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Abstract

Background: Admissions are generally classified as COVID-19 hospitalizations if the patient has a positive SARS-CoV-2
polymerase chain reaction (PCR) test. However, because 35% of SARS-CoV-2 infections are asymptomatic, patients admitted
for unrelated indications with an incidentally positive test could be misclassified as a COVID-19 hospitalization. Electronic health
record (EHR)–based studies have been unable to distinguish between a hospitalization specifically for COVID-19 versus an
incidental SARS-CoV-2 hospitalization. Although the need to improve classification of COVID-19 versus incidental SARS-CoV-2
is well understood, the magnitude of the problems has only been characterized in small, single-center studies. Furthermore, there
have been no peer-reviewed studies evaluating methods for improving classification.

Objective: The aims of this study are to, first, quantify the frequency of incidental hospitalizations over the first 15 months of
the pandemic in multiple hospital systems in the United States and, second, to apply electronic phenotyping techniques to
automatically improve COVID-19 hospitalization classification.
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Methods: From a retrospective EHR-based cohort in 4 US health care systems in Massachusetts, Pennsylvania, and Illinois, a
random sample of 1123 SARS-CoV-2 PCR-positive patients hospitalized from March 2020 to August 2021 was manually
chart-reviewed and classified as “admitted with COVID-19” (incidental) versus specifically admitted for COVID-19 (“for
COVID-19”). EHR-based phenotyping was used to find feature sets to filter out incidental admissions.

Results: EHR-based phenotyped feature sets filtered out incidental admissions, which occurred in an average of 26% of
hospitalizations (although this varied widely over time, from 0% to 75%). The top site-specific feature sets had 79%-99% specificity
with 62%-75% sensitivity, while the best-performing across-site feature sets had 71%-94% specificity with 69%-81% sensitivity.

Conclusions: A large proportion of SARS-CoV-2 PCR-positive admissions were incidental. Straightforward EHR-based
phenotypes differentiated admissions, which is important to assure accurate public health reporting and research.

(J Med Internet Res 2022;24(5):e37931) doi: 10.2196/37931
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Introduction

Despite the ongoing COVID-19 pandemic and the dozens of
research groups and consortia worldwide that continue to utilize
clinical data available in electronic health records (EHRs),
critical gaps remain in both our understanding of COVID-19
and how to accurately predict poor outcomes, including
hospitalization and mortality [1-4].

One of the most prominent gaps in the field is how to distinguish
hospital admissions specifically for COVID-19-related
indications (eg, severe disease with respiratory failure) from an
incidentally positive SARS-CoV-2 polymerase chain reaction
(PCR) test in admissions for an unrelated reason (eg, a broken
leg). Approximately 800,000 new SARS-CoV-2 cases are being
reported daily, and approximately 150,000 patients are
hospitalized with a positive SARS-CoV-2 PCR test [5].
Misclassification of incidental COVID-19 during
hospitalizations is common [5] and raises research and public
health concerns. For example, deleterious effects on health care
system resource disbursement or utilization as well as on local
and regional social and economic structure and function can
result from inaccurate reporting of incidental cases of
SARS-CoV-2.

Misclassification in research studies occurs because patients
are usually considered COVID-19 patients if they have a recent
positive SARS-CoV-2 PCR test or the International
Classification of Diseases, Tenth Revision (ICD-10) diagnosis
code U07, which, according to guidelines, is equivalent to a
positive test [6]. This approach has been used in most
COVID-19 studies published to date [7,8] and is in line with
Centers of Disease Control and Prevention (CDC) guidelines,
which treat positive SARS-CoV-2 PCR tests as confirmed cases
[9]. Given that at least 35% of SARS-CoV-2 cases are
asymptomatic, patients seeking unrelated care are erroneously
classified as COVID hospitalizations [10-14]. The magnitude
of this misclassification has increased over time as health care
systems began to be less restrictive after the second wave and
elective surgeries were again performed starting in the second
quarter of 2021.

A potential solution is EHR-based phenotyping, which identifies
patient populations of interest based on proxies derived from

EHR observations. EHR phenotypes are developed by first
performing manual chart review to classify cases and then
applying a machine learning or statistical reasoning method to
the EHR data to create an explainable predictive model [15,16].
For example, a phenotyping study of bipolar disorder found
that true bipolar disorder is correlated with a set of several EHR
features [17]. Our previous work validated a “severe
COVID-19” phenotype in the Consortium for Clinical
Characterization of COVID-19 by EHR (4CE) network using
both chart review and comparison across sites [18,19]. 4CE is
a diverse international network of over 300 hospitals engaged
in collaborative COVID-19 research [2,20,21].

The Massachusetts Department of Public Health has recently
begun using a simple phenotype to report COVID-19
hospitalizations [22,23]. Although it is based on treatment
recommendations and not a gold standard, it illustrates the
interest in EHR-based phenotyping for COVID-19.

In this study, we utilized EHR data from 60 hospitals across 4
US health care systems in 4CE, combined with clinical expertise,
data analytics, and manual EHR chart review, to determine
whether patients admitted to the hospital and who had a positive
SARS-CoV-2 PCR test were hospitalized for COVID-19
(for-COVID-19 group) or were admitted for a different
indication and simply had an incidental positive test
(admitted-with-COVID-19 group).

