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Abstract

Background: To address the obesity epidemic, there is a need for novel paradigms, including those that address the timing of
eating and sleep in relation to circadian rhythms. Electronic health records (EHRs) are an efficient way to identify potentially
eligible participants for health research studies. Mobile health (mHealth) apps offer available and convenient data collection of
health behaviors, such as timing of eating and sleep.

Objective: The aim of this descriptive analysis was to report on recruitment, retention, and app use from a 6-month cohort study
using a mobile app called Daily24.

Methods: Using an EHR query, adult patients from three health care systems in the PaTH clinical research network were
identified as potentially eligible, invited electronically to participate, and instructed to download and use the Daily24 mobile app,
which focuses on eating and sleep timing. Online surveys were completed at baseline and 4 months. We described app use and
identified predictors of app use, defined as 1 or more days of use, versus nonuse and usage categories (ie, immediate, consistent,
and sustained) using multivariate regression analyses.

Results: Of 70,661 patients who were sent research invitations, 1021 (1.44%) completed electronic consent forms and online
baseline surveys; 4 withdrew, leaving a total of 1017 participants in the analytic sample. A total of 53.79% (n=547) of the
participants were app users and, of those, 75.3% (n=412), 50.1% (n=274), and 25.4% (n=139) were immediate, consistent, and
sustained users, respectively. Median app use was 28 (IQR 7-75) days over 6 months. Younger age, White race, higher educational
level, higher income, having no children younger than 18 years, and having used 1 to 5 health apps significantly predicted app
use (vs nonuse) in adjusted models. Older age and lower BMI predicted early, consistent, and sustained use. About half (532/1017,
52.31%) of the participants completed the 4-month online surveys. A total of 33.5% (183/547), 29.3% (157/536), and 27.1%
(143/527) of app users were still using the app for at least 2 days per month during months 4, 5, and 6 of the study, respectively.

Conclusions: EHR recruitment offers an efficient (ie, high reach, low touch, and minimal participant burden) approach to
recruiting participants from health care settings into mHealth research. Efforts to recruit and retain less engaged subgroups are
needed to collect more generalizable data. Additionally, future app iterations should include more evidence-based features to
increase participant use.

J Med Internet Res 2022 | vol. 24 | iss. 6 | e34191 | p. 1https://www.jmir.org/2022/6/e34191
(page number not for citation purposes)

Coughlin et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:jwilder3@jhmi.edu
http://www.w3.org/Style/XSL
http://www.renderx.com/


(J Med Internet Res 2022;24(6):e34191) doi: 10.2196/34191

KEYWORDS

mHealth; mobile apps; recruitment; engagement; retention; timing of eating; timing of sleep; obesity; EHR

Introduction

Obesity and its related medical comorbidities are highly
prevalent public health conditions [1-5]. The strongest evidence
for preventing and treating obesity targets health behaviors to
modify dietary composition, reduce calories, and increase
physical activity [6-8]. Although reducing calories and
increasing physical activity result in short-term weight loss,
there is a need to identify lifelong behavioral patterns that
promote longer-term weight loss and maintenance of healthy
weight [9-11]. Aligning the timing of eating and sleeping with
intrinsic circadian rhythm (ie, a shorter duration of eating, often
called time-restricted eating or feeding) has not yet been
thoroughly examined in population-based studies, but has the
potential to provide a new paradigm to prevent obesity and
metabolic conditions [12-15].

Mobile devices and mobile health (mHealth) apps are
ubiquitous, readily available approaches to collect real-time
data on health behaviors, such as dietary intake, physical
activity, and sleep [16-18]. mHealth apps are often designed
and marketed to provide behavioral tracking and lifestyle
modification support [19-22]. They also provide a convenient
and efficient method for collecting information to advance
knowledge about the relationship between obesity-related
behavioral patterns and health outcomes [23-25].

Although mHealth research has grown exponentially in the last
few decades, study attrition is a major problem, and there is a
need to identify successful, low-burden, and efficient recruitment
and retention strategies [26,27]. The era of COVID-19, in
particular, has additionally highlighted the importance of remote
research procedures. Electronic health record (EHR)–based
recruitment strategies provide potentially efficient (ie, low touch
and low participant burden) methods for identifying and
recruiting high volumes of patients meeting predetermined
medical criteria for population-based research studies [28-30].

This study presents a secondary analysis from a 6-month,
multisite, cohort study that used the EHR to identify and recruit
participants to use a mobile app (Daily24), designed to assess
timing of eating and sleep [31]. The main goal of the parent
observational study was to evaluate the longitudinal association
between timing of eating and weight changes over time. Because
of the growing interest in both EHR-based recruitment strategies
and mHealth data collection methods [19,32-34], the goal of
this descriptive analysis is to do the following:

1. Describe the EHR-based recruitment and electronic consent
(e-consent) methods and response rates for enrolling in the
study and downloading the mobile app.

