 10.2196/37213
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Introduction

Currently, electronic health records (EHRs) are increasingly
becoming an important source for clinical data mining and
analysis [1]. Phenotype information that describes patients’
clinical manifestations is one of the most valuable clinical
information types in EHRs [2]. However, phenotype information
in EHRs is mainly recorded in free text, which computers have
difficulty using directly [3,4]. Therefore, it is important to
develop natural language processing (NLP) technology to
effectively structure phenotype information in free text. The
NLP technology for structuring phenotype information in EHRs
is called EHR-based phenotyping [5].

There are two key factors involved in EHR-based phenotyping
[6]. The first factor is the development of an information model
that can define the normalized target of phenotyping [7]. The
second factor is the development of a phenotyping algorithm
that can process phenotype information into a predefined
information model [8]. In recent years, the focus of EHR-based
phenotyping methods has shifted from the coarse-grained level
to the fine-grained level [9,10]. Compared with coarse-grained
phenotyping, fine-grained phenotyping can capture more
phenotype details, including the phenotype concept and its
associated attributes [11]. For example, in the free-text
description “a sudden severe pain in the right-lower abdomen,”
a fine-grained deep-phenotyping method not only considers the
phenotype “pain” but also its associated attributes of body
location (“abdomen”), temporal pattern (“acute”), and severity
(“severe”). EHR-based phenotyping that can characterize
phenotype details at a fine-grained level is called EHR-based
deep phenotyping [12].

Deep-phenotyping methods can characterize phenotype
information in a high-fidelity way, which can potentially
improve the accuracy of EHR-based applications, such as
disease diagnosis and treatment [13]. Hence, deep phenotyping
has become the focus of medical informatics. In recent years,
a series of deep-phenotyping methods for English EHRs have
been developed. For example, Peterson et al [14] used the
MetaMap tool [15] to recognize phenotype concepts in EHRs,
along with a neural network model to predict attribute values
associated with phenotypes. They finally characterized English
EHRs with the Fast Healthcare Interoperability Resources
(FHIR) model [16]. Xu et al [17] developed a bidirectional long
short-term memory and conditional random field
(Bi-LSTM-CRF) model to recognize phenotype concepts in
EHRs, together with a machine learning method to predict
attribute values, and finally represented the phenotype

information in English EHRs with the clinical element model
(CEM) [18]. Compared to the progress of deep-phenotyping
English EHRs, the method for deep-phenotyping Chinese EHRs
is still in its infancy. Regarding the existence of linguistic
differences, the established strategies [14,17,19,20] for
deep-phenotyping English EHRs cannot be directly used for
Chinese EHRs. Moreover, developing a deep-phenotyping
algorithm requires fine-grained annotation data. However, it is
hard to obtain a large volume of annotation data because of the
high annotation cost. This means that the development of a
deep-phenotyping algorithm for Chinese EHRs suffers from
the challenge of low-resource scenarios [8], so it is worth
considering how to develop a generalized algorithm for
deep-phenotyping Chinese EHRs with limited fine-grained
annotated data.

In previous work, we developed a fine-grained information
model named PhenoSSU (Semantic Structured Unit of
Phenotypes) [21], which can accurately characterize phenotype
information from medical guidelines with 12 attributes from
SNOMED CT (Systematized Nomenclature of
Medicine–Clinical Terms). To explore an effective strategy for
deep-phenotyping Chinese EHRs, we tried to annotate some
Chinese EHRs with the PhenoSSU model. During the annotation
process, some linguistic patterns of PhenoSSU instances were
found to frequently occur in the free text of Chinese EHRs. For
example, there is a linguistic pattern of “attribute + attribute +
attribute + phenotype” in a given Chinese sentence “患者反复
出现(attribute)剧烈(attribute)腹部(attribute)疼痛(phenotype)”
(English translation: “patients with repeated severe abdominal
pain”). If the linguistic patterns of PhenoSSU instances could
be effectively learned from the corpus of Chinese EHRs, it
would be possible to perform deep phenotyping of Chinese
EHRs by scanning linguistic patterns of PhenoSSU instances.
Therefore, how to effectively learn linguistic patterns of
PhenoSSU instances from the corpus of Chinese EHRs has
become an important question.

