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Abstract

Background: Upper extremity (UE) impairment affects up to 80% of stroke survivors and accounts for most of the rehabilitation
after discharge from the hospital release. Compensation, commonly used by stroke survivors during UE rehabilitation, is applied
to adapt to the loss of motor function and may impede the rehabilitation process in the long term and lead to new orthopedic
problems. Intensive monitoring of compensatory movements is critical for improving the functional outcomes during rehabilitation.

Objective: This review analyzes how technology-based methods have been applied to assess and detect compensation during
stroke UE rehabilitation.

Methods: We conducted a wide database search. All studies were independently screened by 2 reviewers (XW and YF), with
a third reviewer (BY) involved in resolving discrepancies. The final included studies were rated according to their level of clinical
evidence based on their correlation with clinical scales (with the same tasks or the same evaluation criteria). One reviewer (XW)
extracted data on publication, demographic information, compensation types, sensors used for compensation assessment,
compensation measurements, and statistical or artificial intelligence methods. Accuracy was checked by another reviewer (YF).
Four research questions were presented. For each question, the data were synthesized and tabulated, and a descriptive summary
of the findings was provided. The data were synthesized and tabulated based on each research question.

Results: A total of 72 studies were included in this review. In all, 2 types of compensation were identified: disuse of the affected
upper limb and awkward use of the affected upper limb to adjust for limited strength, mobility, and motor control. Various models
and quantitative measurements have been proposed to characterize compensation. Body-worn technology (25/72, 35% studies)
was the most used sensor technology to assess compensation, followed by marker-based motion capture system (24/72, 33%
studies) and marker-free vision sensor technology (16/72, 22% studies). Most studies (56/72, 78% studies) used statistical methods
for compensation assessment, whereas heterogeneous machine learning algorithms (15/72, 21% studies) were also applied for
automatic detection of compensatory movements and postures.

Conclusions: This systematic review provides insights for future research on technology-based compensation assessment and
detection in stroke UE rehabilitation. Technology-based compensation assessment and detection have the capacity to augment
rehabilitation independent of the constant care of therapists. The drawbacks of each sensor in compensation assessment and
detection are discussed, and future research could focus on methods to overcome these disadvantages. It is advised that open data
together with multilabel classification algorithms or deep learning algorithms could benefit from automatic real time compensation
detection. It is also recommended that technology-based compensation predictions be explored.
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Introduction

Background
Stroke occurs almost every 2 seconds worldwide, affecting 13.7
million people each year [1]. Approximately 80% of stroke
survivors are affected by upper extremity (UE) motor
impairment, and 50% have UE motor dysfunction even 4 years
after stroke [2]. Poststroke UE rehabilitation plays an important
role in UE motor function recovery. Current research has shown
that 2 competing mechanisms may occur simultaneously during
the UE function recovery process: motor recovery and
compensation. Motor recovery is defined as the “reappearance
of elemental motor patterns presents prior to central nervous
system injury,” whereas compensation is defined as “the
appearance of new motor patterns resulting from the adaptation
of remaining motor elements or substitution” [3]. Common
compensatory strategies include excessive trunk displacement
during reaching movement [3]. Recent research argues that the
frequent use of compensation may lead to long-term chronic
pain in overused joints, limited function in the impaired muscles,
suboptimal motor recovery in the impaired arm, and an abnormal
UE movement pattern in activities of daily living [3-5].
Therefore, timely detection and appropriate correction of
compensation are important The mechanism underlying UE
rehabilitation is neuroplasticity, which refers to the rewiring or
reorganization of the brain by creating new connections between
brain cells after a stroke [6]. More specifically, to realize brain
plasticity, extensive, intensive, task-oriented UE movement
repetitions must be performed [7]. Traditionally, UE
rehabilitation is completed in a hospital under the supervision
of a therapist, in which case some compensatory behaviors can
be avoided or corrected under the guidance of the therapist [8].
However, not all compensation can be observed in a timely
manner by therapists [9]. Moreover, the UE rehabilitation
protocol is labor-intensive for therapists, and there are not
enough skilled therapists to support such huge demands [10].
Technology-based therapies, such as robot-assisted therapy and
virtual reality (VR) therapy [11], have been used to facilitate
UE rehabilitation after stroke in recent years. However, an
important prerequisite for taking full advantage of these
technology-based therapies is that stroke survivors can correctly
perform the therapy exercises as intended, which means that
compensation should be automatically detected and corrected
in these therapy systems [12]. Technologies could provide more
fine-grained automatic compensation monitoring in
less-supervised UE therapies so that stroke survivors could
continue with the required exercises independent of therapists.
Despite the recent increase in attention given to technology for
automatic compensation assessment and detection, no systematic
reviews have been conducted in this area.

Objectives
The main goal of this review was to explore how
technology-based methods were used to assess and detect
compensation without the constant care of therapists.

Our research questions (RQs) are as follows:

1. What models are used to assess and detect compensation
in poststroke UE activities?

2. What measurements are used to evaluate compensatory
movements?

3. What types of sensor technology are used for compensation
assessment and detection?

4. Which statistical or artificial intelligence (AI) methods are
used for compensation assessment and detection?

Methods

The systematic review was performed according to PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines (Multimedia Appendix 1).

Information Sources and Search Strategy
A comprehensive search strategy was developed and executed
by an information specialist (JB). The search strategy was
originally developed in MEDLINE ALL (Ovid), in consultation
with the research team. The search results were then translated
into other databases and study registries. The following
electronic databases were searched: MEDLINE (R) ALL (Ovid),
Embase and Embase Classic (Ovid), Cochrane Central Register
of Controlled Trials (CENTRAL, Ovid), Health Technology
Assessment (Ovid), SPORTDiscus (EBSCO), Scopus,
Compendex (Engineering Village), INSPEC (Engineering
Village), IEEE Xplore, and ACM Digital Library. Dissertations
and Theses Global (ProQuest) were searched to identify
dissertations or theses. The study registries searched were
ClinicalTrials.gov and World Health Organization International
Clinical Trials Registry Platform.

Search strategies included the use of text words and subject
headings (eg, Medical Subject Headings and Emtree) related to
five concepts: (1) stroke, (2) rehabilitation, (3) UE, (4)
compensation, and (5) robotics or technology. The search was
limited to English. Cochrane search filters were applied to
exclude animal-only studies when possible [13]. All databases
and registers were searched from the inception of resources.
Searches were conducted on May 26, 2020. Searches were
updated by rerunning all search strategies on July 23, 2021, and
exporting new results. The full search strategies for each
database and registry are provided in Multimedia Appendix 2.

Study Selection
All search results were first imported into EndNote software,
where duplicates were removed. The remaining results were
imported into Covidence. A total of 2 screening steps were
conducted: title and abstract screening and full-text screening.
In all, 2 researchers (XW and YF) independently conducted
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title and abstract screening as well as full-text screening using
the same inclusion and exclusion criteria. Disagreements
between the 2 researchers were discussed and resolved between

the 2 researchers. A third researcher (BY) was involved when
an agreement could not be reached.

The inclusion and exclusion criteria used for the screening
process are presented in Textbox 1.

Textbox 1. The inclusion and exclusion criteria used for the screening process.

Inclusion criteria

• Stroke survivors or healthy participants enrolled in the intervention.

• The study involves upper extremity rehabilitation.

• Compensation was assessed using technology (ie, information and communication technologies, sensors, cameras, wearables, or artificial
intelligence).

• The study involves compensation assessment or detection.

• The study involves compensation measurements: kinematic parameters (speed, angle, angular speed, etc), electromyogram, or compensatory
posture or pattern classification.

Exclusion criteria

• Studies involving nonhuman participants.

• Studies about stroke neural recovery, stroke prevalence, and pathological analysis.