2. Describe engagement strategies, app use, and retention rates
during the 6-month study.

3. Evaluate demographic and behavioral predictors of Daily24
app use.

We hypothesized that people who are younger, have greater
education, and have higher BMIs would be more likely to use
the app. This study has the potential to inform the field of
behavioral health in methodology, uptake, and engagement of
mHealth approaches for observational research.

Methods

Recruitment
We recruited a cohort of adult patients from three health care
systems in the PaTH Clinical Research Network, part of
PCORnet (National Patient-Centered Research Network). The
three health care systems included the Johns Hopkins Health
System, the Geisinger Health System, and the University of
Pittsburgh Medical Center [35-37].

Ethics Approval
Institutional Review Board (IRB) approval was obtained from
the Johns Hopkins School of Medicine (IRB00174516), which
had a reliance agreement with the other institutions’ IRBs.

EHR-Based Participant Eligibility Criteria
Potential participants were identified using EHR-based
eligibility criteria (ie, “computable phenotype” [38]) to query
the EHR. Each site also obtained a list of potentially eligible
participants who previously consented to complete PaTH cohort
studies at these sites [37]. Eligibility criteria included the
following: at least 18 years of age and a minimum of one weight
measurement and one height measurement recorded in the EHR
between July 2017 and July 2019. Participants were excluded
if they were deceased.

Recruitment Messaging Via Email and the Patient
Portal
Potentially eligible participants were sent recruitment messages
via email or the patient portal (ie, Epic MyChart) from February
to July 2019. Each partnering health care system tailored its
own strategy to recruit participants from the large pool of
potentially eligible patients who were identified using the
computable phenotype. One site used patient portal recruitment
almost exclusively, focusing on patients who had a health system
visit in the last week. The other two sites sent email recruitment
letters through their primary care and weight management
practices, with messages signed by the clinic medical directors.
Multimedia Appendix 1 shows a sample recruitment message,
which included a brief study description and link to a web-based
e-consent form.

e-Consent and Enrollment Process
We designed a web-based e-consent process in REDCap
(Research Electronic Data Capture) beginning with a study
description, including participant expectations and duration (see
Figure 1). Upon confirming interest, participants proceeded to
the e-consent form, which included a supplemental audio clip
of the consent form being read aloud, followed by a short quiz
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to ensure comprehension. Consenting participants provided
identifying information (ie, full name, date of birth, and email),
enabling staff to link each participant to the EHR for future
analyses (not reported herein). Once consented, participants
received a link to complete online baseline surveys (Figure 1).

Participants were considered enrolled in the cohort after
completing baseline surveys, at which time they received
instructions on how to download and use the Daily24 mobile
app.

Figure 1. Screenshots of web-based electronic recruitment and onboarding: electronic consent (top left), baseline surveys (top right), and POWER 28
and POWER week information (bottom).

Daily24 Mobile App, Registration, and Download
The Daily24 mobile app was custom designed by our research
team to collect information from participants about the timing
of eating and sleep, including wake time, sleep time, timing of
each eating occasion, and estimate of amount eaten (ie, small,
medium, or large meal; small or large snack; or drink, except
water, without food) during a 24-hour window (Figure 2). The

design of the app is described elsewhere [31]. We benefited
from the input of patient and end-user stakeholders in the design
of the mobile app, as well as recruitment and retention methods,
and we pilot-tested the app [31,39].

Following enrollment in the cohort, participants received a text
message on their mobile phones with a unique link to the
Daily24 registration form. This unique link contained a token
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(ie, 11-character universally unique identifier) that enabled the
study team to connect participants’ data between the mobile
app and their online enrollment information and surveys, while
preserving privacy. Registration included an overview of how
to use the app, study timeline, and incentives (see next section),

followed by selection of a unique “Daily24 name” from a list
of randomly generated combined nouns (eg, “FloatHarbor”)
that, once selected, was the participant’s Daily24 username.
Participants then received a link to download the Daily24 app
via iOS (Apple Store) or Android (Google Play).

Figure 2. Screenshots of the Daily24 app: empty sleep ring (top left), complete sleep ring (top middle), empty food ring (top right), meal size selection
(bottom left), complete food ring (bottom middle), and complete day (bottom right).