Although linguistic patterns of PhenoSSU instances can be
observed and summarized manually, this is a time-consuming
process that depends on experienced experts. In the field of
linguistic pattern mining, the Apriori-based method is one of
the most representative algorithms, which was based on the
principle of frequency counts of keyword occurrences [22]. The
Apriori algorithm is well suited to simple linguistic pattern
mining based on word co-occurrence. For example, a recent
study used the Apriori algorithm to learn linguistic patterns of
cyberbullying behaviors in a social networking service [23].
When two keywords co-occur frequently, they are considered
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to constitute a potential linguistic pattern, such as the
co-occurrence of “foolish” and “abuse.” However, the linguistic
patterns of the PhenoSSU instances are more complicated. Thus,
Apriori-based methods are not competent at mining linguistic
patterns of PhenoSSU instances because they cannot handle the
co-occurrence of a phenotype and several attribute values
simultaneously. Inspired by the work of Ofer et al [24], which
considered biological sequences, such as DNA sequences, as
human language and used advanced NLP tools to tackle
biological tasks, we aimed to model Chinese EHRs as DNA-like
sequences and mine linguistic patterns with advanced
bioinformatics tools. In a recent review, Castellana et al [25]
surveyed 16 classic DNA motif discovery tools and evaluated
their ability to discover sequence motifs nested in 29 simulated
sequence data sets. The MEME (Multiple Expectation
Maximums for Motif Elicitation) motif discovery tool performed
best among the 16 classic DNA motif discovery tools. In this
study, we characterized phenotypes as “P” and attributes as “A”
to transform the free text into a single-letter sequence that could
be analyzed with the MEME motif discovery tool. The sequence
motifs discovered in this single-letter sequence could be viewed
as linguistic patterns of PhenoSSU instances in Chinese EHRs.
Based on the linguistic patterns discovered in EHRs, we could
identify PhenoSSU instances by recognizing linguistic patterns
in free text. To summarize, the task of deep phenotyping of
Chinese EHRs could be converted into two consecutive steps
of sequence motif discovery and linguistic pattern recognition.

Following this idea, we aimed to identify linguistic patterns of
PhenoSSU instances in Chinese EHRs with a biological
sequence motif discovery tool and develop a deep-phenotyping
algorithm for Chinese EHRs by scanning linguistic patterns in
free text. The rest of this paper is organized as follows. The first
section introduces the composition of the PhenoSSU model and
its common linguistic patterns in free text. The second section
introduces the method for using a biological sequence motif
discovery tool to learn linguistic patterns from the corpus of
Chinese EHRs. The third section introduces the method for
recognizing PhenoSSU instances from Chinese EHRs based on
linguistic patterns. The final section introduces a case study to
illustrate the potential application of the deep-phenotyping
algorithm. Although the deep-phenotyping algorithm developed
in this study can only deal with Chinese EHRs, the underlying
methodology can also be illuminating for other
non–English-speaking countries.

Methods

Overview
In this study, a data-driven approach was proposed for learning
linguistic patterns from Chinese EHRs. By using a pipeline of
encoding the training set as a single-letter sequence and
analyzing the sequence with the MEME motif discovery tool,
we learned of six regular expressions and then introduced them
into our pattern recognition–based algorithm for attribute
prediction. The whole pipeline for the linguistic pattern–learning
method is shown in Figure 1.

Figure 1. The pipeline for the linguistic pattern–learning method. A: attribute; C: punctuation; EHR: electronic health record; MEME: Multiple
Expectation Maximums for Motif Elicitation; O: other information; P: phenotype; PhenoSSU: Semantic Structured Unit of Phenotypes; re.compile: a
Python method used to compile a regular expression pattern; SNOMED CT: Systematized Nomenclature of Medicine–Clinical Terms.

J Med Internet Res 2022 | vol. 24 | iss. 6 | e37213 | p. 3https://www.jmir.org/2022/6/e37213
(page number not for citation purposes)

Li et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The Design of the PhenoSSU Model for Representing
Phenotype Information in Chinese EHRs
PhenoSSU is essentially an entity-attribute-value model
consisting of phenotype terms along with standardized attributes
from SNOMED CT. Compared with two commonly used
information models named CEM and FHIR, the PhenoSSU
model is more suitable for the task of deep phenotyping for two
reasons. First, it has been shown that the PhenoSSU model is
better at representing phenotype information in medical text
than CEM and FHIR models [21]. Second, the PhenoSSU model
puts more focus on characterizing phenotype traits with
standardized attribute and value sets; as well, the attribute and
value sets of the PhenoSSU model are easier to adjust according
to the study-specific corpus.