Methods

Sites
We selected a sample of 4 4CE sites across the United States
to participate in the development of our for-COVID-19
hospitalization phenotype. These sites included the Beth Israel
Deaconess Medical Center (BIDMC), Mass General Brigham
(MGB), Northwestern University (NWU), and the University
of Pittsburgh/University of Pittsburgh Medical Center (UPITT).
Each site involved at least 1 clinical expert (for chart review
and manual annotation) and 1 data analytics expert (to apply
various analytic filtering approaches). Eligible patients for this
study were those included in the 4CE COVID-19 cohort: all
hospitalized patients (pediatric and adult) with their first positive
SARS-CoV-2 PCR test 7 days before to 14 days after
hospitalization [2].
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Chart Review
Each development site randomly sampled an equal number of
admissions in each quarter (BIDMC, MGB) or month (NWU,
UPITT) from their cohort of SARS-CoV-2 PCR-positive patients
over the period of March 2020 until at least March 2021
(N=1123). Clinical experts reviewed the charts in the EHRs and
recorded whether these patients were admitted for
COVID-19-related reasons, as defined later. The total number
of chart reviews per site was somewhat variable and determined
by availability of the clinical experts. Participating sites and the
number of chart reviews are listed in Table 1.

To develop chart review criteria, a 4CE subgroup met during
March-July 2021. The group consists of about 20 researchers
in 4CE, with a mixture of physicians, medical informaticians,
and data scientists. In the process, dozens of real patient charts
were considered, and edge cases were discussed until consensus
was reached on the minimal chart review necessary to determine
the reason a patient was hospitalized.

Based on the developed criteria, chart reviewers (1 per site,
except at the BIDMC, where there were 2) classified the patients
based on review of primarily the admission note, discharge
summary (or death note), and laboratory values for the
hospitalization. Each site had Institutional Review Board (IRB)

approval to view the charts locally, and only deidentified
aggregate summaries were presented to the subgroup. Each site
summarized the chart reviews in a spreadsheet that was then
linked to the site’s 4CE EHR data, wherein medical record
numbers were replaced with 4CE’s patient pseudoidentifiers,
and criteria classifications were coded as an integer. The 4CE
EHR data set is a COVID-19-related subset of raw EHR data
consisting of selected laboratory test, medication, and procedure
categories and all available ICD-10 diagnosis codes. The data
dictionary is explained in more detail in Multimedia Appendix
1. The chart review process is presented visually in steps 1-5
of Figure 1.

We developed an R script (R Core Team) at the MGB to perform
basic data summarization. This did the following: calculated
chart review summary statistics, aggregated data on ICD-10
diagnosis codes used during the hospitalization to compare to
the chart review classification, and generated a bubble plot that
visualizes the change in proportion of hospitalizations,
specifically for COVID-19, among all chart reviews over the
course of the pandemic, by month. A trendline was fitted with
locally estimated scatterplot smoothing (loess) regression using
ggplot2 and was weighted by the number of chart reviews
performed that month. Each participating health care site ran
the R script on its chart-reviewed patient cohort.

Table 1. Participating health care systems’ overall characteristics and the number and period of chart reviews performed for this study.

Chart review time period, start
date-end date

Number of chart reviews per-
formed, n

Inpatient discharges per year, nHospitals, nParticipating site

March 2020-March 202140040,7521BIDMCa

March 2020-July 2021406163,52110MGBb

March 2020-February 202170103,27910NWUc

April 2020-August 2021247369,30039UPITTd

aBIDMC: Beth Israel Deaconess Medical Center.
bMGB: Mass General Brigham.
cNWU: Northwestern University.
dUPITT: University of Pittsburgh/University of Pittsburgh Medical Center.
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Figure 1. The chart review process. (1-2) At each site, an equal number of patients admitted with a positive SARS-CoV-2 PCR test were sampled by
quarter or by month. (3-4) A chart reviewer at the site examined primarily the admission note, discharge summary (or death note), and laboratory values
for the hospitalization to classify as admitted for COVID-19, incidental SARS-CoV2, or uncertain. (5-6) These classifications were then merged with
4CE EHR data for use with shared analytic scripts in R. (7-8) The top phenotypes at each site output by the data mining algorithm were summarized,
and this was used to manually construct feature sets to be used across sites by selecting components that appeared in step 7 at multiple sites. (9) The
performance over time of the top multisite phenotypes was visualized. 4CE: Consortium for Clinical Characterization of COVID-19 by EHR; EHR:
electronic health record; ICD-10: International Classification of Diseases, Tenth Revision; PCR: polymerase chain reaction.