• Studies that do not use technology-based measurement methods.

• Studies on activity logs, functional electrical stimulation, gravity compensation in robotics, and effects of virtual therapy.

• Studies are not about upper extremity rehabilitation.

• Qualitative, usability, or nonacademic studies.

• Review studies such as systematic reviews.

• Case reports and letters.

• Studies are not written in English.

After the screening stage, studies were rated for their level of
evidence based on the Centre for Evidence-Based Medicine
(CEBM) [14] criteria. According to the CEBM, 4 clinical scales
were used as reference standards, which included the
compensation assessment scale—the Reaching Performance
Scale [15], Motor Activity Log [16], Actual Amount of Use
Test [17], and Chedoke-McMaster Stroke Assessment [18]. We
used CEBM criterion 2b as a reference. The study would be
regarded as having good reference standards if it had the same
training task from any of the aforementioned 4 scales or if it
had the same or partially the same evaluation criteria as any of
the 4 scales.

Results

Overview
A total of 1584 records were retrieved from the search. After
removing duplicates, 69.51% (1101/1584) of records were
screened at the title and abstract stage. In the first stage, 84.29%
(928/1584) of the records were removed. The remaining 15.71%
(173/1584) articles were subjected to full-text screening. A total
of 76 studies were included after both screening stages. Figure
1 shows the PRISMA [19] flow diagram. After studies were
rated based on the CEBM criteria, 72 (range from 1b to 2b in
CEBM criteria) of the 76 (95%) studies were included in the
final analysis; Table 1 shows the relationships between the
included studies and the reference standards. In all, 67 papers
were published after 2010, 69% (50/72) of which were published
between 2015 and 2021.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram illustrating the screening process for papers
included in this study.

Table 1. Correlation with reference standards.

ExampleCorrelated referencesReference standard

[23]; task: reaching tasks; evaluation criteria: trunk displacement[20-58]Reaching Performance Scale

[69]; task: a set of upper extremity exercises (Chedoke-McMaster Stroke
Assessment); evaluation criteria: trunk displacement and shoulder move-
ments (Reaching Performance Scale)

[33,59-80]Chedoke-McMaster Stroke Assessment and
Reaching Performance Scale

[82]; task: activities of daily living; evaluation criteria: arm use[81-89]Motor Activity Log or Actual Amount of
Use Test

Study Characteristics
Of the 72 studies, 38 (53%) recruited only stroke survivors, 9
(13%) included only healthy participants, and the remaining
studies (n=25, 34%) recruited both (Table 2). Both men and
women were included in most (48/72, 67%) studies. The age

range of stroke survivors was 21 to 92 years and that of healthy
participants was 18 to 85 years. For stroke survivors, the stage
of recovery included subacute (between 1 and 6 months after
stroke; 4 studies), chronic (>6 months after stroke; 36 studies),
or both (18 studies). The sample size varied from 1 to 119 (Table
3).
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Table 2. Characteristics of the studies (N=72).

References

Participants

[21,23,25,26,28-30,32-34,38,40,44-47,51,52,54,56,58,60,62,65,67,69,71,73,74,76,77,79,80,82,85,86,90]Stroke survivors

[20,31,39,42,43,55,59,61,78]Healthy participants

[22,24,27,35-37,41,48-50,53,57,63,64,66,68,70,72,75,81,83,84,87-89]Stroke survivors and healthy participants

Stage of recovery

[35,73,82,89]Subacute

[21,23,26-30,32-34,38,40,41,44,46,47,51,52,56,58,60,62,65,68,69,71,74,75,79,80,83-85,87,88,90]Chronic

[22,24,25,36,37,45,50,53,54,57,63,64,66,67,72,77,86,91]Subacute and chronic

Table 3. The sample size distribution (N=72).

Studies, n (%)Sample size

46 (64)0-18

13 (18)19-36

9 (13)37-54

2 (3)55-72

0 (0)73-90

1 (1)91-108

1 (1)109-126

RQ1: What Models Have Been Established to Assess
and Detect Compensation?

Types of Compensation

Overview

Two types of compensation were identified according to the
study by Miller et al [81]: (1) disuse of the affected UE, and (2)

use of the affected UE in an awkward manner to adjust for
limited strength, mobility, and motor control. We refer to the
second type of compensation as awkward use of the affected
UE for the remainder of this paper. Table 4 presents the
compensation types, models, and measurements.
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Table 4. Compensation type, model, and measurements.

ReferencesCompensation type, model, and measurements

Disuse of the affected upper limb

Arm use

[82]The ratio between the duration of movement in the least and less affected arm

[83,85]Mean squared sum of the acceleration over a 1-minute epoch of the arm

[84]Torques due to the measured tangential forces on the split-steering wheel

Arm nonuse

[86]The difference of the Euclidean distance between the trunk and hand to the target

[87]Movement time, peak velocity, total displacement, and movement smoothness

[88]Root mean square of the rotation angle of the steering wheel

[89]Total movement duration of each limb and the ratio between the movement duration in the
paretic and nonparetic limb

[81]Amplitude, time, and frequency data from inertial sensors on upper bodyInterlimb co-
ordination

Awkward use of the affected UEa

Trunk compensation

Trunk movements in the sagittal plane: trunk lean forward, trunk displacement, trunk flexion, trunk anteriorization, and
trunk lean backward

[20,22,23,25-27,39,47,60,63,68,90]Trunk angular displacement

[24,30,40,41,51,52,58,66]Trunk linear displacement

[37,38,62]Trunk contribution slope

[28,64]Acceleration of trunk motion

[39,77]sEMGb signal

[27]Face orientation

[43-45,48-50,53,54,61,74,77,91]Measurements for AIc-based compensatory posture classification

[56,65,69]N/Ad

Trunk movements in the transverse plane: trunk rotation and trunk twist

[22,25,26,39,47,68,90]Trunk angular displacement

[27,28,64]Acceleration of trunk motion

[34,40]Trunk linear displacement

[39]sEMG signal

[45,48-50,53,54,61,74,77,91]Measurements for AI-based compensatory posture classification

[65,69]N/A

Trunk movements in the coronal plane: trunk leans from side to side, trunk contralateral and ipsilateral flexion, trunk
lateral bending, and trunk lateral shift

[21,22,47,60,68,90]Trunk angular displacement

[34,41]Trunk linear displacement

[61]Measurements for AI-based compensatory posture classification

Unspecified

[46]Trunk movement time, trunk distance, trunk peak velocity, and maximal angle
of trunk flexion

[42,59]Position and angle

Shoulder compensation

Shoulder elevation
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ReferencesCompensation type, model, and measurements

[26,39,57,66]Elevation angle of scapula, acromion, or acromio-clavicular joint

[27,28]Acceleration of shoulder joint motion

[37]Shoulder vertical translated distance

[39]sEMG signal

[45,48-50,53,54,74,77,91]Measurements for AI-based compensatory posture classification

[69]N/A

Shoulder abduction

[27,28,64]Acceleration of shoulder joint motion

[70]Shoulder abduction angle

[71]fMRIe

Shoulder girdle compensatory movements

[29,64]Acceleration of shoulder joint motion

[30]sEMG signal

[31]Shoulder position

[72]The coefficient of the elbow joint extension to the shoulder joint flexion ratio

[26,32]Shoulder forward liner displacementShoulder for-
ward

[22,33,73]Shoulder flexion angleShoulder over-
flexion

[59]Shoulder positionUnspecified

Elbow compensation: insufficient elbow extension

[66,74,90]Elbow extension angle

[27,28]Acceleration of elbow joint motion

[65]N/A

Finger compensation

[34]Finger extension angleIndividual fin-
ger compensa-
tion

Multiple fingers adaptive compensation

[75]The covariance of individual finger impulses across multiple pulses

[76]Pressure force of fingers

Joint coordination

[36]Scapula, shoulder, elbow and wrist joint angles, movement time, goal-equivalent variance, non-
goal-equivalent variance