To develop a fine-grained annotated corpus, 1000 Chinese EHRs
of respiratory system diseases were manually annotated based
on the PhenoSSU model, whose design was based on infectious
diseases with a large proportion of respiratory diseases [21].
These 1000 Chinese EHRs were obtained from the EHR
database of the Iiyi website [26]; all of the patients’ private
information in these EHRs have been masked by the Iiyi
website.

During manual annotation, we optimized the attributes included
in the PhenoSSU model to make them suitable for Chinese
EHRs. The optimized PhenoSSU model contained 10 attributes,
which could be further divided into two subtypes: (1) attributes
for phrase-based phenotypes, such as “heavy cough” or “fever,”
including assertion, severity, temporal pattern, laterality, spatial
pattern, quadrant pattern, and body location, and (2) attributes
for logic-based phenotypes, such as “WBC [white blood cell]

12.5 × 109/L,” including specimen, analyte, and abnormality.
The composition of the PhenoSSU model is shown in Figure
S1 and Table S1 in Multimedia Appendix 1, as well as the
definitions, typical values, and SNOMED CT codes of attributes
included in the model.

The phenotype information in free text could be structurally
represented by the PhenoSSU model. For example, the

description “a sudden severe pain in the right-lower abdomen”
could be represented as a PhenoSSU instance consisting of the
phenotype concept “pain,” the assertion attribute “present,” the
temporal pattern attribute “acute,” the severity attribute “severe,”
the quadrant pattern attribute “right-lower,” and the body
location attribute “abdomen.” Meanwhile, logic-based
phenotypes (ie, qualitative and quantitative test results) were
also included in the PhenoSSU model. For example, “WBC

12.5 × 109/L” could be represented as a PhenoSSU instance
consisting of the analyte “WBC” and the abnormality attribute
“abnormality: higher,” which was combined and normalized as
a concept of the “increased blood leukocyte number
(414478003)” in SNOMED CT (Figure 2, A). The relevant
knowledge came from our previous study, LATTE (transforming
lab test results) [27], which was integrated into this work,
including sample sources, analyte names, and reference ranges
for 1098 laboratory tests. Detailed information about the
knowledge base is shown in Figures S2 and S3 in Multimedia
Appendix 1.

Based on the annotation guideline of the PhenoSSU model in
our previous work, two Chinese authors with medical
backgrounds (LC and SL) manually annotated these medical
records independently. Annotations were made on the brat rapid
annotation tool platform [28]. The initial annotating agreement
measured with the Cohen κ statistic was 0.851. All inconsistent
annotations were decided by the project supervisor (TJ).

During annotation, we found some linguistic patterns of
PhenoSSU instances in the EHR text. For example, the
description of a phrase-based phenotype, “右下腹部突发剧烈
疼痛” (English translation: “a sudden severe pain in the
right-lower abdomen”), could be summarized as “attribute
(right-lower) + attribute (abdomen) + attribute (acute) + attribute
(severe) + phenotype (pain).” Similarly, the description of
logic-based phenotypes had common linguistic patterns in free

text, such as “analyte (WBC) + number (12.5 × 109) + unit
(cells/ L)” (Figure 2, B). If we can mine linguistic patterns of
PhenoSSU instances from Chinese EHRs, it would be possible
to develop pattern recognition–based deep phenotyping.
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Figure 2. Free-text phenotype descriptions and linguistic patterns. A. Examples of structuring free text by the PhenoSSU model. B. Examples of
linguistic patterns in free text. A: attribute; L: analyte; N: number; P: pain; PhenoSSU: Semantic Structured Unit of Phenotypes; U: unit; WBC: white
blood cell.

Learning Linguistic Patterns of PhenoSSU Instances
From Chinese EHRs Using MEME: Workflow

Overview
In order to learn linguistic patterns of PhenoSSU instances from
the Chinese EHR corpus, 1000 annotated Chinese EHRs in the
study were divided into a training set (n=700, 70%) and test set
(n=300, 30%). The workflow of linguistic pattern mining is

shown in Figure 3, which includes two stages: pattern discovery
and pattern enrichment. In the stage of linguistic pattern
discovery, we used the MEME motif discovery tool, which
solves the problem of motif mining with a maximum likelihood
method [29] to obtain seed linguistic patterns of PhenoSSU
instances. In the stage of linguistic pattern enrichment, a
semiautomatic method was developed to check and fill linguistic
pattern gaps. Through pattern discovery and enrichment, we
built a linguistic pattern library of PhenoSSU instances.