Phenotypes Using Hospital System Dynamics
Phenotyping
We developed an algorithm as an R script to choose phenotypes
of admissions specifically for COVID-19, using established
hospital dynamics measures of ordering/charting patterns in the
EHRs (eg, presence of laboratory tests rather than laboratory
results) [16,24]. The algorithm uses a variation of the Apriori
item set–mining algorithm [25,26]. Apriori, which has been
utilized in other EHR studies, uses a hill-climbing approach to
find iteratively larger item sets that meet some summary statistic
constraint [27,28]. Apriori, like other market basket analyses,
is advantageous when the labeled data are small, because it
discovers statistical properties of the underlying data, rather
than developing a separate predictive model that must be
evaluated. Therefore, it does not require a data split between a
training and a test set, which would further limit the sample
size. The original algorithm chose rules that maximized the
positive predictive value (PPV) and had at least a minimum
prevalence in the data set. More recent variants use other
summary statistics [29] because the PPV, which measures the
likelihood a positive is a true positive, is highly affected by
population prevalence (which shifts dramatically over time with
COVID-19). Therefore, our algorithm used sensitivity and
specificity. A visual representation of our algorithm is shown
in Figure 2. Item sets of size 1 are chosen that meet certain
minimum prediction thresholds, and then these are combined

into item sets of size 2 and again filtered by the thresholds, and
so forth up to a maximum item set size.

We applied our algorithm to find patterns in 4CE EHR data at
each site using the presence of medications, laboratory tests,
and diagnoses to select the best phenotypes. (Laboratory test
results are included in the 4CE data set but were not included
in this analysis, because it does not fit with the principles of
hospital system dynamics [HSD].) We further compared the
output at each site to see whether there were similarities (eg,
transfer learning was applicable). We considered 2 cases: data
that would be available in near-real time during a hospitalization
(laboratory tests) and data that would be available for a
retrospective analysis (including laboratory and medication
facts and diagnosis codes, which are usually not coded until
after discharge).

Sites exported phenotypes with sensitivity of at least 0.60,
ordered by specificity in descending order. (Site B applied a
slightly lower sensitivity threshold because no phenotypes with
sensitivity of at least 0.60 were available.) Specificity was
chosen as the sorting variable because it measures the
phenotype’s ability to detect and remove incidental
SARS-CoV-2 admissions—a good measure of overall
performance. Sensitivity, in contrast, measures the ability to
select for-COVID-19 admissions, which can be easily
maximized by simply selecting all patients. Groups of
phenotypes were manually summarized into conjunctive normal
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form by combining AND and OR phenotypes at each site, when
possible, and reporting a sensitivity and specificity range for
the final combined phenotype. We excluded feature sets that
were more complex but with the same performance as a simpler
feature set.

We also ran our phenotyping program to find the most predictive
individual features at each site during every 6-month period of
the pandemic, beginning January 2020. This analysis allowed
us to examine the trend of HSD as the pandemic progressed.

The final piece of analysis involved selecting multisite
phenotypes and plotting their performance over time. First, we
selected the features that appeared at multiple sites from the
best phenotypes at each site. We used these to manually
construct multisite phenotypes. We optimized these using MGB
data by manually adding/removing OR components based on
performance, because adding too many OR components
degrades the specificity. We ran these constructed phenotypes
at each site to ascertain their performance characteristics.

This data-mining process can be seen visually in Figure 1, steps
6-8.

Figure 2. Design of the phenotyping algorithm. Predictive feature sets of iteratively larger size were selected based on their sensitivity and specificity
in correctly identifying COVID-19-specific admissions using 4CE EHR data and chart reviews. We chose the following parameters after testing various
thresholds at all 4 sites: AND feature sets, x=0.40, y=0.20, p=0.30; OR feature sets x=0.10, y=0.50, p=0.20; and single features: x=y=p=0. 4CE:
Consortium for Clinical Characterization of COVID-19 by EHR; EHR: electronic health record.

Temporal Visualization of Phenotypes
We also developed a temporal visualization used at each site
(step 9 of Figure 1). The visualization shows 3 lines: a solid
line showing the total number of patients in the site’s 4CE cohort
(ie, admitted with a positive SARS-CoV-2 PCR test), a dashed
line showing the total number of those patients after filtering
to select patients admitted specifically for COVID-19 (ie,
removing all patients who do not meet the phenotyping feature
set criteria), and a dotted line showing the difference between
the solid line and the dashed line (ie, patients removed from the
cohort in the dashed line). Dots on the graph visualize the
performance on the chart-reviewed cohort. Green dots on each
line show patients who were correctly classified by the
phenotype, according to the chart review. Likewise, orange dots
on each line show incorrect classifications. Dot size is
proportional to the number of chart reviews.

Importantly, all review and analysis were performed by local
experts at each site, and only the final aggregated results were
submitted to a central location for finalization. This approach
is a hallmark of 4CE—keeping data close to local experts and
only sharing aggregated results. It reduces regulatory complexity
around data sharing and keeps those who know the data best
involved in the analysis.

All our software tools were implemented as R programs. They
were developed at the MGB and tested by all 4 sites. The code
is available as open source [30].