Engagement Strategies to Promote Use of the Daily24
Mobile App
Although we encouraged participants to enter as much data as
possible over the 6-month study, we developed and applied
strategies aimed at maximizing app use during their first 4 weeks
of participation (ie, 28 days after downloading the app, called
“POWER 28”) and 1 week per month for the remaining 5
months of the study, called “POWER weeks” (Figure 1). These
highly targeted usage days for the study were equivalent to 63
days (POWER 28 + POWER weeks × 5 weeks). Engagement
strategies included a leaderboard, badges, raffles, and text
reminders. The leaderboard displayed the number of consecutive
days tracked on one tab (ie, streak) and total number of all days

tracked on the other tab. Earned badges encouraged various
types of app use, including one-time badges, streak badges, and
POWER week badges (Figure 3). We raffled off US $25 gift
cards weekly throughout the study, with those earning more
badges having greater odds of winning the raffle. We used
emails, SMS text messages, and in-app notifications to
encourage usage and to remind participants where they were in
their POWER 28 and when a POWER week was coming up.
The logic for these messages was triggered both by time (ie,
close to a POWER week) as well as by lack of a response (ie,
an event missing data). If a participant was on track with logging
events, we simply encouraged their continued involvement and
did not send additional reminders.
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Figure 3. Screenshots of the badges earned to encourage usage in the Daily24 app.

Data Collection
Daily24 app usage data were collected using Amazon Web
Services. Self-reported online surveys were administered using
REDCap at baseline and at the end of 4 months using standard
measures assessing demographics, mHealth use, height, and
weight, as well as eating, physical activity, and sleep habits.
Technology use and health app use were assessed using the Pew
Social Media Update 2016 [40] and a survey measuring
characteristics of health app use [16], respectively. Nutritional
and eating assessments included the National Health and
Nutrition Examination Survey 2009-2010 Dietary Screener
Questionnaire [41], which provided estimates of fruit, vegetable,
and sugar-sweetened beverage intake over the last 30 days.
Physical activity was assessed using the self-administered, short
version of the International Physical Activity Questionnaire
[42]; physical activity levels were categorized as low, medium,
or high over the last 7 days. Sleep measurements included the
single sleep quality item from the Pittsburgh Sleep Quality Index
[43] and study-created questions about frequency of daytime
naps.

To facilitate and encourage baseline survey completion,
participants received automated reminders at 15 minutes, 24
hours, and 48 hours after consent and had up until 90 days after
receiving the initial survey link to complete the survey.
Personalized survey-engagement strategies included a
combination of staff emails, text messages, and US $100 raffle
gift cards. Participants had up until 60 days to complete the
4-month measures, but this paper only reports baseline survey
descriptive results. Data collection was completed in January
2020.

App Usage Categories
App users were defined as using the Daily24 app for at least
one day, which was captured by having at least one meal and
sleep entry, on at least one day, and pushing “done for the day”
on the screen. Nonusers either did not register or download the
app or did not push “done for the day” on any day. App use was
further categorized into three non–mutually exclusive ways:

1. Immediate use, defined as using the app for 7 days or more
during the POWER 28.

2. Consistent use, defined as using the app for 28 days or more
during the entire 6-month study, which was based on using
the app equal to or more than the median overall days of
use for the entire 6-month study.

3. Sustained use, defined as using the app for at least 2 days
during the last POWER week (month 6) of the study.

Statistical Analyses
This was a secondary analysis of data from a parent cohort

study. We used descriptive statistics (Student t tests or χ2 tests)
for baseline characteristics for all participants and by app use
versus nonuse categories. App use was also described in median
days of use for the total study, median days used in targeted
and nontargeted usage days, and frequency of 2 or more and 7
or more days of use during each month of the study. We selected
these two categories based on the following logic:

1. Two or more days: this was selected to represent a low
threshold of app use that was not identical to the minimal
definition of being an app user.

2. Seven or more days: this was selected because we focused
on POWER weeks during months 2 to 6 and wanted to
capture those who achieved at least one week of usage.

We evaluated the association between baseline characteristics,
with app usage as the dependent variable, using multivariable
logistic regression models. Multivariable logistic regression
was also used to model the association between baseline
characteristics with immediate, consistent, and sustained app
use. We used two models with progressive adjustment. Model
1 adjusted for key demographics, including age, sex, race,
education, household income, and children younger than 18
years old. Model 2 additionally adjusted for key behavioral
factors that could influence engagement, including physical
activity, fruit and vegetable servings, sleep quality, and BMI.
Covariates were nonmissing, prespecified, and based on a priori
hypotheses.
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Results

Enrollment and App Use
Figure 4 shows the enrollment flow of eligible participants.
Electronic recruitment messages were sent to 70,661 potentially
eligible participants, with 1253 participants (1.77%) completing

the e-consent process and 1021 (1.44%) enrolling by completing
baseline surveys. A total of 4 participants withdrew, leaving
1017 participants included in the analytic sample. Participant
characteristics are reported in Table 1. The majority of the 1017
participants were female (n=790, 77.68%), White (n=788,
77.48%), and college graduates (n=749, 73.65%), and the mean
age was 51.1 (SD 15.0) years.