Figure 3. The workflow of learning linguistic patterns of the PhenoSSU model from the corpus of Chinese electronic health records (EHRs). PhenoSSU:
Semantic Structured Unit of Phenotypes; re.compile: a Python method used to compile a regular expression pattern.
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Stage 1: Linguistic Pattern Discovery
First, free text in the training set was encoded into single-letter
sequences. To represent EHRs as the input of the MEME motif
discovery tool, we encoded them as single-letter sequences with
the following criteria: the phenotype (ie, “fever” and “cough”)
was encoded as “P” and the attribute (ie, “severe”) was encoded
as “A.” In the description of phrase-based phenotypes, “P” and
“A” could be directly recognized in the original text. However,
to calculate the abnormality of a logic-based phenotype, we
need to combine the specimen (“S”), analyte (“L”), number
(“N”), and unit (“U”). Specifically, the source of laboratory
examination (ie, “blood” and “urine”) was encoded as “S,” the
analyte (ie, “leukocyte”) was encoded as “L,” the number was
encoded as “N” (ie, “37”), and the unit (ie, “°C”) was encoded
as “U.” Meanwhile, the punctuation (ie, a comma) was encoded
as “C,” and other information was encoded as “O.” In this study,
EHRs were encoded using the FlashText tool, a tool for
string-based concept recognition and replacement [30].
FlashText can find and replace keywords based on the trie
dictionary data structure, which is 82 times faster than regular
expressions. Because of its efficiency in processing text, we
chose the FlashText tool for encoding text as single-letter
sequences. Note that FlashText can retain the index of the strings
in the original text. For example, the free-text description “患
者主诉(O)急性(A)呼吸困难(P)...右下(A)腹部(A)突发(A)剧
烈(A)疼痛(P)...没有出现(A)发热(P), (C)乏力(P)” (English
translation: “Patient complained of acute dyspnea...A sudden
severe pain in the right-lower abdomen...No fever and fatigue”)
could be encoded as “AP...AAAAP...APCP.” During this stage,
we finally obtained single-letter sequences from whole EHRs
in the training set.

Second, the MEME motif discovery tool was used to mine
motifs in the single-letter sequence. The pipeline of MEME
motif discovery is composed of three steps: finding starting
points, maximizing the likelihood expectation, and scoring the
discovered motifs.

The input was a set of unaligned sequences, and the output was
a list of probable motifs. The statistical significance of the motifs
in MEME was evaluated by the E value, which is based on the
log-likelihood ratio. The settings of the MEME motif discovery
tool were optimized as follows:

1. Motif discovery mode: classic mode. In classic mode, only
one sequence needs to be provided. The algorithm will find
the repeated sequence fragments in the sequence by
likelihood ranking.

2. Select the site distribution: any number of repetitions. This
option means selecting motifs that occur repeatedly.

3. How wide can motifs be: from 2 to 30. This number is the
width (ie, characters in the sequence pattern) of a single
motif. MEME can choose an optimal width of each motif
individually by using a heuristic function. In the process,
there were some motifs containing “O” (ie, other
information), which was irrelevant to phenotype
descriptions. Therefore, we separated out the motifs with

the letter “O” to generate sequence segments that may
represent linguistic patterns of PhenoSSU instances.

Third, we built regular expressions based on the discovered
motifs. To make the motifs available in our algorithm, regular
expressions were built. For example, we built a regular
expression “A+P” based on motifs or sequence segments
generated from motifs like “AP,” “AAP,” “AAAP,” and
“AAAAP.”

Stage 2: Linguistic Pattern Enrichment
In this stage, a linguistic pattern recognition–based method was
first used to automatically recognize PhenoSSU instances from
Chinese EHRs in the training set. The workflow of linguistic
pattern recognition is shown in Figure 4, which includes the
following steps:

1. Encoding text as single-letter sequences. For example, the
description “右下腹部突发剧烈疼痛” (English translation:
“a sudden severe pain in the right-lower abdomen”) was
encoded as the single-letter sequence “AAAAP.” The
FlashText tool could record the position index of Chinese
characters in every single letter, making it possible to map
single letters to the original text. An example of the position
index recording is shown in Figure S4 in Multimedia
Appendix 1.