Ethical Considerations
IRB approval was obtained at the BIDMC (#2020P000565),
the MGB (#2020P001483), the UPITT (STUDY20070095),
and the NWU (STU00212845). Participant informed consent
was waived by each IRB because the study involved only
retrospective data and no individually identifiable data were
share outside of each site’s local study team. Site names were
anonymized (to sites A, B, C, and D) to comply with hospital
privacy policies. At the MGB and the BIDMC, any counts of
patients were blurred with a random number +/–3 before being
shared centrally. Our previous work shows that for large counts,
pooling blurred counts has minimal impact on the overall
accuracy of the statistics [31]. At all sites, any counts <3 were
censored. All other statistics (eg, percentages, differences, CIs,
P values) were preserved.

Results

Chart Review
The final chart review criteria are shown in Table 2. (See the
Methods section for details.) Across the 4 sites, 764 (68%) of
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1123 patients were admitted for COVID-19, 292 (26%) patients
were admitted with incidental SARS-CoV-2, and 67 (6%) were
uncertain (Table 3). The 4 sites included the BIDMC, the MGB,
the UPITT, and the NWU. A site-by-site breakdown, both
overall and by individual criteria, is also shown in Table 3. A
demographic characterization of the chart-reviewed cohort at
each site is shown in Table 4. Plots of the proportion of
hospitalizations specifically for COVID-19 among all chart

reviews by month over the course of the pandemic are shown
in Figure 3. Finally, Tables 5 and 6 show the top 10 ICD-10
diagnoses that were assigned to patients with a date in the first
48 hours after admission in for-COVID-19 versus
incidental-COVID-19 groups. In all results, each site is labeled
with a random but consistent letter (A, B, C, or D) to comply
with hospital privacy policies.

Table 2. Summary of the chart review criteria developed by the 4CEa subgroup of physicians, medical informaticians, and data scientists.

CriteriaChart-reviewed classification

Symptoms on admission were attributable to COVID-19, and clinicians admitted patients for
COVID-19-related care. The symptoms included:

Admitted specifically for COVID-19

• Respiratory insufficiency
• Blood clots in vital organs
• Hemodynamic changes
• Other common viral symptoms, such as cough and fever
• Admitted for non-COVID-19 issue but developed any of the above symptoms while hospitalized

The admission history was unlikely to be related to COVID-19, and clinicians did not specifically
admit the patient for COVID-19-related care. This admission could be due to:

Admitted incidentally with COVID-19

• Trauma
• Procedure or operation requiring hospitalization
• Term labor
• Alternative causes, including drug overdose, cancer progression, and nonrespiratory severe

infection

Symptoms on admission may have been related to COVID-19, and clinicians considered COVID-
19 exacerbation during hospitalization. The symptoms included:

Uncertain

• Preterm labor
• Liver dysfunction
• Graft failure
• Immune system dysfunction
• Alternative causes, including sickle cell crisis, failure to thrive, and altered mental status

a4CE: Consortium for Clinical Characterization of COVID-19 by EHRb.
bEHR: electronic health record.
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Table 3. Proportion of chart-reviewed patients admitted specifically for COVID-19 vs admitted with incidental SARS-CoV-2, overall and stratified
by site, with a detailed criteria breakdown. A detailed breakdown at site D could not be included, because their process did not record the specific criteria
for each classification. Note that cells with 0% are still included to show all the chart review criteria.

Overall (N=1123),
n (%)

Site D (N=400), n
(%)

Site C (N=247), n
(%)

Site B (N=70), n
(%)

Site A (N=406), n
(%)

Category

764 (68)Admitted specifically for COVID-19

N/Aa240 (60)180 (73)59 (84)288 (71)All

N/AN/A128 (52)36 (51)202 (50)Respiratory insufficiency

N/AN/A<3 (<5)<3 (<5)6 (1)Blood clot

N/AN/A<3 (<5)<3 (<5)<3 (<5)Hemodynamic changes

N/AN/A47 (20)19 (27)71 (18)Other symptomatic COVID-19

N/AN/A5 (2)<3 (<5)8 (2)Not admitted for COVID-19 but devel-
oped 1 of the above criteria

292 (26)Admitted incidentally with COVID-19

N/A144 (36)54 (22)9 (13)85 (20)All

N/AN/A<3 (<5)<3 (<5)18 (4)Full-term labor

N/AN/A9 (4)<3 (<5)8 (2)Procedure

N/AN/A<3 (<5)<3 (<5)<3 (<5)Trauma

N/AN/A44 (18)6 (9)50 (13)Other not COVID-19

67 (6)Uncertain

N/A16 (4)10 (4)<3 (<5)33 (8)All

N/AN/A<3 (<5)<3 (<5)<3 (<5)Immune dysfunction

N/AN/A<3 (<5)<3 (<5)<3 (<5)Early labor

N/AN/A<3 (<5)<3 (<5)<3 (<5)Liver dysfunction

N/AN/A<3 (<5)<3 (<5)<3 (<5)Graft failure

N/AN/A10 (4)<3 (<5)31 (8)Other possible COVID-19

aN/A: not applicable.
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Table 4. Demographic characterization of the chart-reviewed cohort by site. For each row, the count and percentage (in parentheses) at each site are
shown. Two sites did not report Hispanic/Latino. N values for each site are shown in the header; these might not exactly match the summation of each
category due to blurring requirements.