[35]Joint angles

[33]sEMG signalMuscle syn-
ergy

[69]Joint positionSlouching

aUE: upper extremity.
bsEMG: surface electromyogram.
cAI: artificial intelligence.
dN/A: not applicable.
efMRI: functional magnetic resonance imaging.
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Disuse of the Affected UE

A total of 9 studies assessed this type of compensation, and 3
models were discussed: the arm use model [82-85], arm nonuse
model [86-89] and interlimb coordination model [81]. The arm
use model measured the actual use of the impaired arm either
in activities of daily living [82,83,85] or in bilateral and
unilateral steering tasks [84]. The arm nonuse model was used
to quantify the difference between the actual use of the impaired
arm and its performance measured using standard clinical scales
in reaching tasks [86,87], bilateral and unilateral steering tasks
[88], and occupational therapy [89]. The interlimb coordination
model was used to detect the reduction in interlimb coordination
in stroke survivors compared with healthy participants in
unimanual and bimanual activities of daily living [81]. In 4
studies [84,87-89], the tasks were completed using robot-assisted
devices.

Awkward Use of the Affected UE

Most (63/72, 88%) studies assessed this type of compensation.
The main models were (1) trunk compensation, (2) shoulder
compensation, (3) elbow compensation, (4) finger compensation,
and (5) others.

Trunk Compensation Model
This model (46/63, 73% studies) measures the awkward
movements of the trunk for the affected UE [15]. Trunk
compensatory movements can occur in 3 anatomical planes
(sagittal, transverse, and coronal) of the human body. The
sagittal plane (41/46, 89% studies) was the most common, which
was described as trunk lean forward, trunk lean backward, trunk
displacement, trunk flexion, and trunk anteriorization. The
transverse plane (24/46, 52% studies) included trunk rotation
and trunk twist. A total of 9 (20%) studies discussed the coronal
plane, including trunk leans from side to side, trunk contralateral
and ipsilateral flexion, trunk lateral bending, and trunk lateral
shift (Table 3). The most common task (35/46, 76%) was the
reaching task, followed by shoulder, elbow, and wrist exercises
(4/46, 9%) [20,59-61], daily life activities [62-65], drinking
tasks [66], simulated therapy activities [67], instrumented trunk
impairment scale (version 2) tasks [21], Fugl–Meyer Assessment
(FMA) items [22], occupational therapy tasks [68], and the
Graded Repetitive Arm Supplementary Program (GRASP) [69],
which is a set of UE exercises completed without the presence
of a therapist. In 13 (28%) studies, tasks were completed using
a robot-assisted device. In 4 (9%) studies, the tasks were
conducted using VR [23-25] and mixed reality (MR) training
systems [26].

Shoulder Compensation Model
This model (29/63, 46% studies) measures awkward movements
of the shoulder of the affected UE [15], involving complex
movements of the shoulder girdle and shoulder joint. The most
observed shoulder compensation was shoulder elevation (17/29,
59% studies), followed by shoulder abduction [27,28,64,70,71],
shoulder girdle compensatory movement [29-31,64,72], shoulder
forward (protraction) [26,32], and shoulder overflexion
[22,33,73]. The most commonly used task was reaching task
(18/29, 62% studies). Other tasks involved hand-to-mouth tasks
[33,70,73], drinking tasks [66,72], elbow flexion-extension task

[59,71], daily life activities [64,65], counterclockwise cyclic
motions [31], FMA items [22], and GRASP [69]. In all, 12
studies were conducted using a robot-assisted device and 1 with
an MR training system [26].

Elbow Compensation Model
This model measures awkward elbow movements of the affected
UE [15]. A total of 6 studies found that stroke survivors had
insufficient elbow extension during reaching tasks [27,28,74,90],
drinking tasks [66], or daily life activities [65].

Finger Compensation Model
This model (3/63, 5% studies) measures the compensation
among finger joints [34,75,76]. A study assessed the
compensation among the joints in a finger in reaching tasks
[34], whereas 2 other studies assessed compensation among
multiple fingers in repetitive force-pulse tasks [75] and index
finger movements [76].

Other Types of Compensation Models
Other types of compensation models included joint coordination
[35,36], slouching [69], and muscle synergies [33], which were
measured in reaching tasks, GRASP, and hand-to-mouth tasks,
respectively.

RQ2: What Measurements Are Used to Evaluate
Compensatory Movements?

Disuse of the Affected UE
No standard measurement has been applied across studies for
this type of compensation. For the arm use model, Ballester et
al [83] and Hung et al [85] computed the mean squared sum of
the acceleration over 1 minute. Thrane et al [82] calculated the
arm movement ratio, that is, the ratio of arm use duration
between the impaired arm and less impaired arm. Johnson et al
[84] quantified the arm use by comparing the torque generated
by the tangential forces of the 2 arms on the steering wheel.

For the arm nonuse model, Bakhti et al [86] computed proximal
arm nonuse, which was the difference between the Euclidean
distance between the trunk and hand to the target during the
reaching movement in both spontaneous and maximal proximal
arm use conditions. Johnson et al [87] used 4 kinematic metrics,
including movement time, peak velocity, total displacement,
and movement smoothness, to predict learned nonuse (LNU).
Johnson et al [88] compared the root mean square of the rotation
angle of the wheel in steering tasks in 3 different steering modes
(unilateral nondominant, unilateral dominant, and bilateral) to
quantify LNU. Barth et al [89] computed the total movement
duration of each limb and the activity ratio, which was the
movement duration of the paretic limb to the nonparetic limb
to assess LNU.

Miller et al [81] created an array of numerical values, including
amplitude, time, and frequency data from acceleration signals
on the sternum, right wrist, left wrist, right upper limb, and left
upper limb to characterize the interlimb coordination model.

Awkward Use of the Affected UE
The parameters for measuring trunk compensation in the sagittal
plane included trunk angular displacement (12/41, 29% studies),

J Med Internet Res 2022 | vol. 24 | iss. 6 | e34307 | p. 8https://www.jmir.org/2022/6/e34307
(page number not for citation purposes)

Wang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


trunk linear displacement (8/41, 20% studies), trunk contribution
slope [37,38,62], acceleration of trunk motion [28,64], surface
electromyogram (sEMG) signals [39,77], and face orientation
[67]. The parameters used to measure trunk compensation in
the transverse plane included trunk angular displacement (7/24,
29% studies), acceleration of trunk motion [27,28,64], trunk
linear displacement [34,40], and sEMG signal [39]. A total of
2 parameters, trunk angular displacement (6/9, 67% studies)
and trunk linear displacement [34,41] were measured to assess
trunk compensation in the coronal plane.

The shoulder elevation compensation measurements included
the elevation angle of the scapula, acromion, or
acromioclavicular joint (4/17, 24% studies); acceleration of
shoulder joint motion [27,28]; shoulder vertical translated
distance [37]; and sEMG signal [39]. Shoulder abduction
compensation was assessed by acceleration of shoulder joint
motion [27,28,64], shoulder abduction angle [70], and functional
magnetic resonance imaging (fMRI) [71]. Shoulder girdle
compensatory movement measurements included acceleration
of shoulder joint motion [29,64], sEMG signals [30], shoulder
position [31], and the coefficient of the elbow joint extension
to the shoulder joint flexion ratio [72]. A total of 3 studies
[22,33,73] used the shoulder flexion angle to assess the shoulder
overflexion compensation. The parameter for measuring
shoulder forward compensation was shoulder forward liner
displacement [26,32].

The elbow extension angle [66,74,90] and acceleration of elbow
joint motion [27,28] were used to measure elbow compensation.