2. Scanning the single-letter sequence with the linguistic
patterns. In this case, “AAAAP” matched the linguistic
pattern “A + P” perfectly, meaning that the four attributes
were associated with the phenotype.

3. Mapping these letters to the original text by index. A:
right-lower; A: abdomen; A: acute; A: severe; P: pain.

4. Filling phenotypes and associated attributes in the
PhenoSSU model. Finally, the description “右下腹部突发
剧烈疼痛” could be transformed into a PhenoSSU instance
consisting of the phenotype “pain,” the assertion attribute
“present,” the temporal pattern attribute “acute,” the severity
attribute “severe,” the quadrant pattern attribute
“right-lower,” and the body location attribute “abdomen.”

Based on the above steps, we discovered the unrecognized
PhenoSSU instances by comparing the automatically recognized
instances with manual annotation. For example, the description
“没有出现(A)发热(P),(C)乏力(P)” (English translation: “No
fever or fatigue”) could be encoded as “APCP,” in which “AP”
matched the regular expression (“A + P”) in our pattern library.
By mapping to the original text, “没有出现发热，乏力” was
transformed into a PhenoSSU instance consisting of the
phenotype “fever” and the assertion attribute “absent.” However,
“absent” was also the attribute of the phenotypes “diarrhea” and
“weight loss,” which were not recognized by the algorithm.

Finally, to check why these PhenoSSU instances were not
recognized, all of them were encoded as single-letter sequences,
which could be scanned with linguistic patterns. If no pattern
matched, we collected such sequences to build new regular
expressions and add them to the linguistic pattern library. In
this example, sequences such as “APCPCP” were enriched into
a regular expression “(A + P (CP) +).”
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Figure 4. The workflow of recognizing PhenoSSU instances from free text via linguistic pattern recognition. The numbers within the square brackets
represent the position indexes of single letters in the original text. A: attribute; P: phenotype; PhenoSSU: Semantic Structured Unit of Phenotypes;
re.compile: a Python method used to compile a regular expression pattern.

Recognizing PhenoSSU Instances From Chinese EHRs:
Workflow
The recognition of PhenoSSU instances could be divided into
two subtasks: entity recognition and attribute prediction. To
find the best strategy for the two tasks, it was essential to
compare our proposed method with current state-of-the-art
methods.

The first subtask was entity recognition, which aimed to
recognize the text spans corresponding to phenotype and
attribute entities. For the subtask of named entity recognition
from Chinese EHRs, the Bidirectional Encoder Representations
from Transformers (BERT)–Bi-LSTM-CRF model has proven
its effectiveness in the CCKS (China Conference on Knowledge
Graph and Semantic Computing) 2018 Task 1: Named Entity
Recognition in Chinese Electronic Medical Records, which
achieved the best F1 score of 91.43 [31]. Therefore, we
compared algorithm performances of the BERT-Bi-LSTM-CRF
model and the classic dictionary-based method in this study.
The parameters of the BERT model were trained with the
Kashgari package in Python (version 3.6.1; Python Software
Foundation). In the dictionary-based method, the knowledge
base of phenotypes was derived from the Chinese translations
of the International Classification of Diseases, 10th Revision
and 11th Revision, and the Human Phenotype Ontology (details
in Table S2 in Multimedia Appendix 1). Further, the knowledge
base of attribute trigger words was from the annotation of the
training set. Entity recognition, combined with the other coding
rules, was applied to encode free text as single-letter sequences,
which would be used in the subsequent attribute prediction
subtask.