Figure 4. Recruitment and retention flow. REDCap: Research Electronic Data Capture.
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Table 1. Description of study participants and potential confounders at baseline.

P valuebApp usersa (n=547)Non–app users (n=470)
All participants
(N=1017)Characteristics and confounders

<.00149.3 (15.0)53.2 (14.6)51.1 (15.0)Age (years), mean (SD)

Gender, n (%)

.07109 (19.9)115 (24.5)224 (22.0)Male

435 (79.5)355 (75.5)790 (77.7)Female

3 (0.5)0 (0)3 (0.3)Prefer not to answer

Race, n (%)

.14437 (79.9)351 (74.7)788 (77.5)White

67 (12.2)82 (17.4)149 (14.7)Black

16 (2.9)13 (2.8)29 (2.9)Asian

7 (1.3)10 (2.1)17 (1.7)Pacific Islander, American Indian, or others

20 (3.7)14 (3.0)34 (3.3)Two or more races

Site, n (%)

.00428 (5.1)23 (4.9)51 (5.0)Site A

177 (32.4)105 (22.3)282 (27.7)Site B

104 (19.0)96 (20.4)200 (19.7)Site C

Educational level, n (%)

<.00123 (4.2)40 (8.5)63 (6.2)High school or less

96 (17.6)109 (23.2)205 (20.2)Some college

428 (78.2)321 (68.3)749 (73.6)College graduate

Annual household income (US $), n (%)

.0250 (9.1)70 (14.9)120 (11.8)<35,000

56 (10.2)53 (11.3)109 (10.7)35,000 to <50,000

82 (15.0)66 (14.0)148 (14.6)50,000 to <75,000

316 (57.8)234 (49.8)550 (54.1)≥75,000

43 (7.9)47 (10.0)90 (8.8)Don’t know/choose not to answer

.04119 (21.8)129 (27.4)248 (24.4)Any child <18 years old, n (%)

.31167.4 (8.5)170.6 (73.3)168.9 (50.2)Height (cm), mean (SD)

.2385.0 (22.5)86.8 (25.1)85.8 (23.8)Weight (kg), mean (SD)

.2930.3 (7.6)30.8 (8.2)30.5 (7.9)BMIc, mean (SD)

BMI categories, n (%)

.757 (1.3)7 (1.5)14 (1.4)Underweight (<18.5)

139 (25.4)111 (23.6)250 (24.6)Normal (18.5 to <25)

159 (29.1)129 (27.4)288 (28.3)Overweight (25 to <30)

242 (44.2)223 (47.4)465 (45.7)Obese (≥30)

.183.0 (1.4)2.8 (1.6)2.9 (1.5)Fruit or vegetable cup equivalent, mean (SD)

.0040.7 (1.2)1.0 (1.5)0.8 (1.3)Added sugars tsp equivalent from sugar-sweetened
beverages, mean (SD)

Physical activity, n (%)

.539 (4.1)11 (6.3)20 (5.1)Low

127 (57.5)94 (53.7)221 (55.8)Medium

85 (38.5)70 (40.0)155 (39.1)High
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P valuebApp usersa (n=547)Non–app users (n=470)
All participants
(N=1017)Characteristics and confounders

Sleep quality, n (%)

.02112 (20.5)76 (16.2)188 (18.5)Very good

274 (50.1)222 (47.2)496 (48.8)Fairly good

138 (25.2)136 (28.9)274 (26.9)Fairly bad

23 (4.2)36 (7.7)59 (5.8)Very bad

Nap frequency, n (%)

.03314 (57.4)267 (56.8)581 (57.1)<1 per week

96 (17.6)69 (14.7)165 (16.2)1 per week

97 (17.7)79 (16.8)176 (17.3)2-3 per week

29 (5.3)28 (6.0)57 (5.6)4-6 per week

11 (2.0)27 (5.7)38 (3.7)Daily

Number of health apps used in past month, n (%)

<.00185 (15.5)127 (27.0)212 (20.8)0

406 (74.2)299 (63.6)705 (69.3)1-5

56 (10.2)44 (9.4)100 (9.8)>5

App use reasons, n (%)

<.001396 (72.4)269 (57.2)665 (65.4)Track how much exercise I get

<.001319 (58.3)212 (45.1)531 (52.2)Track what I eat/improve what I eat

.08270 (49.4)206 (43.8)476 (46.8)Weight loss

.22117 (21.4)86 (18.3)203 (20.0)Track a health measure

<.001214 (39.1)132 (28.1)346 (34.0)Track how much sleep I get

aApp user is defined as downloading the app and recording at least one entry on at least one day.
bThe P value for a group of variables is reported in the row of the first variable.
cBMI is calculated as weight in kilograms divided by height in meters squared.