Site D (N=400), n (%)Site C (N=247), n (%)Site B (N=70), n (%)Site A (N=406), n (%)Category

Age (years)

11 (3)4 (1)11 (14)14 (4)0-25

76 (18)26 (10)15 (21)95 (23)26-49

135 (33)99 (40)22 (31)138 (35)50-69

90 (22)59 (24)9 (13)72 (17)70-79

81 (19)59 (24)13 (18)83 (20)80+

Race

17 (4)5 (2)2 (3)8 (2)Asian

97 (24)58 (23)9 (13)60 (14)Black

55 (14)N/AN/Aa21 (6)Hispanic/Latino

173 (42)179 (72)50 (71)78 (19)White

61 (14)5 (2)8 (11)230 (58)No information

Sex

188 (47)121 (49)42 (60)200 (50)Male

211 (52)126 (51)28 (40)200 (50)Female

aN/A: not applicable.
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Figure 3. Chart-reviewed proportion of admissions specifically for COVID-19 among all chart reviews by month at each site. The bubble size shows
the relative number of patient chart reviews performed that month. The trendline was weighted by bubble size and was performed using locally weighted
least squares (loess) regression. Note that the y axis and 95% CI limits extend above 100%.
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Table 5. Top 10 ICD-10a diagnoses among patients’ charts reviewed as admitted specifically for COVID-19, with the proportion of patients with each
diagnosis at each site. Each patient might have multiple diagnoses, and therefore, the sum might be greater than 100%.

Site D (N=240),
n (%)

Site C (N=180),
n (%)

Site B (N=59), n
(%)

Site A (N=288),
n (%)

ICD-10 diagnosis

226 (95)145 (80)54 (92)265 (92)U07.1 Covid-19

173 (70)64 (35)24 (41)125 (44)J12.89 Other Viral Pneumonia

89 (37)74 (41)16 (27)113 (39)I10 Essential (Primary) Hypertension

139 (58)56 (31)20 (34)75 (26)J96.01 Acute Respiratory Failure With Hypoxia

108 (46)69 (38)4 (7)79 (28)E78.5 Hyperlipidemia, Unspecified

94 (39)40 (22)4 (7)74 (25)N17.9 Acute Kidney Failure, Unspecified

65 (26)57 (31)<3 (<3)64 (22)K21.9 Gastro-Esophageal Reflux Disease Without Esophagitis

66 (27)44 (24)<3 (<3)56 (18)Z87.891 Personal History of Nicotine Dependence

43 (17)21 (12)15 (25)81 (29)R09.02 Hypoxemia

35 (15)39 (22)12 (20)72 (25)J12.82 Pneumonia due to COVID-19

aICD-10: International Classification of Diseases, Tenth Revision.

Table 6. Top 10 ICD-10a diagnoses among patients’ charts reviewed as admitted with incidental COVID-19, with the proportion of patients with each
diagnosis at each site. Each patient might have multiple diagnoses, and therefore, the sum might be greater than 100%.

Site D (N=144),
n (%)

Site C (N=54), n
(%)

Site B (N=9), n
(%)

Site A (N=85), n
(%)

ICD-10 diagnosis

122 (85)40 (73)5 (56)63 (74)U07.1 Covid-19

24 (17)12 (22)<3 (<11)12 (14)N17.9 Acute Kidney Failure, Unspecified

23 (15)7 (13)<3 (<11)5 (6)E11.22 Type 2 Diabetes Mellitus with Diabetic Chronic Kidney Disease

14 (11)4 (7)<3 (<11)12 (11)E11.9 Type 2 Diabetes Mellitus Without Complications

10 (6)5 (9)<3 (<11)13 (19)D64.9 Anemia, Unspecified

12 (10)<3 (<5)<3 (<11)8 (6)E87.2 Acidosis

15 (12)4 (7)<3 (<11)<3 (<2)J12.89 Other Viral Pneumonia

13 (8)4 (7)<3 (<11)6 (8)J96.01 Acute Respiratory Failure With Hypoxia

12 (7)6 (11)<3 (<11)5 (7)D69.6 Thrombocytopenia, Unspecified

6 (5)5 (9)<3 (<11)6 (7)N18.6 End-Stage Renal Disease

aICD-10: International Classification of Diseases, Tenth Revision.

Phenotypes Using Hospital System Dynamics
Each site ran our HSD program to choose phenotypes of patients
admitted for COVID-19 versus patients admitted incidentally
with COVID-19. The input of the program includes the
chart-reviewed classifications and patient-level EHR data on
the presence of 22 selected laboratory test types, 11 selected
medication categories, 12 procedure categories, and all ICD-10
diagnosis codes that are dated within 48 hours of admission.
This resulted in 1880 distinct features across all sites. (See
Multimedia Appendix 1 for more information on the data

dictionary.) The program selected 135 feature sets across all
sites using these features. These were manually reduced to 32
(23.7%) by selecting the most predictive and removing
duplicates and near-duplicates. These are summarized in Table
7, divided into phenotypes that use data that could be available
immediately (“real time”) and phenotypes using all data
available after discharge (“retrospective”). We also reported
the prevalence at each site among all SARS-CoV-2
PCR-positive hospitalizations (not just among chart-reviewed
patients), which is the proportion of patients meeting the criteria
of the feature sets.
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Table 7. Top phenotyping feature sets by specificity, with a sensitivity of at least 0.60 for detecting admissions specifically for COVID-19. The table
is grouped into feature sets involving potentially real-time data (laboratory tests) and all available data (presence of laboratory tests, medications, and
diagnosis codes). Note that laboratory test results are not included in the feature sets. Ranges are shown in the summary statistics because multiple rules
with similar performance were summarized using conjunctive normal form.