The phenotype’s attribute recognition was the second subtask,
which aimed to predict appropriate values for the 10 attributes
in the PhenoSSU model. The encoded single-letter sequences

from the free text and the developed pattern recognition
algorithm in the first subtask were used for attribute prediction.
For the subtask of attribute prediction, we did not compare our
pattern recognition algorithm with currently existing methods
because the PhenoSSU model is a relatively new information
model, and algorithms for deep-phenotyping Chinese EHRs
based on the PhenoSSU model are very scarce. However, we
have referred to state-of-the-art algorithms for deep-phenotyping
English EHRs. For example, our previous work showed that
the support vector machine (SVM)–based model performed
best in the task of deep phenotyping of English clinical
guidelines. That is why the SVM model was compared with the
linguistic pattern–based method in this study. Three features
were used in the SVM model: (1) the distance between
phenotype and attribute words, (2) the number of pauses
between phenotype and attribute words, and (3) the
characteristics of attribute words (eg, some attribute words were
only on the left side of phenotype words). The SVM model was
built with the scikit-learn package (version 1.1.0) in Python.
The parameter tuning of the SVM model was based on a hybrid
search strategy. In this study, we did not use deep
learning–based methods, because our previous work showed
that they were not good at recognizing PhenoSSU instances,
owing to the lack of training samples [21].

Evaluation of Algorithm Performance for Recognizing
PhenoSSU Instances
To evaluate the algorithm’s performance for recognizing
PhenoSSU instances, we used the evaluation metrics in SemEval
(Semantic Evaluation) 2015 Task 14: Analysis of Clinical Text
[32].

In the subtask of entity recognition, the F1 score was taken as
the evaluation metric. When a predicted entity word entirely
coincided with a gold-standard text span, it was considered as
a true positive. The precision metric was calculated as the
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fraction of correctly predicted entities among all entities
identified by the algorithm, and the recall metric was calculated
as the fraction of correctly predicted entities among all entities
identified by the annotators. The F1 score was calculated as the
harmonic mean of precision and recall.

In the subtask of attribute prediction, the average accuracy and
weighted average accuracy were taken as the evaluation metrics
because the weighted average accuracy thoroughly considered
the distribution of each attribute value in the corpus, which
could better evaluate those attribute values with little
distribution.

For the evaluation at the PhenoSSU-instance level, we used the
combination of the F1 score for entity recognition and weighted
average for attribute prediction. A PhenoSSU instance was
considered correct when the phenotype and associated attribute
values annotated by the algorithm were the same as the
corresponding PhenoSSU instance annotated by experts.

Ethical Considerations
The 1000 Chinese EHRs of respiratory system diseases used in
this study were obtained from the EHR database of the Iiyi
website [26]. No ethics approval was needed because the data
from downloaded EHRs, including patients’private information,
were all masked by the Iiyi website.

Results

Linguistic Patterns of PhenoSSU Instances Learned
From Chinese EHRs
A total of 51 sequence motifs were discovered from the Chinese
EHRs in the training set (details are shown in Figure S5 in
Multimedia Appendix 1). Based on the 51 motifs, we built six
regular expressions (Table 1), namely linguistic patterns of the
PhenoSSU instances in the Chinese EHRs. Among the regular
expressions of phrase-based phenotypes, “AP +” appeared most

frequently. The most common description of this regular
expression was “absent” plus phenotypes, which could be used
for differential diagnosis in clinical practice. The second
frequent regular expression was “A + P,” which usually
corresponded to a detailed description of phenotypes, such as
“body location + severity + phenotype.” There were also
complex linguistic patterns to be generalized as “A × PC × A
+,” for example, “严重(A)咳嗽(P)，(C)呈持续性(A)” (ie,
severe cough, consistently). Among the regular expressions of
logic-based phenotypes, the most typical was “S × LNU,” such

as the description “WBC 12 × 109/L.” There were also linguistic
patterns that directly interpreted laboratory examination results:
“S × LR [results of laboratory examination],” such as “血糖升
高” (ie, high blood glucose). The above results suggest that
there are inherent linguistic patterns in Chinese EHRs. The
detailed frequency of linguistic patterns is shown in Table S3
in Multimedia Appendix 1.

In this study, six regular expressions were learned from 700
Chinese EHRs in the training set. However, the size of the
training set could be smaller than 700 in order to build the six
regular expressions. To explore the potential smallest size of
the training set, we conducted an experiment to explore the
minimum number of EHRs that could match all six regular
expressions. In the experiment, we randomly selected EHRs
from the training set with stepwise increased data size, which
were scanned with the six regular expressions. When all six
regular expressions could be matched, that data size was
recorded. This process was repeated 1000 times to calculate the
mean and SD of the EHR sums that covered the six regular
expressions. Results showed that in a mean of 134 (SD 9.7)
EHRs, the six regular expressions could be matched. We did
not use the pattern discovery method illustrated in this study
because there was a semiautomatic step in the method.
Repeating the pattern discovery method 1000 times would be
time-consuming. A line graph was plotted to show five examples
among all 1000 tests (Figure S6 in Multimedia Appendix 1).
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Table 1. Six regular expressions based on linguistic patterns of the Chinese electronic health record corpus in this study.