Out of 1017 participants, 547 (53.79%) were app users (ie,
downloaded the app and recorded at least one entry on at least
one day). When examining app users by use category, 412
(75.3%), 274 (50.1%), and 139 (25.4%) were categorized as
immediate, consistent, and sustained users, respectively. Of the
sustained users, 116 (83.5%) used the app at least one day every
month of the study, and 133 (95.7%) used the app at least one
day for 5 out of the 6 months. In comparison to non–app users
(471/1017, 46.31%), app users were younger (mean 49.3 vs
53.3 years; P<.001), more likely to be college graduates (78.2%
vs 68.3%; P<.001), had greater annual income (>US $50,000:
398/547, 72.8% vs 300/470, 63.8%; P=.02), and were less likely
to have children younger than 18 years old (21.8% vs 27.4%;
P=.04). There were no differences between app users and
nonusers regarding weight, height, mean BMI, and BMI
category. App users were less likely to drink sugar-sweetened
beverages (mean sugar tsp equivalent: 0.7 vs 1.0; P=.004),

reported better sleep quality (fairly good or very good: 386/547,
70.6% vs 298/470, 63.4%; P=.02), and were less likely to take
daily naps (2.0% vs 5.7%; P=.03). They were also more likely
to use health apps overall (462/547, 84.5% vs 343/470, 73.0%;
P<.001), and to use them for the purpose of tracking exercise
(396/547, 72.4% vs 269/470, 57.2%), eating (319/547, 58.3%
vs 212/470, 45.1%), and sleep (214/547, 39.1% vs 132/470,
28.1%; P<.001 for all).

The median amount of app use was 28 (IQR 7-75) days over
the 6-month study, 20 (IQR 7-35) days during the targeted 63
days of the study, and 6 (IQR 0-41) days during the 117
nontargeted days of the study. Table 2 describes app use by
study month. During study month 1, the vast majority of app
users (92.3%) used the app for 2 or more days and 76.2% used
it for 7 or more days. Usage decreased over time in the cohort
study. By month 6, 27.1% of app users used the app for 2 or
more days and 20.1% used it 7 or more days.
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Table 2. Monthly Daily24 app use during the 6-month cohort study by users who completed at least one day of app use.

Participants who used the app (n=547), n (%)Montha

Used ≥7 daysUsed ≥2 days

417 (76.2)505 (92.3)Month 1

214 (39.1)269 (49.2)Month 2

166 (30.3)213 (38.9)Month 3

138 (25.2)183 (33.5)Month 4

133 (24.8)157 (29.3)Month 5b (n=536)

106 (20.1)143 (27.1)Month 6b (n=527)

aA study month is defined as 4 weeks (28 days). To enable all study months to begin on a Monday, the time between the end of POWER 28 and start
of month 2 ranged from 15 to 21 days. 
bDue to late registration, some participants were not able to reach months 5 and 6 of the study.

Predictors of Usage of the Daily24 App
Table 3 shows the multivariable regression model for app use
versus nonuse. Younger age, White (vs non-White) race, greater
education, higher household income, not having children less
than 18 years of age, and having used 1 to 5 apps in the past
were statistically significantly associated with app use (vs
non–app use). Black participants were one-third less likely to
use the app than White participants, whereas those with greater
than a college education and a higher income (≥US $75,000 vs
<US $35,000) were statistically significantly more likely to use

the app. Those with children under the age of 18 years were
45% less likely to use the app, and those who had used 1 to 5
apps in the past month were 70% more likely to use the app
compared to those who had not used apps in the past month.

Table 4 shows multivariable regression models for immediate,
consistent, and sustained use. Older age and lower BMI were
statistically significantly associated with increased immediate,
consistent, and sustained app use. Having children less than 18
years old was statistically significantly associated with decreased
immediate use, and better sleep quality was associated with
increased immediate and consistent app use.
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Table 3. Multivariable regression models for Daily24 app use versus nonuse.

Model 2bModel 1aRisk factors

P valueOR (95% CI)P valueORc (95% CI)

Demographic risk factors

<.0010.78 (0.71-0.86)<.0010.77 (0.70-0.85)Age, per 10-year increase

Gender

Ref (1)Refd (1)Male

.231.22 (0.88-1.69).091.32 (0.96-1.81)Female

Race

Ref (1)Ref (1)White

.040.67 (0.46-0.98).030.66 (0.45-0.96)Black

.430.82 (0.50-1.34).380.80 (0.49-1.31)Other

Educational level

Ref (1)Ref (1)<College

.051.36 (1.00-1.86).031.39 (1.03-1.89)≥College

Household income (US $)