Prevalence (%)SpecificitySensitivitySitePhenotyping feature set

“Real-time” phenotypes (laboratory tests only)

67-710.850.65-0.72DCRPa AND (Total Bilirubin OR Ferritin OR LDHb) AND (Lymphocyte
Count OR Neutrophil Count) AND Cardiac Troponin

67-710.850.62-0.69DFerritin AND LDH AND Cardiac Troponin AND (INRc OR PTTd OR
Lymphocyte Count OR Neutrophil Count)

72-770.89-0.900.67-0.70ACRP AND (LDH AND/OR Ferritin) AND Cardiac Troponin

65-850.73-0.850.63-0.87AProcalcitonin OR D-dimer OR CRP OR Cardiac Troponin OR Ferritin

63-670.670.56-0.58BAny 2 of: Procalcitonin, LDH, CRP

54-580.86-0.930.26-0.37CD-dimer OR Ferritin OR CRP

“Retrospective” phenotypes (laboratory tests, medications, and diagnosis codes)

46-480.920.62-0.64DTotal bilirubin AND (Ferritin OR LDH OR Lymphocyte Count OR Neu-
trophil Count) AND diagnosis of Other Viral Pneumonia (J12.89)

50-630.82-0.880.70-0.74DDiagnosis of: Other Viral Pneumonia (J12.89) OR Acute Respiratory
Failure with Hypoxia (J96.01) OR Anemia (D64.9)

610.820.75DDiagnosis of: Other Viral Pneumonia (J12.89) OR Supplemental Oxygen
(severe)

74-770.890.70ACRP AND (LDH OR Ferritin) AND Cardiac Troponin

58-740.85-0.950.68-0.72ARemdesivir OR Procalcitonin OR Other Viral Pneumonia (J12.89) OR
Nonspecific Abnormal Lung Finding (R91.8) OR Shortness of Breath
(R06.02) OR Other COVID Disease (J12.82)

54-670.89-0.990.63-0.68BHypoxemia (R09.02) OR Other Coronavirus as Cause of Disease (B97.29)
OR Shortness of Breath (R06.02) OR Pneumonia (unspecified organism)
(J18.9) OR Acute Respiratory Failure with Hypoxia (J96.01) OR Nonspe-
cific Abnormal Lung Finding (R91.8)

52-580.79-0.860.71-0.75CD-dimer OR ferritin OR CRP OR Other Viral Pneumonia (J12.89) OR
Acute Respiratory Failure with Hypoxia (J96.01)

aCRP: C-reactive protein.
bLDH: lactate dehydrogenase.
cINR: international normalized ratio.
dPTT: partial thromboplastin time.

We examined the top individual features over time at all sites.
In the first half of 2020, a diagnosis of “Other Viral Pneumonia”
(J12.89) was the only strong predictor of an admission
specifically for COVID-19 across all 4 sites. In the second half
of 2020, the phenotyping algorithm began selecting laboratory
tests, including C-reactive protein (CRP), troponin, ferritin, and
lactate dehydrogenase (LDH). In addition, the diagnosis “Other
Coronavirus as Cause of Disease” (B97.29) began to be used
at site B. By 2021, remdesivir and the diagnosis “Pneumonia
due to COVID-19” (J12.82) additionally came into widespread
use and became predictive of admissions specifically for COVID
at site A.

Temporal Visualization of Phenotypes
We manually constructed 5 multisite phenotypes from elements
in Table 7 that appeared at multiple sites. These were evaluated

at each site: 2 variations of multisite diagnoses, 2 variations of
all multisite features, and top laboratory tests. OR rules were
favored due to better applicability across data sets (because of
different coding practices at different sites), except for laboratory
tests where the top pair of tests had high prevalence at every
site. The best-performing phenotypes in each category are shown
with their performance characteristics in Table 8, with the top
single phenotype at each site in italics. In Figure 4, we plotted
the performance of the top phenotype at each site (the boldfaced
rows in Table 8) using the temporal phenotype visualization
described in the Methods section. (The top phenotype involved
all data types at every site except site C, where diagnoses alone
performed better.)
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Table 8. The best multisite phenotyping feature sets and their overall performance characteristics. The multisite phenotypes were derived from Table
7 by selecting components of phenotypes that appeared at multiple sites.