In all, 3 kinds of measurements were used to assess finger
compensation. Fluet et al [34] measured the finger extension
angle to assess the individual finger compensation. Kim et al
[75] measured the covariance of individual finger impulses
across multiple pulses, and Furudate et al [76] measured the
pressure force of fingers to assess the compensation among
multiple fingers.

As for other compensation models, Reisman and Scholz [36]
measured multiple parameters including joint angles (ie, scapula,
shoulder, elbow, and wrist), movement time, goal-equivalent
variance, and nongoal-equivalent variance to evaluate joint
coordination; Nibras et al [35] measured only joint angles to
assess joint coordination. Lin et al [69] captured joint positions
to assess slouching. Belfatto et al [33] measured sEMG signals
to assess the muscle synergy.

RQ3: What Types of Sensor Technology Are Used for
Compensation Assessment and Detection?

Overview
A total of 6 types of sensors were identified as shown in Tables
5 and 6.

Table 5. Studies classified by sensor type (N=72).

Studies, n (%)Sensor type

25 (35)Body-worn sensor technology

24 (33)Marker-based motion capture system

16 (22)Marker-free vision sensor

10 (14)Physiological signal sensing technology

8 (11)Sensors embedded in rehabilitation training system

5 (7)Ambient sensor
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Table 6. Studies classified by sensor type (N=72).

ReferencesApplication settingsSensor measurementSensor type

Home

setting

Technology-based therapy

setting

Body-worn sensor

[27,28,60,64,65,82,83,85,89][60,64,65,83][89]Acceleration of up-
per limb segments
and trunk

Accelerometer

[21,22,25,31,42-44,59,68,70,73,81,90][25,43,44,81][25,31,42,59,70]Original IMU sig-
nals or Euler angles

IMUa

of upper limb seg-
ments and trunk

[78,79][78,79]N/AbElectrical resistance
of sensors printed on
the stretched parts

Strain sensors

[34]N/AN/AFinger anglesCyberGlove

Marker-based motion capture system

[24,26,31-33,36,38-40,42,43,45-47,57-59,62,63,66,72,87]N/A[24,26,31-33,38,39,42,45-47,59,62,63,87]3D coordinates of
the markers placed
on the upper body

Optical motion
capture system

[34]N/AN/A3D coordinates of
the markers placed
on the upper body

Electromagnetic
motion capture
system

[86]N/AN/A3D coordinates of
the markers placed
on the upper body

Ultrasound 3D
motion capture
system

Marker-free vision sensor

[20,23,41,48-52,61,69,86]N/A[23,41,48-52]Upper body joint
positions in 3D

Microsoft
Kinect depth
sensor space (x-y-z) coordi-

nates

[27,28,67,69,74,84][67][74,84]VideoSimple camera

Physiological signal sensing technology

[29,30,33,39,53,54,77,84]N/A[29,30,33,39,54,84]sEMGd signals of
upper limb and trunk
muscles

EMGc

[33,80]N/A[33]EEG signalsEEGe

[72]N/AN/AfMRI imagesfMRIf

[31,35,42,59,75,76,84,88]N/A[31,35,42,59,75,76,84,88]Force exerted by up-
per limbs, finger

Force sensor or
piezoelectric
sensor or others

Sensors em-
bedded in
the training
system

force, upper limb
joint position, or ori-
entation

Ambient sensor

[45,54,91][45,54,91][45,54,91]Force distributionPressure distri-
bution mattress

[55,56][55]N/AUpper limb and
trunk position

Position sensor

aIMU: inertial measurement unit.
bN/A: not applicable.
cEMG: electromyogram.
dsEMG: surface electromyogram.
eEEG: electroencephalogram.
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ffMRI: functional magnetic resonance imaging.

Body-Worn Sensor Technology
Body-worn sensors (25/72, 35% studies) were the most
commonly used technology to detect compensatory movements,
including accelerometers, inertial measurement units (IMUs),
strain sensors, and CyberGlove. In all, 9 studies used
accelerometers, including uniaxial [82] and triaxial
[27,28,60,64,65,83,85,89]. Accelerometers were attached to
different parts of the body. Some were worn on the wrists of
both arms [82,83,89] or only on the wrist of the affected arm
[85] to measure arm movement quantity, such as movement
duration and acceleration magnitude, to evaluate arm use. Some
were placed on the trunk (chest, middle back, or T12 vertebrae)
[27,28,60,64], shoulder [27,28,64], elbow [27,28], and wrist
[65] to measure time and movement variables, such as
accelerations and joint angles of UE movement to detect trunk,
shoulder, and elbow compensation. Among these studies,
Antonio et al [27] and Carla et al [28] compared quantitative
detection results using accelerometers with therapist-based
visual analysis of video records. The results showed that the
compensatory movements detected by the accelerometers,
including shoulder abduction and elevation, insufficient elbow
extension, and trunk forward displacement and rotation, were
consistent with the therapists’ observations.

In all, 13 used IMUs. Each IMU typically consists of 1 or 2
triaxial accelerometers, a triaxial gyroscope, and a triaxial
magnetometer [21,22,25,31,42,59,68,70,73,81]. The
magnetometer was not included in some cases [43,44,90].
Accordingly, each IMU yielded 3D measurements of
acceleration, angular velocity, and magnetic field vector (when
using a magnetometer) in its intrinsic coordinate system [59].
In the reviewed studies, 1 to 9 IMUs were placed on the upper
body parts, including the sternum [21,25,43,44,68,81,90], spine
[21,22], pelvis [22], scapula [70,90], upper arms
[22,25,31,42-44,59,70,73,81,90], forearms
[22,25,43,44,59,70,90], wrists [73,81], and hands [22,70,90].
The original IMU signals [43,44,81] representing the movements
of these body segments or the orientation in the form of Euler
angles [21,22,25,31,42,59,68,70,73,90], of these body segments
were output for compensation monitoring. It has been reported
that IMUs can be used to detect trunk [21,22,25,42-44,59,68,90],
shoulder [22,31,59,70,73], and elbow [22] compensation, as
well as the interlimb coordination [81]. Furthermore,
Ranganathan et al [43] proved that using IMUs could effectively
detect compensatory trunk movements (approximately 90%
accuracy) when compared with using an 8-camera motion
capture system (Motion Analysis Corporation) as ground truth.

Moreover, 2 studies used changes in the electrical resistance of
strain sensors printed on a garment [78,79] to identify different
compensatory postures during UE movements. A study used
CyberGlove to assess finger compensation by measuring the
angles of finger joints [34]. Overall, 4 studies were conducted
using robot-assisted therapies [42,59,70,87], 1 [25] using VR
therapy, and 10 were conducted in homes
[25,43,44,60,64,65,78,79,81,83].

Marker-Based Motion Capture System
The second most commonly used technology was the
marker-based motion capture system (24/72, 33% studies). A
total of 3 types of marker-based motion capture systems were
used: an optical motion capture system (22/24, 92% studies),
electromagnetic motion capture system [34], and ultrasound 3D
motion capture system [86]. For this sensor, markers were
attached to the upper body landmarks, which traditionally
included the sternum, spinal process (C7 and T4), acromion
processes, middle part of the humeri, lateral epicondyle, styloid
process of the ulna, and bilateral thumbnails [62,63,87]. The
participants were asked to perform the tasks while the positions
of the markers were captured. The position and orientation of
the trunk, shoulder, and elbow were then calculated according
to the joint coordinate system method and used to characterize
different compensation models.