Ref (1)Ref (1)<35,000

.241.40 (0.80-2.44).101.58 (0.91-2.72)35,000 to <50,000

.031.82 (1.07-3.07).012.01 (1.20-3.38)50,000 to <75,000

.0032.00 (1.26-3.17)<.0012.30 (1.47-3.61)≥75,000

Any child <18 years old

Ref (1)Ref (1)No

<.0010.55 (0.40-0.75)<.0010.53 (0.39-0.73)Yes

Behavioral risk factors

Physical activity

Ref (1)——eLow or medium

.750.93 (0.61-1.43)——High

.411.04 (0.95-1.14)——Fruit and vegetable cups, per 1-cup increase

Sleep quality

Ref (1)——Very good or fairly good

.090.79 (0.59-1.04)——Very bad or fairly bad

Number of health apps used in past month

Ref (1)——0

.0021.70 (1.22-2.37)——1-5

.201.40 (0.84-2.35)——>5

.991.00 (0.98-1.02)——BMIf, per 1-unit increase

aModel 1 was adjusted for age, sex, race, education, household income, and having children younger than 18 years old.
bModel 2 included model 1 parameters and was adjusted for physical activity, fruit and vegetable cups, sleep quality, and BMI.
cOR: odds ratio.
dRef: reference.
eNot calculated since these parameters were not included in model 1.
fBMI is calculated as weight in kilograms divided by height in meters squared.

J Med Internet Res 2022 | vol. 24 | iss. 6 | e34191 | p. 10https://www.jmir.org/2022/6/e34191
(page number not for citation purposes)

Coughlin et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. Multivariable regression modelsa for immediate, consistent, and sustained Daily24 app use (n=547).

Sustained use: using app for ≥2 days
during POWER week 5 (n=139)

Consistent use: using app for ≥28
days for 6 months (n=274)

Immediate use: using app for ≥7
days during POWER 28 (n=412)

Risk factors

P valueOR (95% CI)P valueOR (95% CI)P valueORb (95% CI)

Demographic risk factors

<.0011.54 (1.31-1.82)<.0011.40 (1.22-1.61).0031.28 (1.09-1.50)Age, per 10-year increase

Gender

Ref (1)Ref (1)Refc (1)Male

.260.74 (0.44-1.25).040.60 (0.37-0.98).230.69 (0.38-1.26)Female

Race

Ref (1)Ref (1)Ref (1)White

.820.92 (0.46-1.84).600.86 (0.48-1.52).260.70 (0.38-1.30)Black

.941.03 (0.45-2.38).270.67 (0.33-1.36).530.79 (0.38-1.66)Other

Educational level

Ref (1)Ref (1)Ref (1)<College

.201.46 (0.82-2.60).960.99 (0.61-1.59).991.00 (0.59-1.71)≥College

Household income (US $)

Ref (1)Ref (1)Ref (1)<35,000

.770.86 (0.31-2.37).911.05 (0.46-2.42).890.94 (0.38-2.29)35,000 to <50,000

.760.87 (0.35-2.16).681.18 (0.54-2.56).660.83 (0.36-1.92)50,000 to <75,000

.250.62 (0.27-1.41).440.76 (0.38-1.53).991.00 (0.47-2.14)≥75,000

Any child <18 years old

Ref (1)Ref (1)Ref (1)No

.240.70 (0.38-1.28).100.68 (0.43-1.07).020.56 (0.34-0.91)Yes

Behavioral risk factors

Physical activity

Ref (1)Ref (1)Ref (1)Low or medium

.431.30 (0.68-2.51).981.01 (0.55-1.83).250.68 (0.35-1.32)High

.820.98 (0.84-1.15).641.03 (0.90-1.19).100.88 (0.75-1.03)Fruit and vegetable cups, per 1-cup
increase

Sleep quality

Ref (1)Ref (1)Ref (1)Very good or fairly good

.230.74 (0.45-1.21).030.63 (0.42-0.95).020.59 (0.38-0.93)Very bad of fairly bad

Number of health apps used in past month

Ref (1)Ref (1)Ref (1)0

.201.46 (0.81-2.62).671.12 (0.66-1.92).640.86 (0.45-1.63)1-5

.340.60 (0.21-1.70).911.04 (0.49-2.24).951.03 (0.42-2.51)>5

.010.95 (0.92-0.99).0010.95 (0.93-0.98).010.96 (0.94-0.99)BMId, per 1-unit increase

aThe model was adjusted for age, sex, race, education, household income, having children younger than 18 years old, physical activity, fruit and vegetable
cups, sleep quality, and BMI.
bOR: odds ratio.
cRef: reference.
dBMI is calculated as weight in kilograms divided by height in meters squared.
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Survey Completion and Retention in the EHR-Based
Cohort Study
Out of 1017 enrolled participants, 328 (32.25%) completed the
4-month follow-up surveys within 72 hours of receiving the
link. Of the remaining 689 participants (67.75%), study staff
were able to reach out to 610 participants (88.5%) through
personalized emails, text messages, and US $100 raffle
invitations delivered up to one week prior to study completion.
Of the 610 contacted participants, 113 (18.5%) completed their
surveys after one contact, 56 (9.2%) after two contacts, and 35
(5.7%) after three contacts, increasing the overall number of
4-month survey completers to 532 (52.31%).