Example in Chinese (English translation)Phenotype category and regular expressions

Phrase-based phenotypes

“无/A咳嗽/P、/C发热/P” (no cough or fever)re.compilea(“Ab+Pc(CdP)+”)

“严重/A腹痛/P腹泻/P” (severe abdominal pain and diarrhea)re.compile(“AP+”)

“右下腹/A严重/A疼痛/P” (severe right-lower abdominal pain)re.compile(“A+P”)

“咳嗽/P，/C呈持续性/A” (cough, consistently)re.compile(“A×PC×A+”)

Logic-based phenotypes

“白细胞/L 12×109/N /L/U” (WBCi 12 × 109/L)re.compile(“Se×LfNgUh”)

“血/S糖/L升高/R” (high blood glucose)re.compile(“S×LRj” )

are.compile: a Python method used to compile a regular expression pattern.
bA: attribute.
cP: phenotype.
dC: punctuation.
eS: specimen.
fL: analyte.
gN: number.
hU: unit.
iWBC: white blood cell.
jR: results of laboratory examination.

The Best Strategy for Recognizing PhenoSSU Instances
Based on the linguistic patterns of Chinese EHRs, we developed
a pattern recognition–based method to identify PhenoSSU
instances. To find the best strategy for recognizing PhenoSSU
instances, we developed and compared different methods in the
subtasks of entity recognition and attribute prediction. The
results in Figure 5 show that the best strategy was to recognize
entities using the deep learning–based method and then predict
the attribute values using the pattern recognition–based method.

Specifically, in the entity recognition subtask, the method of
deep learning (ie, BERT-Bi-LTSM-CRF) achieved the best

performance, with an F1 score of 0.898 (Figure 5, B). As a
comparison, the dictionary-based method achieved an F1 score
of 0.804. In the subtask of attribute prediction, the pattern
recognition–based method had the best performance, with an
accuracy of 0.977 and a weighted average of 0.940 (Figure 5,
C). The SVM-based method achieved an accuracy of 0.783 and
a weighted average of 0.709. The deep-phenotyping algorithm
for Chinese EHRs had an overall accuracy of 0.844 on the test
set. The detailed performances of the two models for predicting
attribute values are shown in Table S4 in Multimedia Appendix
1.
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Figure 5. Determining the best strategy for recognizing PhenoSSU instances. A. The workflow of recognizing PhenoSSU instances from free text. B.
The performance comparison between the dictionary-based method and the deep learning–based method in identifying phenotype concepts. C. The
performance comparison between the SVM-based method and the pattern recognition–based method in recognizing a phenotype’s attributes. PhenoSSU:
Semantic Structured Unit of Phenotypes; SNOMED CT: Systematized Nomenclature of Medicine–Clinical Terms; SVM: support vector machine.

Case Study: Exploring the Real-World Evidence That
Deep-Phenotyping EHRs Can Update Knowledge in
Guidelines
With the pattern recognition algorithm, we could effectively
structure phenotype information in Chinese EHRs. To
demonstrate the potential application of deep phenotyping, a
case study was conducted to update clinical guidelines by
information retrieval of EHRs. In the case study, we selected
the latest Chinese clinical guideline and 300 Chinese EHRs of
chronic bronchitis. To recognize PhenoSSU instances from the
guideline and the EHRs, we used the optimized hybrid strategy
mentioned previously.

A total of 9 and 29 PhenoSSU instances were identified from
the clinical guideline and the EHRs of chronic bronchitis,
respectively (details are shown in Tables S5-S7 in Multimedia
Appendix 1). The 9 PhenoSSU instances identified in the clinical
guideline appeared in the EHRs, which meant another 20
PhenoSSU instances in the EHRs were not covered in the
clinical guideline. For example, “cough: chronic” and “cough:
recurrent” both appeared in the clinical guideline and the EHRs.
However, the current guideline could not give suggestions to
accurately diagnose patients with occasional cough or severe
cough as having chronic bronchitis (Figure 6). This real-world
evidence hints at the feasibility of updating knowledge in clinical
guidelines through deep phenotyping of large-scale EHRs.