For a long time, marker-based motion capture systems have
been used as gold standard motion capture devices for clinical
motion analysis [86]. Similarly, in the reviewed studies,
marker-based motion capture systems were proven to be able
to effectively identify compensation. In all, 5 studies have been
used as the ground truth for the measurement of the effectiveness
of other sensors in compensation detection [42,43,45,86,87].
Several interesting findings were reported using marker-based
motion capture systems: (1) pre- and posttests showed that both
robotic [32,38,63] and MR therapies [26] elicited benefits on
reducing trunk compensatory movements, and stroke survivors
showed less trunk compensatory movements during VR reaching
[24]. However, Belfatto et al [33] argued that robotic therapy
promoted the adoption of compensatory movements when stroke
survivors performed training tasks; (2) therapist-based therapy
[62] or a combination of robotic therapy and constraint-induced
therapy [46] demonstrated more significant improvements in
reducing trunk compensatory movements compared with
robot-assisted therapy; (3) trunk displacement and shoulder
elevation compensatory movements could discriminate between
mild and moderate stroke paresis [66], whereas shoulder girdle
compensatory movement could differentiate between mild or
moderate and severe or pronounced stroke impairments [72].

Among all the studies, 13 [31-33,38,39,42,45-47,59,62,63,87]
monitored compensation with robot-assisted upper limb devices,
one [24] was conducted in VR therapy and one [26] was in MR
therapy.

Marker-Free Vision Sensor
A total of 16 studies used marker-free vision sensors, including
Microsoft Kinect depth sensors (versions 1 and 2) and a simple
simple camera, as motion capture tools. Most (11/16, 69%) of
these studies used Kinect, which is usually placed approximately
2.0 meters in front of the user to capture the 3D space (x-y-z)
coordinates of 20 (version 1) or 25 (version 2) skeleton joint
positions in the user’s body at 30 frames per second. In the
reviewed studies, the locations and orientations of the upper
body parts (ie, hip, spine, shoulder, elbow, wrist, and hand)
[48-50,61,69,86] or spine [20,23,41,51,52] were recorded, and
2 studies have verified the effectiveness of this sensor
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technology for monitoring compensation. Bakhti et al [86]
proved that Kinect can be used to accurately assess proximal
arm nonuse when compared with an ultrasound 3D motion
capture system (CMS20s, Zebris). The agreement between
Kinect and CMS20s was measured using intraclass correlation

coefficients (0.96), linear regression (r2=0.92), and Bland and
Altman plots (Kinect: −4.25, +6.76 to –6.76); CMS20s: −4.71,
+7.88 to –7.88). Lin et al [69] found substantial agreement of
detected compensation, such as shoulder elevation and hip
extension, between annotated videos and Kinect (Cohen κ
0.60-0.80) and almost perfect agreement for trunk rotation and
flexion (Cohen κ 0.80-1).

Overall, 6 studies used RGB cameras and 2 (33%) of them
[67,74] used a camera to collect motion images to extract
kinematic data through third-party data extraction algorithms
for quantitative compensation assessment. The other 4 (67%)
studies collected motion videos for clinicians’visual evaluation
of compensation.

In all, 8 studies [41,48-52,74,84] were conducted using
robot-assisted upper limb devices, 2 studies [23,69] were
conducted using VR therapy, and 1 study [67] was conducted
in a home using a single low-cost camera.

Physiological Signal Sensing Technology
Physiological signal sensing technologies include
electromyogram (8/72, 11% studies), electroencephalogram
(EEG) [33,80], and fMRI [71] systems. According to the
reviewed studies, sEMG signals of upper limb muscles
(including, but not limited to, biceps, triceps, upper trapezius,
pectoralis major, brachioradialis, anterior, middle, and posterior
deltoids) and trunk muscles (left or right rectus abdominis, left
or right obliquus externus abdominis, left or right thoracic
erector spinae, left or right lumbar erector spinae, and
descending part of the trapezius) not only helped to discriminate
true recovery and compensation [29,30,33,84] but also could
be used as features for automatic compensation detection
[39,53,77]. Chen et al [77] confirmed that using a generative
adversarial network with sEMG signals as features could achieve
excellent detection performance (accuracy=94.58%, +1.15% to
–1.15%) of trunk compensatory movements.

A study used fMRI [71] to study the cortical activation pattern
of compensatory movements and demonstrated that
compensatory movements require a greater recruitment of
cortical neurons. A total of 2 studies [33,80] showed that brain
scalp EEG signals could help researchers gain more insight into
the relationship between motor compensation and underlying
brain activities. Among all studies, electromyogram
[29,30,33,39,54,84] and EEG [33] systems were used along
with robot-assisted devices for compensation assessment.

Sensors Embedded in the Rehabilitation Training System
In all, 8 studies directly selected sensors embedded in the
rehabilitation training system as compensation evaluation tools.
Nibras et al [35] used the measurement information in an
exoskeleton to distinguish between recovery and compensation
in stroke survivors. They found 2 compensatory patterns in
stroke survivors: atypical decoupling of the shoulder elevation
and forearm joints and atypical coupling of the shoulder
horizontal rotation and elbow joints, by analyzing 4
ArmeoSpring angles when stroke survivors performed reaching
movements with the ArmeoSpring exoskeleton. In contrast, a
simpler and less complex UE rehabilitation robot, such as an
end-effector robot, may not have the capacity to provide detailed
UE measurement information as the exoskeleton. Therefore,
additional sensors, such as inertial sensors [31,42,59], are
required with the sensors in the end-effector robot to satisfy
compensation assessment needs. In addition, Johnson et al
[84,88] used the force sensors of a UE rehabilitation system, a
driver simulation system, to quantify impaired arm activity [84]
and LNU [88]. Kim et al [75] and Furudate et al [76] used force
sensors in hand rehabilitation systems to evaluate the
compensation among individual fingers.

Ambient Sensors
A total of 5 studies used ambient sensors, including a pressure
distribution mattress (Body Pressure Measurement System,
Model 5330, Tekscan, Inc) [45,54,91] and position measurement
sensors [55,56]. A pressure distribution mattress was used to
measure a person’s body pressure distribution in a seated
position for the automatic detection of compensatory postures
[45,54,91]. Cai et al [45] verified the effectiveness of using
pressure distribution data together with machine learning (ML)
algorithms to detect compensatory patterns using a 3D motion
capture system (VICON, Oxford Metrics) as the ground truth.
When using a pressure mattress or VICON, the average F1 score
(an evaluator of the ML algorithm performance) was >0.95.

The position measurement sensors used were either a force
sensor placed anterior to the back of the chair [56] or a
contactless first-reflection ultrasonic echolocation sensor placed
on the edge of a table [55] to monitor the position of the trunk.
As only the trunk position was monitored, the researchers only
realized a rough detection of compensatory trunk flexion
movement. In addition, 3 studies [45,54,91] used robot-assisted
upper limb devices, and 4 studies have proposed that these
systems could be used in a home environment [45,54,55,91].

RQ4: Which Statistical or AI Methods Have Been Used
for Compensation Assessment and Detection?

Overview
Overall, 56 studies used statistical methods and 15 adopted
AI-based methods as shown in Table 7 and Table 8, respectively.
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Table 7. Studies classified by statistical methods (N=56).