Sensitivity, specificityDescriptionPhenotyping Feature Set

Retrospective phenotype: Diagnoses mentioned in top
feature sets at >1 site

Other Viral Pneumonia OR Acute Respiratory
Failure with Hypoxia OR Shortness of Breath OR
Abnormal Lung Finding

• Site A: 0.79,0.72
• Site B: 0.88, 0.85
• Site C: 0.69,0.90b

• Site D: 0.64,0.58

Real-time phenotype: Laboratory tests mentioned in
top feature sets at all 4 sites

CRPa AND Ferritin • Site A: 0.76,0.85
• Site B: 0.88, 0.85
• Site C: 0.42, 0.98
• Site D: 0.66, 0.55

Retrospective phenotype: All items mentioned at
multiple sites in OR feature sets

Remdesivir OR Oxygen (severe) OR Dx of Other
Viral Pneumonia

• Site A: 0.74,0.91b

• Site B: 0.81, 0.94b

• Site C: 0.60,0.92
• Site D: 0.61,0.71b

aCRP: C-reactive protein.
bThe top-performing phenotype at each site is italicized.
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Figure 4. Performance of the top phenotyping feature sets (Table 7) over time at each site. The y axis is the number of admissions per week, the x axis
is the week, and overall sensitivity and specificity are shown on each figure panel. Solid lines show the total number of weekly admissions for patients
with a positive SARS-CoV-2 PCR test. Dashed lines show the number of weekly admissions after filtering to select patients admitted specifically for
COVID-19 (ie, removing all patients who do not meet the phenotyping feature set criteria). The dotted line shows the difference between the solid line
and the dashed line (ie, patients removed from the cohort in the dashed line). Green dots indicate correct classification by the phenotype according to
chart review. Orange dots indicate incorrect classification. The dot size is proportional to the number of chart reviews. PCR: polymerase chain reaction.
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Discussion

Principal Results and Analysis
The COVID-19 pandemic has lasted for over 2 years, with
multiple waves worldwide. Although hospital systems have
been cyclically overwhelmed by patients seeking care for
COVID-19, as health care systems began to open up before the
second wave, elective surgeries were again performed starting
in the later part of 2020, and especially in the second quarter of
2021, many approached the health care system for health issues
(eg, accidents, strokes) while incidentally infected with
SARS-CoV-2 [32]. This, along with the high false-positive rate
of SARS-CoV-2 PCR tests in some situations [33-36], has led
to increasing numbers of misclassified patients in analyses of
COVID-19 characteristics and severity. This could be creating
significant detection and reporting bias, leading to erroneous
conclusions [10-13]. This study presents a multi-institutional
characterization of 1123 hospitalized patients either incidentally
infected with SARS-CoV-2 or specifically hospitalized for
COVID-19 in 4 health care systems across multiple waves using
consensus-based chart review criteria. Overall, we found that
764 (68%) of 1123 patients who tested SARS-CoV-2 positive
were hospitalized because of COVID-19 but with significant
variation during each wave of the pandemic.

We applied an item set–mining approach and established HSD
principles to phenotype SARS-CoV-2 PCR-positive patients
who were admitted specifically for COVID-19 by using data
on charting patterns (eg, presence of laboratory tests within 48
hours of admission) rather than results (eg, laboratory results)
[16,37]. HSD examines health care process data about a
hospitalization, such as ordering/charting patterns, rather than
the full data set. For example, to study severely ill patients, an
HSD approach might select patients with a high total number
of laboratory tests on the day of admission. This could be an
indirect measure of clinical suspicion of disease complexity or
severity. Previous work shows that proxies such as the total
number of laboratory tests on the day of admission or the time
of day of laboratory tests can be highly predictive of disease
course [24,37]. Our methods sorted out who was treated for
COVID-19 automatically, over time, with specificities above
0.70, even for some phenotypes discovered at a single site and
applied to all 4. We focused on specificity because the goal was
to remove false positives (ie, incidental SARS-CoV-2) from
the cohort.

Our chart review protocol illustrates that patients who were
admitted and had a positive SARS-CoV-2 PCR test were more
likely to be admitted specifically for COVID-19 when disease
prevalence was high (at least prior to Omicron). However,
during periods in which health care systems were less restrictive
(ie, resumed routine surgeries), a secondary measure/phenotype
was critical for accurately classifying admissions specifically
for SARS-CoV-2 infection.

As expected, we observed a lower proportion of hospitalizations
specifically for COVID-19 in the summer months when disease
prevalence was lower (Figure 3). One would expect this because
there were fewer overall admissions as hospitals were recovering
from the previous wave.

As expected, the top chart review criteria (Table 3) were
respiratory insufficiency in admissions specifically for
COVID-19 and other for incidental and uncertain admissions
with SARS-CoV-2. Surprisingly, 10%-20% of patients admitted
with incidental SARS-CoV-2 were diagnosed with pneumonia,
respiratory failure, or acute kidney injury (Tables 5 and 6). This
could reflect data collection issues, where some systems might
repeat past problems automatically at hospital admission. In the
case of codes for acute kidney injury, further investigation is
needed to determine whether SARS-CoV-2-associated acute
kidney injury (including COVID-19-associated nephropathy)
occurs in patients we otherwise classified as having incidental
admissions [38].