Figure 6. The comparison of PhenoSSU instances extracted from the clinical guidelines and electronic health records (EHRs) of chronic bronchitis.
PhenoSSU: Semantic Structured Unit of Phenotypes.
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Discussion

Principal Findings
In this study, we developed a simple but effective strategy to
perform deep phenotyping of Chinese EHRs. The core of this
strategy is learning linguistic patterns of PhenoSSU instances
with a motif discovery tool from the field of bioinformatics.
According to this research, biological sequence motif discovery
tools could be used to effectively identify linguistic patterns of
phenotype descriptions from medical texts after encoding them
as DNA-like sequences. Meanwhile, the process of identifying
linguistic patterns does not require too much annotation data;
thus, our strategy is suitable for low-resource scenarios of
deep-phenotyping Chinese EHRs.

This study was a preliminary attempt to use bioinformatics tools
to tackle problems in medical informatics. By modeling natural
language as single-letter sequences, it is possible that other
advanced tools for analyzing biological sequences could also
be used for processing natural language. For example, some
researchers in the NLP field have applied a classic informatics
algorithm, named the Basic Local Alignment Search Tool
(BLAST), [33] to the text reuse detection task [34]. In Vesanto’s
work [35], the 23 most-used English letters in the data set were
calculated to form a simple one-to-one mapping between English
letters and arbitrary amino acids. In this way, text was encoded
into single-letter sequences that BLAST could handle to
calculate similarities between texts. It is believed that future
communications between bioinformatics and medical
informatics will become more frequent [36].

It can be concluded from this study that there exist some regular
linguistic patterns for phenotype narratives in Chinese EHRs.

The origin of these linguistic patterns may be the common
writing habits of clinicians who try to save time by recording
clinical information faithfully in as few words as possible [37].
The reason our strategy does not require large annotation
samples is that it uses the inner knowledge of linguistic patterns.
As we know, data-hungry strategies, such as machine learning
and deep learning, require many training samples to effectively
identify patterns from data. However, there are many
low-resource scenarios in practice that lack sufficient annotation
samples for machine learning or deep learning. This is perhaps
the reason why the majority (60%) of NLP studies in the medical
domain have continued to use a knowledge-based approach
rather than a machine learning–based approach [4]. In recent
years, researchers have become increasingly focused on
integrating machine learning with human knowledge [38], which
is expected to become a new paradigm to deal with low-resource
scenarios in medical informatics [39].

Limitations
One limitation of this study was that linguistic patterns were
learned from EHRs of respiratory diseases, which may not be
applicable to other diseases. In addition, limited by the data
size, the linguistic patterns in our study might be incomplete.
In the future, we will continue to improve the algorithm with
more Chinese EHRs from different hospital departments.

Conclusions
We developed a simple but effective strategy to perform deep
phenotyping of Chinese EHRs with limited fine-grained
annotation data. Our work will promote the second use of
Chinese EHRs and bring inspiration to other
non–English-speaking countries.
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Abbreviations
A: attribute (in the context of single-letter sequences)
BERT: Bidirectional Encoder Representations from Transformers
Bi-LSTM-CRF: bidirectional long short-term memory and conditional random field
BLAST: Basic Local Alignment Search Tool
C: punctuation (in the context of single-letter sequences)
CCKS: China Conference on Knowledge Graph and Semantic Computing
CEM: clinical element model
EHR: electronic health record
FHIR: Fast Healthcare Interoperability Resources
L: analyte (in the context of single-letter sequences)
LATTE: transforming lab test results
MEME: Multiple Expectation Maximums for Motif Elicitation
N: number (in the context of single-letter sequences)
NLP: natural language processing
O: other information (in the context of single-letter sequences)
P: phenotype (in the context of single-letter sequences)
PhenoSSU: Semantic Structured Unit of Phenotypes
R: results of laboratory examination (in the context of single-letter sequences)
S: specimen (in the context of single-letter sequences)
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SemEval: Semantic Evaluation
SNOMED CT: Systematized Nomenclature of Medicine–Clinical Terms
SVM: support vector machine
U: unit (in the context of single-letter sequences)
WBC: white blood cell
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