ReferencesData analysis scenario and statistical method

Differences among groups

[24,36-38,41,46,75,84,88]ANOVA

[20,24,27,37,40,89]Mean and SD

[36,40,66,85]Mann-Whitney U test

[40,66]Wilcoxon test

[88], 1-tailed; [66], 2-tailed; [73], 2-tailedPaired-sample t test

[35,36,66]Principal components analysis

[40,73,76]Regression analysis

[24,37]Tukey honestly significant difference post hoc analysis

[84]Tukey-Kramer tests

[75]Scheffé test

[75]Log-modulus transformation methods

[40]Nonparametric Friedman test

[66]Independent-samples t test

[37]Kolmogorov-Smirnov normality test

[90]Spearman rank correlations

[85]Pearson correlations

[85]Bonferroni corrections

[85]Chi-square test

[22]Graph learning theory

Differences before and after the intervention

[32,33,52,72]Wilcoxon signed-rank test

[58,62,63]Mean and SD

[29,34,56]ANOVA

[63,72]Spearman rank correlation coefficient

[29,56]Tukey HSDa test

[52,62]Analysis of covariance

[52], 1-tailed; [58], 2-tailed2-sample and paired t tests

[33]Pearson correlation coefficient

[58]Kolmogorov-Smirnov test

[72]Mann-Whitney U test

Real time changes

[26,70,80]Canonical correlation analysis

[21,23,28,31,42,47,51,57,59,60,64,68,69,82,83,86]Mean and SD

[25]ANOVA

[65,81,82,86,87]Spearman correlation test

[65,82]Logistic regression

[87], 2-tailedPaired t test

Associations of physiological signals with compensation parameters

[71]Spearman rank correlation coefficient test

[39]Pearson correlation test

[30]ANOVA
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ReferencesData analysis scenario and statistical method

[30]Post hoc contrasts

aHSD: honestly significant difference.
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Table 8. Studies classified by machine learning (ML) algorithms (N=15).

ReferencesML algorithm and accuracy

Linear SVMa

[61]Health: trunk compensation in 3 directions (AUC)b=99.15%

[77]Stroke (F1 score): NCc=0.88; SEd=0.86; TRe=0.80; LFf=0.81

[48]Healthy group (AUC): NC=0.86; SE=0.68; TR=0.74; LF=0.98 and stroke group (AUC): NC=0.63;
SE=0.27; TR=0.82; LF=0.92

[49]Healthy participant (F1 score): NC=0.87; SE=0.15; TR=0.5; LF=0.74 and stroke survivor (F1

score): NC=0.94; SE=0; TR=0; LF=0

[53]Healthy group (AUC): NC=0.98; SE=1.00; TR=0.99; LF=0.97 and stroke group (AUC): NC=1.00;
SE=0.98; TR=0.85; LF=0.90

[54]Stroke (F1 score): NC=0.990; SE=0.975; TR=0.983; LF=0.975

[45,91]Stroke: offline (F1 score): NC=0.984; SE=1.000; TR=0.995; LF=0.963 and on the web: participant
1 (F1 score): NC=0.978; SE=1.000; TR=0.929; LF=1.000; participant 2 (F1 score): NC=0.994;
SE=1.000; TR=1.000; LF=0.984

[55]Stroke: trunk flexion (AUC)=78.2%

k-NNg

[61]Health: trunk compensation in 3 directions (AUC)=97.9%

[77]Stroke (F1 score): NC=0.79; SE=0.78; TR=0.70; LF=0.73

[78]Health: correct vs incorrect (involving typical compensatory movements) upper limb exercises
(sensitivity and specificity): garment 1: 86%, +6% to –6% vs 79%, +7% to –7%; garment 2:
89%, +6% to –6% vs 93%, +5% to –5%; garment 3: 87%, +4% to –4% vs 84%, +4% to –4%

[79]Health: 3 incorrect compensatory positions (not specified) in UEh adduction exercise (k value):
pos_run1=0.78, pos_run2=0.82, pos_run3=0.79, pos_run4=0.81

[54]Stroke (F1 score): NC=0.989; SE=0.970; TR=0.983; LF=0.981

Naïve Bayes

[43]Health: trunk displacement (precision and Recall)—non-compensatory=92.7% and 90.5% and
compensatory=88.6% and 91.2%

[44]Stroke: trunk compensatory movements in anterior and posterior direction (precision)—Horizontal
Reach: unaffected arm=100%, affected arm=87.5%; Vertical Reach: unaffected arm=87.5%,
affected arm=100%; Card Flip: unaffected arm=62.5%, affected arm=66.7%; Jar Open: unaffected
arm=71.4%, affected arm=71.4%

Logistic regression

[61]Healthy: trunk compensation in 3 directions (AUC)=83%

[79]Health: 3 incorrect compensatory positions (not specified) in UE adduction exercise (k value):
pos_run1=0.82, pos_run2=0.85, pos_run3=0.88, pos_run4=0.89

[61]Healthy: trunk compensation in 3 directions (AUC)=96%Random Forest

[74]Stroke (F1 score): NC=0.73; SE=0.53; TR=0.67; LF=0.69; insufficient elbow extension=0.73Multilabel k-NN

[74]Stroke (F1 score): NC=0.69; SE=0.50; TR=0.60; LF=0.68; insufficient elbow extension=0.80Multilabel decision tree

[77]Stroke (F1 score): NC=0.94; SE=0.95; TR=0.93; LF=0.96Generative adversarial net-
work k-NN

[44]Stroke: trunk compensatory movements in anterior and posterior direction (precision)—horizontal
reach: unaffected arm=85.7%, affected arm=87.5%; vertical reach: unaffected arm=100%, affected

Sequential minimal optimiza-
tion

arm=100%; Card Flip: unaffected arm=62.5%, affected arm=66.7%; Jar Open: unaffected
arm=57.1%, affected arm=57.1%

[79]Health: 3 incorrect compensatory positions (not specified) in UE adduction exercise (k value):
pos_run1=0.64, pos_run2=0.81, pos_run3=0.82, pos_run4=0.81

Decision tree J48

[48]Healthy group (AUC): NC=0.87; SE=0.79; TR=0.84; LF=0.98 and stroke group (AUC): NC=0.66;
SE=0.27; TR=0.81; LF=0.77

Recurrent Neural Network
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ReferencesML algorithm and accuracy

[49]Healthy participant (F1 score): NC=0.87; SE=0.15; TR=0.5; LF=0.74 and stroke survivor (F1

score): NC=0.94; SE=0; TR=0; LF=0
Weighted random Forest

[49]Healthy participant (F1 score): NC=0.83; SE=0.09; TR=0.19; LF=0.68 and stroke survivor (F1

score): NC=0.94; SE=0; TR=0; LF=0
Cost sensitive

[49]Healthy participant (F1 score): NC=0.71; SE=0.29; TR=0.48; LF=0.72 and stroke survivor (F1

score): NC=0.69; SE=0.04; TR=0.20; LF=0.07
Random Undersampling

[49]Healthy participant (F1 score): NC=0.79; SE=0; TR=0; LF=0 and stroke survivor (F1 score):
NC=0.94; SE=0; TR=0; LF=0

Tomek links

[49]Healthy participant (F1 score): NC=0.72; SE=0.3; TR=0.49; LF=0.82 and stroke survivor (F1

score): NC=0.83; SE=0.06; TR=0.25; LF=0.01
SMOTEi

[49]Healthy participant (F1 score): NC=0.66; SE=0.28; TR=0.49; LF=0.73 and stroke survivor (F1

score): NC=0.8; SE=0.04; TR=0.24; LF=0.05
SVM SMOTE

[49]Healthy participant (F1 score): NC=0.77; SE=0.32; TR=0.51; LF=0.63 and stroke survivor (F1

score): NC=0.8; SE=0.04; TR=0.23; LF=0.07
Random oversampling

[50]Healthy participant (AUC)—good example: SE=0.94; TR=0.97; LF=0.92; bad example: SE=0.37;
TR=0.63; LF=0.52

Binary classification

aSVM: support vector machine.
bAUC: area under the curve.
cNC: no compensation.
dSE: shoulder elevation.
eTR: trunk rotation.
fLF: lean forward.
gk-NN: k-nearest neighbor.
hUE: upper extremity.
iSMOTE: synthetic minority oversampling technique.

Statistical Methods
Statistical methods were used to assess compensation from 4
perspectives: real time changes of compensation measurements
in body movements, group variance in compensation
measurements, effects of an intervention on compensation
measurements, and the statistically significant associations of
physiological signals with compensation measurements.