Discussion

Principal Findings
EHRs and patient portals are readily available through most
health care systems, and use of mHealth apps is fairly ubiquitous
[16,44]. This study reports on EHR-based recruitment of adults
from three health systems to use the Daily24 mobile app to
record daily timing of meals, snacks, and sleep for 6 months.
We emailed research invitations to over 70,000 potentially
eligible participants identified through the EHR using efficient
identification (ie, computable phenotype) and messaging
methods (ie, emails sent directly through the EHR patient portal
or to personal email addresses). A total of 1.4% of participants
completed e-consent forms and baseline questionnaires in a
period of 6 months, a yield that is slightly lower than reports
for other EHR-based recruitment methods [32-34]. In a 2019
single-institution study that included 13 separate EHR-based
recruitment strategies using the patient portal recruitment
service, the average response rate for patient portal messages
was 2.9% [32]. Our lower yield might be explained by the
study’s expectation to download and actively use an app for 6
months or have no guaranteed compensation be provided for
participation [45] (ie, raffles of gift cards). Patients may also
be more likely to respond to mHealth research with a behavioral
intervention [46] or to disease-related versus wellness-related
research [32,45]. In the above study by Miller and colleagues
[32], recruitment response rates were higher (3.4%) among
condition-specific studies (ie, those with a more inclusive
comprehensive phenotype) versus general health studies (1.4%).
The latter response rate was identical to this study’s recruitment
yield, which was also not specific to a health condition.
Furthermore, while our app included gaming elements (eg,
badges and a leaderboard) [47,48] to increase data entry, we
intentionally did not include behavioral techniques (eg, goal
setting and personalized behavioral prompts) aimed at behavior
change, given the study’s primary goal to naturalistically
examine the relationship between timing of eating and sleep
and weight and medical conditions (findings forthcoming).

Once enrolled, 54% of participants who downloaded the app
entered timing of eating or sleep data on at least one day. While
the frequency criteria to classify someone as an app user in this
study was fairly low (ie, at least one completed day), other
studies have used a similarly low frequency to define usage
[49]; however, comparisons between studies can be challenging
due to disparate study designs and modes of interacting with

apps (ie, passive vs active data collection) [50]. For example,
in the Asthma Mobile Health Study (AMHS), 85.21%
(6470/7593) of enrolled participants (ie, downloaded an asthma
health app, e-consented, and verified email) were considered
baseline users (ie, at least one in-app survey entry). However,
enrollment occurred after the app was already downloaded, and
individuals who downloaded the app (N=40,683 in the United
States over 6 months) were recruited through a large media blitz
versus academic recruitment [49]. Eligibility was also based on
having a medical condition (ie, disease related), and the app
included behavioral components (eg, goal setting).

Although criteria for defining usage categories differ across
studies, our immediate (75%; ≥7 days in the first month) and
consistent (50%; ≥28 days over 6 months) rates were higher
than the “robust” cohort rates (30%; 5 or more surveys over 6
months) reported in the AMHS; in the case of sustained users
(25%; ≥2 days during month 6), our rates were fairly comparable
to those in the AMHS [49]. We attribute being able to initially
engage three-quarters of our app users, and to retain a quarter
of our users, to the food and sleep wheels in Daily24 being fast
and easy to use, whereas other apps may include more survey
items or require more detailed dietary intake entry [31,51].
Future iterations of the app should employ evidence-based
strategies and features for increasing engagement (eg, push
notifications with tailored health messages) [52-54].