Health care systems are beginning to explore phenotyping
feature sets to report admissions specifically for COVID-19.
Starting January 2022 in Massachusetts, hospitals began
reporting the number of for-COVID-19 hospitalizations as the
count of admitted patients with both a SARS-CoV-2-positive
test and a medication order for dexamethasone [22,23]. This
simple phenotype was designed by the Massachusetts
Department of Public Health as a first attempt, and it was based
only on treatment recommendations for moderate-to-severe
COVID-19 with hypoxia. It was not validated against a gold
standard. Nonetheless, it illustrates the interest in EHR-based
phenotyping for COVID-19.

Phenotypes with diagnosis codes tended to be the
best-performing predictors of admissions, specifically for
COVID-19. This could be because diagnosis codes represent
either a clinically informed conclusion or a justification for
ordering a test (implying the clinician suspected COVID-19).
However, diagnoses are less prevalent in the population than
laboratory tests and might not cover the entire population of
admissions for COVID-19. Further, diagnoses early in
hospitalization also do not always reflect the patient’s eventual
diagnosis or hospital-related complications that are more
accurately reflected in discharge diagnoses. There was also
some heterogeneity in the diagnoses used at different sites (eg,
B97.29 “Other Coronavirus as Cause of Disease” was a top
predictor only at site B). In addition, the presence of laboratory
tests is useful for real-time detection systems because diagnosis
codes usually are assigned after discharge. Clusters of tests for
inflammatory markers (eg, LDH, CRP, and ferritin) appeared
across most sites as predictive of hospitalizations, specifically
for COVID-19, which fits intuitively because an underlying
systemic pathophysiological mechanism of SARS-CoV-2 is
thought to be an inflammatory process [39,40], and guidelines
therefore have encouraged health care providers to check
inflammatory markers on COVID-19 admissions [41,42]. Many
of these inflammatory laboratory tests are not routinely ordered
on all hospitalized patients and would therefore be expected to
help distinguish COVID-19 from other diseases. However,
laboratory protocol differences across sites may have reduced
generalizability for this metric.

Our methods generated pairs of items using OR and groups of
up to 4 using AND logical operators. Our feature sets were
somewhat vulnerable to the problem that specificity decreases
when multiple elements are combined with OR, although, in
general, OR feature sets performed better across sites because
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they could be designed to choose the top-performing elements
at each site.

In addition to site differences, we also found changing disease
management patterns over time. At the start of the pandemic,
the only predictive phenotype was a pneumonia diagnosis. As
standard COVID-19 order recommendations began to appear,
laboratory orders became more consistent and predictive. Next,
remdesivir began to be administered regularly. Finally,
COVID-19-specific ICD-10 codes began to appear.

Overall, we found that an informatics-informed phenotyping
approach successfully improved classification of for-COVID-19
versus incidental SARS-CoV-2-positive admissions, although
generalizability was a challenge. Although some transfer
learning is apparent (ie, a few phenotypes performed well across
sites), local practice and charting patterns reduced
generalizability. Specifically, phenotypes involving only
laboratory tests did not perform well at site C, because the
prevalence of these laboratory tests was low in the overall EHR
data. This could be due to a data extraction or mapping issue
in the underlying data warehouse. Site D had lower performance
than other sites on the cross-site rules but not on the site-specific
rules, perhaps highlighting less typical clinician treatment
patterns.

Any of the multisite phenotypes developed here could be
implemented as a cohort enhancement tool in hospital systems
or data research networks, and the laboratory-only phenotypes
(“CRP and Ferritin”) could be used for real-time corrections in
reporting. However, because of the changing nature of
COVID-19 and practice and coding variation across sites, these
phenotypes should be used primarily as a starting point. It is
important to run the phenotyping algorithm on each individual
site’s data to tweak the rules to optimize them for each
implementation.

Limitations
Although the current data start at the beginning of the pandemic,
they do not include the current Omicron wave nor much of the
Delta wave. We believe that the techniques introduced here (if
not the phenotypes themselves) will be applicable to these
variants, and we are planning future studies to validate this.

Our phenotypes demonstrated some transfer learning but not
enough to create a single phenotype applicable to all sites.
Technically, our system used machine learning at individual
sites, but results were manually aggregated across sites.
Emerging techniques for federated learning [43] might reduce
the manual work required and increase the complexity of
possible cross-site phenotype testing.

Finally, an inherent weakness of EHR-based research is that
EHR data do not directly represent the state of the patient,
because some observations are not recorded in structured data
and some entries in the EHR are made for nonclinical reasons
(eg, to justify the cost of a test or to ensure adequate
reimbursement for services). This is common to all EHR
research efforts, and we mitigated this limitation by developing
chart-verified phenotypes.

Conclusion
At 4 health care systems around the United States over an
18-month period starting in March 2020, we developed and
applied standardized chart review criteria to characterize the
correct classification of hospitalization specifically for
COVID-19 as compared to incidental hospitalization of a patient
with a positive SARS-CoV-2 test or ICD-10 code. Then we
applied HSD and frequent item set mining to electronic
phenotyping to generate phenotypes specific to hospitalizations
for COVID-19, and we showed how patterns changed over the
course of the pandemic. Application of this approach could
improve public health reporting, health care system resource
disbursement, and research conclusions.
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