A total of 23 studies used mean and SD, canonical correlation
analysis, Spearman correlation, step-wise multiple regression,
or ANOVA to test the real time changes of compensation
measurements in body movements. For instance, Wittmann et
al [25] used repeated measures 1-way ANOVAs to test trunk
orientation changes during rehabilitation training to assess trunk
compensation in real time.

In all, 20 studies tested the differences among groups to assess
compensation. The most commonly used statistical methods
were ANOVA and Mann–Whitney U test. For instance, Kim
et al [75] compared all compensation measurements between
groups (stroke survivors vs healthy participants) and between
hands (within-group factor: more affected hand vs less affected
hand in stroke survivors and nondominant hand vs dominant
hand in healthy participants) with ANOVA for compensation
assessment.

In addition, 10 studies analyzed the differences in compensation
measurements before and after the intervention. Wilcoxon
signed-rank test, ANOVA, Spearman rank correlation

coefficient, paired 1- and 2-tailed t test and 1- and 2-tailed Tukey
honestly significant difference tests were used in these studies.
For instance, Fluet et al [34] used ANOVA to analyze how 2
different training models (traditional vs VR-based training)
affect upper limb compensation in the dimensions of peak
reaching velocity, finger extension excursion, shoulder
excursion, elbow excursion, and trunk excursion.

Overall, 3 studies tested the associations between physiological
signals, such as fMRI and sEMG, and compensation parameters
[30,39,71]. For instance, Lee et al [71] used Spearman rank
correlation coefficient to test the relationship between the brain
activation area and shoulder abduction angle. They found that
greater activation of the supplementary motor area was required
for a larger shoulder abduction angle. Huang et al [39] applied
the Pearson correlation test and found a positive correlation
between muscle fatigue (measured by sEMG median frequency)
and compensation. They concluded that sEMG median
frequency was a good indicator of compensation due to muscle
fatigue.

AI-Based Methods
A total of 15 studies used AI-based methods to detect
compensatory postures, and 9 studies classified 3 common
compensatory postures: trunk lean forward, trunk rotation, and
shoulder elevation [45,48-50,53,54,74,77,91]. In addition, 4
studies discriminated trunk compensatory movements in the
sagittal, transverse, and coronal planes [43,44,55,61], and 2
studies did not mention the type of compensatory posture that
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was classified [78,79]. Dolatabadi et al [50] made the
compensation data set public for other researchers. A total of 2
studies used this data set to train their ML models to improve
the accuracy of compensation detection [48,49]. The remaining
studies collected their own data to detect compensation.

Various ML algorithms were applied to train the classification
model (Table 6). The most commonly used ML algorithm was
the support vector machine (SVM). Cai et al [45] reported the
highest average F1 score (0.99) for recognizing trunk lean
forward, trunk rotation, and shoulder elevation based on 5
features extracted from the pressure distribution data. Nordin
et al [61] reported the highest accuracy (99.15%) for detecting
the 3D trunk compensatory postures.

Notably, 8 studies [44,48,49,54,61,74,77,79] used more than
one ML algorithm to compare the classification results for
compensatory postures. For example, Zhi et al [48] used both
SVM and recurrent neural network classifiers to classify
shoulder elevation, trunk rotation, and lean forward. The results
demonstrated high accuracy in healthy participants, but low
accuracy in stroke survivors. Cai et al [54] applied the k-nearest
neighbor and SVM algorithms to detect and categorize shoulder
elevation, trunk rotation, and lean forward in stroke survivors,
and both algorithms yielded high classification accuracies (F1

score >0.95). Nordin et al [61] used 4 different classification
algorithms with 10-fold cross-validation to assess the 3D trunk
compensatory movements. The results showed accuracy of 99%,
98%, 96%, and 83% with SVM, k-nearest neighbor, random
forest, and logistic regression, respectively.

Discussion

To the best of our knowledge, this is the first systematic review
of technologies for compensation assessment and detection of
UE movements in stroke survivors.

RQ1: What Models Have Been Established to Assess
and Detect Compensation?
Notably, 2 types of compensation were categorized. Most
(63/72, 88%) studies focused on investigating the awkward use
of the affected UE. The reason might be that the awkward
pattern is more complicated to be observed than the disuse
pattern [81]. The synergy and coupling of body parts are difficult
to understand [92], which requires more evidence-based methods
to fuse data from more resources across a constant timeline.
Sensor technologies offer fine-grained rich data, and together
with AI methods, can provide a low-cost solution for continuous
monitoring of a person’s performance.

The models of the disuse pattern focus on the amount of use of
the affected UE. For the awkward pattern, the models focused
more on how the unaffected body parts were involved in the
motion with the affected UE. The most discussed body parts
were the trunk, shoulders, and elbows. Trunk compensation
was the most discussed factor, suggesting that it is more
common among stroke survivors.

Models were established for different task scenarios. For the
disuse pattern, bilateral tasks were the most common. For the
awkward pattern, reaching tasks were mostly used. Reaching

was the basic movement of the upper limbs that constituted
most daily life behaviors [93]. Reaching requires coordination
of multiple joints of the arm and is controlled by the central
nervous system [93]. Different reaching ranges can result in
various compensations for the trunk, shoulder, and elbow [15].

RQ2: What Measurements Are Used to Evaluate
Compensatory Movements?
Notably, 2 clinical scales, the Motor Activity Log [16] and the
Actual Amount of Use Test [17], have traditionally been used
for the evaluation of disuse patterns. However, these are
subjective and difficult to replace using technology-based
methods. Levin et al [15] proposed the Reaching Performance
Scale for awkward pattern evaluation. However, none of the
reviewed studies have quantified this scale using technological
methods. Moreover, UE functional impairment scales (eg, FMA)
were not used to assess compensation.

Quantitative measurements have been proposed for
technology-based compensation assessments. For the disuse
pattern, measurements such as the movement duration and
frequency of use were used to describe the use of the affected
UE. For the awkward pattern, linear displacement, angular
displacement, acceleration, and sEMG signals of the trunk and
upper limb joints were the most common measurements.
Furthermore, the trunk compensation measurements, which are
the kinematic measurements of the trunk in the 3 anatomical
planes, are more uniform. In contrast, shoulder compensation
measurements are more diverse and complex. This could be
because the shoulder has more freedom of movement, and the
configuration of these movements could vary across different
experimental tasks [26-28,37,39,45,48-50,53,54,64,66,69,91].

Further studies could be conducted to explore the relations
among all these compensation measurements and to develop a
set of gold standard quantitative measurements.

RQ3: What Types of Sensor Technology Are Used for
Compensation Assessment and Detection?
Marker-based motion capture systems yield accurate and robust
real time motion tracking and have been used as ground truth
to verify the effectiveness of other sensors for compensation
assessment and detection [42,43,45]. In our reviewed studies,
marker-based motion capture systems were used to detect
various compensations, including arm nonuse [86,87], trunk
compensation [26,45], shoulder compensation [66,72] and
interlimb coordination [36]. The drawbacks of these systems
include but are not limited to the cost of both hardware and
software, complicated setup, and the need for professionals to
operate the systems [50]. These systems may also require a
specific space, such as an area with a clear line of sight for the
cameras [44]. The use of cameras in a home environment may
raise privacy concerns [44].

Similarly, although with great accuracy, the setup of
physiological signal sensing technologies is complex and has
been limited to its use in laboratories or other controlled
environments. In addition, professionals are required to collect
and analyze these physiological signals [27]. The advantage of
using this sensor technology is that the recorded sEMG signals
of relevant muscles [30,84], brain scalp EEG signals [33,80],
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and cortical activation patterns [71] could help researchers gain
more insight into compensation from the perspective of muscle
activities and brain activities, which in turn would provide more
information for compensation detection and correction to
improve UE motor performance in stroke survivors.