This study’s usage data provides important information about
predictors of health app use to guide the design of future
observational studies using apps. Our finding that those who
were younger, more formally educated, and wealthier were more
likely to be app users is consistent with past research [16,49].
This study also found that White participants were more likely
to be app users, a finding that is consistent with some research
[55]. However, that finding is not consistent with a
cross-sectional survey study of 1604 mobile phone users in the
United States [16], which found that being Latino or Hispanic
(P<.05) or African American (P=.07, trend) were related to a
greater likelihood to download a health app. Inconsistencies in
findings may be related to different assessment methods (ie,
actual app usage vs self-reported use), recruitment methods (ie,
national survey vs regional EHR recruitment), and racial and
ethnic distribution in recruitment regions [16,56]. Not having
children younger than 18 years of age was also associated with
app use. While this is perhaps a correlate of being younger, it
is also an intuitive finding that those with children may have
less time for mHealth app use, supporting the well-documented
importance of ease and efficiency of data entry in mHealth apps
[16]. While younger age was associated with app use overall,
being older was associated with early, consistent, and sustained
use. The AMHS study similarly found that among robust users,
increasing age was significantly associated with a greater
likelihood to use the asthma health app daily [49]. An adherence
and retention study of a web-based alcohol intervention also
found that being older and not having children predicted a
greater likelihood of logging in [57]. We also found that having
a lower BMI was associated with early, consistent, and sustained
use. Past research has found that having a BMI in the obese
range is associated with greater health app use [16], influencing
our hypothesis that those with higher BMIs would be more
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motivated to download and use a health app. While we did not
find a significant association between weight status and app use
overall, we did find that those with lower BMIs were more
likely to use health apps across time. Given this observational
study design, we identified an association between BMI and
health app use (ie, those with a lower BMI were more likely to
engage in sustained tracking and health monitoring), but we do
not know causality or temporality. Future research exploring a
causal relationship is needed to determine if apps targeting
timing of eating and sleep may have an effect on behaviors that
influence weight [25,56].

Limitations
There are several limitations of this study. First, this was an
observational cohort study and was not designed with a
comparison group to assess differences in app use among
participants instructed to log for 6 months without additional
guidance on targeted tracking days, compared to our approach
of emphasizing tracking on POWER 28 and POWER week
days. In designing the study, to optimize longitudinal tracking,
we decided to preidentify targeted days to decrease participant
burden and, more importantly, to increase the likelihood that
we would collect data on some days across each of the 6 months
rather than risk the typical pattern of heavier use up front
followed by drop-off [18,49]. This approach appeared to be
effective. Although we did observe drop-off across each study
month, with the biggest decline being from months 1 and 2,
about one-quarter of the participants were still using the app
during month 6, and those who were using the app during month
6 were using it in the identified POWER week. However,
without a two-arm study design, we cannot fully conclude that
this was the ideal approach. Second, although we designed
badges and a leaderboard to create gaming elements and increase
motivation [47,48], we are unable to ascertain if those who
earned badges were more motivated individuals in general or
were motivated by the badges. Badges were earned based on
various categories of usage (eg, first log-in, track 7 days in a
row, and 4 days of your POWER week) and were automatically
entered into our raffle (ie, participants did not have to enter their
badges into the raffle themselves); thus, it is challenging to
know whether badges and the resulting raffle were an effective
gamification approach. Third, we do not have detailed
information on the reasons that a little less than half of the
participants did not go on to download the app. With our app
being designed by researchers rather than more highly funded
industry, we suspect that the onboarding process may have had

some cumbersome features. The biggest obstacles may have
been problems with the two-factor authentication process, which
required participants to receive an SMS code on their device
and correctly enter it to verify their identity. Additionally, many
people forgot, misplaced, or mis-entered the password they
chose when registering for the app and were without an
automated password reset option. Although we had research
staff available for tech support, it was available only during
work hours and via phone or email. Fourth, our sample was
largely comprised of White participants, more formally educated
participants, and those of middle- to upper-socioeconomic status;
thus, the generalizability to other racial, ethnic, and
socioeconomic groups is limited. Future research involving
EHR-based recruitment independent of technology use might
consider partnering with communities from racialized and
lower-socioeconomic subgroups to understand how recruitment
efforts and health apps can be adapted to improve their impact
for marginalized communities. Finally, while our recruitment
methods were efficient in terms of participant identification,
messaging, and enrollment, we are unable to comment on the
cost-effectiveness of EHR enrollment. Each of these health
systems have made significant investments into building and
maintaining their EHRs and infrastructure to enable these
recruitment methods for research purposes. In addition, for this
study, we leveraged existing health information technology
infrastructure from the PaTH network [30], which enabled
efficiency from both a time and resource perspective. However,
for this methodology to be used more broadly in a variety of
settings, greater institutional and community partnerships and
resources are needed.

Conclusions
Health apps aimed at weight loss and related behaviors are
among the most highly used mHealth apps [22]. Time-restricted
feeding is a novel and promising approach for obesity and
related disease management; however, it is largely untested in
humans, to a great extent due to the challenges of helping
individuals modify their behavior to a shorter window of eating
[15,58,59]. This report is a first step in describing efficient EHR
recruitment of patients from three large health institutions and
the use of an mHealth app to enter information about timing of
eating and sleep patterns. Next steps include incorporating
behavioral techniques into the app, potentially with health
coaching, to assist individuals achieve greater alignment with
their circadian rhythms and to determine whether this is a
feasible and effective weight loss intervention.
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PCORnet: National Patient-Centered Research Network
REDCap: Research Electronic Data Capture
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