Body-worn sensors were the most common technology used
for compensation assessment and detection in the reviewed
studies. They were able to monitor all compensation models
[27,28,42-44,70,81-83]. Compared with marker-based motion
capture systems, body-worn sensors are more affordable and
portable, with a simpler setup [43,44]. More than half (47/72,
65%) of the studies used these sensors in technology-based
therapies or home settings, which shows that this sensor
technology has great potential for use in less-supervised therapy
environments. The main disadvantage of this technology is that
it can induce unnatural movements owing to the sensor
attachment on the user’s body, which may affect the accuracy
of compensation assessment [45]. Future research could focus
on reducing or avoiding the possible unnatural movements
caused by sensor attachment during a compensation assessment
process, such as correcting the deviation through algorithms or
adopting a more ingenious physical layout of the sensors.

Similar to body-worn sensors, marker-free vision sensors are
low-cost and have an easy setup [94]. Owing to their size and
portability, they could be an ideal option for home use.
Marker-free vision sensors have been used to detect arm use
[84]; arm nonuse [86]; and trunk [20,23], shoulder [69,74], and
elbow [74] compensation. They were used together with ML
algorithms to automatically detect typical compensatory postures
(no compensation, shoulder elevation, trunk rotation,

lean forward, etc) [48,49,61,74]. The sensors can capture stroke
survivors’motion images in real time for clinicians to determine
the compensation adopted during the training process. These
images were used to train AI models to automatically detect
compensatory postures. Compared with the RGB camera, Kinect
was more commonly used. This could be because of the various
types of information provided by the Kinect depth sensor,
including color images, depth images, and 3D skeleton joint
positions of the human body. However, it has been reported
that the prediction of joint positions of the shoulder and trunk
by Kinect suffers from large errors when sitting with trunk
flexion (approximately 100 mm), which is a common
compensatory movement after stroke [61]. One of the
weaknesses of using marker-free vision sensors is that they can
introduce privacy concerns if used in a home and may induce
unnatural behaviors owing to the negative feelings caused by
surveillance [44].

Relatively few studies have been conducted on sensors
embedded in rehabilitation systems and ambient sensors for
compensation assessment and detection. When a stroke survivor
completes exercises with the assistance of a rehabilitation
training system, it is intuitive to use the same system for
compensation assessment [95]. However, for less complex
rehabilitation robots with a simpler setup, such as end-effector
robots, external measures may be required because the data
collected by the system are not sufficient to detect compensation
[31,42,59]. Ambient sensors are typically simple and

unobtrusive [45]. They have great potential for use in
compensation assessment and detection in less-supervised
therapy environments, especially in home settings. However,
only limited compensation can be detected by ambient sensors.
Thus, more research could focus on accurately detecting
compensatory movements using these sensors.

In summary, all sensor technologies have their own advantages
and disadvantages. Both marker-based motion capture systems
and physiological sensing technologies are limited by their use
of a more controlled environment. Although with great accuracy
in compensation detection, the setup is complicated and requires
expert experience. Marker-based technology is usually used as
the gold standard to test the accuracy of other technologies in
compensation detection and measurement. In comparison with
the results of marker-based technologies, body-worn sensors
[27,28,43], marker-free vision sensors [86], sensors embedded
in rehabilitation training systems [42], and ambient sensors [45]
have also been proven effective in compensation assessment
and detection. Body-worn sensors, marker-free vision sensors,
and ambient sensors are low-cost, easy to set up, and can be
used in less-controlled environments, such as home settings.
However, marker-free vision sensors can increase privacy
concerns. Thus, it may cause deployment issues in the home
environment. Both wearable sensors and marker-free vision
sensors can cause incorrect postures owing to the unnatural
movements induced by the sensors. Directly using sensors
embedded in rehabilitation training systems to assess and detect
compensation could be a simple and convenient method.
However, researchers should be aware of (1) whether the sensors
in the system can meet the accuracy requirements and (2)
whether the sensors in the system can capture all the necessary
data for compensation assessment and detection. Finally, it is
suggested that a rehabilitation training system be built that
integrates training exercises, compensation assessment and
detection, and real time compensation feedback for stroke
survivors to perform effective rehabilitation with less or even
without the supervision of a therapist.

RQ4: Which Statistical or AI Methods Have Been Used
for Compensation Assessment and Detection?
Research based on statistical methods provides valuable
information about compensation assessment and detection, such
as the difference in compensation measurements between
healthy people and stroke survivors [20,66,73,84], changes in
compensation measurements before and after an intervention
[34,62,63,72], and the correlation of physiological signals with
compensation measurements [30,39,71]. This information can
be processed further in future studies for compensation
assessment and detection.

The majority of studies used descriptive statistics, such as mean
and SD, for real time compensation detection
[23,47,68,69,82,83,86]. Although descriptive statistics are
simple to use, the application of this method to detect
compensation relies heavily on expert experience. For example,
an acceptable range of compensation measurements was set by
therapists, and the occurrence of compensation was decided by
the therapists based on observation of the stroke survivors’
movements if they exceeded the compensation range. Therefore,
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this method is subjective and may not be accurate. In future,
more research could focus on using other statistical methods,
such as logistic regression, for real time detection of
compensatory movements.

In contrast to statistical methods, AI methods have been used
to automatically detect compensatory postures. They showed
great potential for real time compensatory posture detection in
less-supervised therapy environments
[43-45,48-50,53,54,74,78,79,91]. One limitation of this research
area is that there are few public data sets on compensatory
movements in stroke survivors. In our review, only one open
data set (the Toronto Rehab Stroke Posture data set) was found.
Open research data are an originally collected data set that is
accessible and can be reused by other researchers to conduct
their research [96,97]. It has been gaining attention and growing
popularity among researchers and funding agencies [96,98]. As
such, future studies should make data accessible and sharable
among research communities.

Furthermore, although a variety of ML algorithms have been
identified for compensatory posture detection, they can only
identify a single compensatory posture at a time, which cannot
meet the situation where multiple compensatory postures appear
concurrently. Moreover, AI methods have not yet been used to
predict the occurrence of compensation. Therefore, more effort
is needed to build more heterogeneous AI models, such as
multilabel ML models and deep learning models, for multiple
compensation detection and prediction.

Strengths and Limitations
Our study had several strengths. This study applied
comprehensive searches in both technology and medical fields.
This is the first comprehensive systematic review of

technology-based compensation assessment and detection in
UE rehabilitation for stroke survivors. It is the only systematic
review summarizing compensation models and their
measurements and has reviewed the use of statistical and AI
methods for compensation assessment and detection.

Our study has some limitations. First, the review included only
references in English. Second, owing to inconsistencies in
compensation assessment criteria across studies, the review did
not include comparisons of the effectiveness of different
technologies for compensation evaluation.

Conclusions and Future Research
This systematic review focuses on how technologies are used
for compensation assessment and detection during UE
rehabilitation of stroke survivors. It covers models and
measurements to describe the compensation and different types
of sensors and statistical and AI methods for compensation
assessment and detection. Evidence suggests that
technology-based compensation assessment and detection can
augment rehabilitation without the constant presence of
therapists. Future studies could (1) explore how to develop a
set of gold standard quantitative compensation measurements;
(2) investigate how to overcome the discussed defects of
body-worn sensors, marker-free vision sensors, and
system-embedded sensors in compensation evaluation and how
to integrate feedback with these sensors so that they can be used
in less-supervised or even unsupervised UE rehabilitation
environments; (3) focus more on open data as they provide
opportunities for reuse in algorithm development for automatic
real time compensation assessment and detection; (4) study
multilabel classification algorithms and deep learning algorithms
for multiple compensation detection; and (5) research more on
compensation prediction.
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